
Algorithm theoretical for FAPAR and DMP calibration using remote sensing and 

field data in Moroccan arid areas  
 

ASMAE ZBIRI 1, *, DOMINIQUE HAESEN2, FATIMA EZZAHRAE EL ALAOUI-FARIS1, 

AZEDDINE HACHMI1, DAVID A.VACCARI3 

 
1Department of Biology 

Mohammed V University, Faculty of Science 

MOROCCO 
2Vlaamse Instelling Voor Technologisch Onderzoek (VITO) 

BELGIUM 
3Stevens Institute of Technology, Hoboken, NJ, Civil,  

Environmental and Ocean Engineering  
UNITED STATES 

 

*corresponding author: asmae zbiri, e-mail: asmaegedd@gmail.com   

 

Abstract: - We studied the effectiveness of FAPAR and DMP data at regional scale. In this article, we propose 

theoretical algorithms for calibration of these data in a larger scale (for all Moroccan rangelands). The study 

uses Multivariate Polynomial Regression (MPR) via TaylorFit software. The relationship between soil moisture 

SWI from MetOp-A / ASCAT sensor, fraction of photosynthetically active absorbed radiation absorbed 

(FAPAR) and dry matter productivity (DMP) from SPOT / VEGETATION and PROBA-V was set at 11 km 

resolution for ten years. Three types of areas were studied: degraded areas, sparse herbaceous and shrub 

vegetation. The calibration of phenological indices is made with two hypothesis (areas with low values are 

divided by 3000 and areas with high values are divided by 100). Multivariate Polynomial Regression (MPR) 

with TaylorFit expresses clearly errors of current and corrected estimates of FAPAR, DMP and Normalized 

difference vegetation index (NDVI) data respectively (from Max Err = 116.94 / RMSE = 48.47 to Max Err = 

0.04 / RMSE = 0.016) and (hypothesis 2: from Max Err = 30.4 / RMSE = 9.59 to Max Err = 0.30 / RMSE = 

0.09).  Similarly, in order to compare and verify these results according to field data, a comparison was made 

over two years. The similarity of FAPAR and DMP data and phytomass measurements is strongly expressed. A 

significant polynomial correlation is estimated between SWI, dry matter productivity and photosynthetic 

fraction respectively (Rsq = 0.90) and (Rsq = 0.87). The provision of infor-mation on quality and validation of 

FAPAR and DMP indices facilitates their use in monitoring drought in these areas.  

Key-Words: - Absorbed photosynthetically active radiation fraction (FAPAR), Dry matter productivity (DMP), 

Normalized difference vegetation index (NDVI), Soil moisture index (SWI), Moroccan rangelands, 

Multivariate Polynomial Regression, phytomass measurements, Calibration algorithm. 

 

  

1 Introduction 
Over past decade, understanding of interactions 

between vegetation and climate has generated 

increasing interest in order to assess impacts of 

climate change on the carbon cycle [1, 2]. Climate 

change can be expected to have a significant impact 

on water and energy cycles, significantly affecting 

vegetation [3]. For this reason, response of 

vegetation dynamics, for different types of 

vegetation cover, to precipitation and temperature 

anomalies is a subject of current climate research 

aimed at understanding and predicting how 

biosphere interacts with carbon, water and energy 

cycles [4, 5, 6, 7]. Work by [8, 9, 10] has led to a  

 

better understanding of vegetation response to 

climate signals. Studies by [11] have explored 

correlation structures of vegetation and climate 

dynamics. Other studies by [12, 13, 14] have 

investigated vegetation response to extreme climate 

events. For example, [15] analysed primary 

productivity reduction caused by drought. Whereas, 

[16] have shown that there is a strong correlation 

between water and photosynthetic activity and that 

use a set of phenology metrics, such as growing 

season FAPAR, allows a proper analysis impacts of 

climate change on carbon reservoirs and fluxes. 
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Soil moisture deficits are one of the most 

common limitations to primary plant productivity 

and photosynthesis. Drought monitoring is 

important for rangeland management and livestock 

food security [17, 18].  

Indices such as NDVI (Normalized difference 

vegetation index) and FAPAR derived from remote 

sensing are used in pasture monitoring and 

forecasting of productivity anomalies [19, 20, 21, 

22, 23]. Many authors have demonstrated that 

relationship between FAPAR and DMP is generally 

linear for green vegetation, particularly in semi-arid 

areas [24, 25, 26, 27, 28].  [29, 30, 31] have shown 

that there is a close relationship between dry matter 

productivity (DMP) and pasture biomass. 

Production efficiency models, such as Monteith 

parametric models have been developed to monitor 

primary vegetation production [32, 33]. Monteith 

has suggested that vegetation growth under non-

stressed conditions correlates linearly with their 

radiation utilization efficiency (ERU) multiplied by 

amount of absorbed photosynthetically active 

radiation (APAR) [34, 35]. Mahyou used 

polynomial regression to assess relationships 

between field data and remotely sensed data in 

steppes of Eastern Morocco [36].   

Specific cues are used to minimize disturbing 

effects, such as color and brightness of bare soil and 

to enhance signal from vegetation. While, the 

methodology for calculating these indices can give 

more details. Newer static analysis tools such as 

TaylorFit provide a closer interface to reality of 

terrain and facilitate results interpretation, 

minimizing error of false estimation. 

In this study, we analyze Multivariate 

Polynomial Regression Model (MPR), which has 

proven its usefulness in studies of remote sensing 

data efficiency used in drought prediction in these 

steppes [23, 37]. 

The objective of this study is to highlight the use 

of this validation model and study of behaviour of 

FAPAR and DMP phenorological indices and SWI 

soil moisture in an arid or semi-arid environment. 

Strong soil moisture-productivity relationship in 

arid areas may hide more details that could be 

important for future behavior of carbon cycle. 

 

2 Materials and Methods 
 

2.1 Study area  
African rangelands account for 43% of 

continent's total area, and are divided between 

shrublands, savannas, steppes and grasslands. 

Livestock is often raised on bare ground in rainy 

years [38]. The causes of rangeland degradation are 

complex in time and space and are often associated 

with environmental factors in addition to 

interactions between pastoralism, governance and 

policies. The extent of these degradations is often 

debatable, as are their causes and potential solutions 

for their improvement.  

 

Arid and semi-arid rangelands account for 82 

percent of Morocco's dryland area. These are 

ecosystems with natural or semi-natural vegetation 

consisting of steppes, shrubs, and grasslands. Their 

plants are generally used in animal production 

because their climate and soil are often unfavorable 

for agriculture. These rangelands are often found in 

arid and semi-arid zones. 54% of Moroccan national 

territory where isohyets are less than 600 mm/year 

[39, 40].  
Eastern rangelands (Figure 1), included in 

second part of this study are dominated by 

Macrochloa tenacissima (47%) and Artemisia 

herba-alba (39%). 

In situ assessment of annual phytomass is based 

on method of [41, 42, 43]. According to this 

method, data are collected in field at level of 

selected study areas of 10 x 10 m². Our sampling 

sites cover a total area of 290 000 ha. 
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Fig 1. Location of sampling sites in Eastern Moroccan rangelands, illustration of phytomass measurements 

method of 2014 and 2015.

2.2 Remote sensing data acquisition and 

preparation 
 

2.2.1 Soil Moisture Index (SWI) 

360 decadal time series of SWI images, starting 

from September 2007 to August 2017 are used. 

These data are derived from Copernicus Global 

Land Service Soil Water index (CGLSSWI) version 

3 with a spatial resolution of 11 km. Pixel values of 

these experimental sites are extracted with a land 

cover mask Global Land Cover 2000 (GLC 2000) 

according to three classes of shrub, sparse and 

degraded areas [44].   

Soil moisture index (SWI) is physically defined 

as soil moisture content at first meter of soil relative 

units between wilting level and field capacity. Unit 

is percentage (%) and physical range of parameter 

values from 0 to 100. 

The SWI algorithm, initially developed at the 

Technical University of Vienna and later improved 

by other research groups, uses an infiltration model 

that describes relationship between surface soil 

moisture and soil moisture over time. The algorithm 

is based on a two-layer water balance model to 

estimate soil moisture (ms) profile extracted from 

MetOp-A / ASCAT data [45].  

In this model, the water content of reservoir layer 

is described in terms of the index, which is only 

controlled by previous soil moisture conditions in 

surface layer, so that influence of measurements 

decreases with increasing time as shown in Equation 

(1):  

 

SWI (tn) =∑ni ms (ti)etn-ti/T/∑nietn-ti/T   (1). 

 

Where tn is the observation time of current 

measurement and ti are the observations times of 

previous measurements.  
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2.2.2 Fraction of absorbed photosynthetically 

active radiation FAPAR data  

A series of CGLSFAPAR data (fraction of 

photosynthetically active radiation absorbed, from 

the Copernicus World Terrestrial Service) from 

2007 to 2017 version 2, are derived with a 

resolution of 1 km, and estimated from daily S1 

TOC SPOT / VEGETATION and PROBA-V 

reflectances. FAPAR is relatively linear with respect 

to reflectance values absorbed by canopy and refers 

only to green parts of vegetation [46, 47]. 

 

2.2.3 Dry Matter Productivity DMP data 

DMP dry matter productivity for period 2007-2017 

with a resolution of 1 km estimates carbon mass 

fluxes at local, regional and global scales [48] and 

has proven useful in plant productivity studies such 

as grasslands. CGLSDMP (Copernicus Global 

Terrestrial Service Dry Matter Productivity) data 

from SPOT / VEGETATION and PROBA-V 

represents overall growth rate or increase in dry 

biomass of vegetation and could therefore be used 

as an indicator of pasture production. DMP product 

is based on light use efficiency (LUE) approach 

formulated by Monteith (1972) [34]. The latter 

reports that vegetation growth is defined as portion 

of incoming solar radiation used for photosynthesis 

that is absorbed by plants (APAR, kJAP / m2 / d), 

using a number of conversion factors [48] according 

to the following formula (2): 

 

DMP = R.c.fAPAR.LUEc.T.CO2 AR[.RES] 

(2). 

 

Were LUE: Light use efficiency, ɛLUE: Optimal 

use efficiency, ɛT: Normalized temperature effect, 

ɛCO2: Normalized CO2 fertilization effect, ɛAR: 

Fraction retained after autotrophic respiration, 

ɛRES: Fraction retained after omitted effects 

(drought, parasites .,.). 

 

2.2.4 Normalized difference vegetation index 

The vegetation index (NDVI) is calculated from 

MODIS L1B Terra surface reflectances and 

corrected using the MODIS algorithms by United 

States Land Observation and Resources Center 

(EROS) to produce NDVI emodis [49]. 

 
2.2.5 Field data 

Estimation of annual plants phytomass within a 

quadrat is based on method of [50] where each 

annual plant is cut at ground level, dried and then 

weighed. Drying of a plant is carried out in 

laboratory in an oven until the weight of plant 

remains constant at a temperature of 65°C. 

In our study, phytomass estimation of our species 

such as: Artemisia herba-alba, Macrochloa 

tenacissima, Stipa parviflora, Noaea mucronata, 

Atractylis serratuloides, Peganum harmala and 

Atriplex nummularia, was based on reference unit 

method (3): UR [51] which consists in choosing an 

average plant, whole and representative of a given 

species in a quadrat. 
 

PM (gr MS par 100 m2) = NUR × PUR (gr MS par 

100 m2) (3). 

Were PM: Weight of dry matter. 

MS: Dry matter. 

NUR: Number of references units. 

PUR: Weight of reference unit. 

 

2.3 Data pre-processing and statistical 

analysis 
In this work, FAPAR, DMP, NDVI and SWI 

image series are re-engineered from 1 to 11 km. The 

index values used are extracted with SPIRITS, 

software for processing and interpretation of image 

series derived from remote sensing. Developed for 

monitoring of vegetation conditions from medium 

and low resolution satellite images, a large number 

of tools can be applied. In its common use in crop 

monitoring, common image series contain daily 

reflection factors, vegetation indices such as 

biophysical parameters like FAPAR and DMP [52]. 

 FAPAR and DMP data, both from SPOT 

VEGETATION and PROBA_V, pose estimation 

problems and therefore their evaluation and 

validation will be essential for further analysis.  

Thus, many statistical techniques exist in 

identification of outliers in FAPAR and DMP 

indices. In our study, a methodology for rapid 

assessment of estimates quality of these indices was 

used. NDVI values are used to compare FAPAR and 

DMP values recovered under two assumptions. 

Once estimation errors found in phenological 

indices are corrected, estimation of productivity of 

our rangelands is carried out by soil moisture index 

SWI, for period before April (spring), from a 

polynomial regression-based algorithm. 

Multivariate Polynomial Regression (MPR) 

modeling approach is very useful in this work. MPR 

in free online software (TaylorFit) makes MPR 

models very easy to develop [53]. TaylorFit 

incorporates polynomial terms with user-defined 

exponents, including negative expo-nents to test for 

ratios among variables. MPR can capture data 

features with comparable accuracy to artificial 

neural networks but produces representational 

models that are easier to use and communicate. 
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TaylorFit uses a step-wise algorithm with cross-

validation to ensure model is parsimonious and 

generalizable. It also facilitates graphical data and 

model analysis with built-in tools. Recently new 

tools for sensitivity analysis including the 

importance ratio are added.  
 

3 Results 

3.1 Calibration of FAPAR and DMP data 
During the verification and analysis of these 

data, we were able to differentiate between two 

categories of phenological indices that are poorly 

estimated at the level of pastoral areas. 

In order to recover coherent values of these two 

indices, two categories of phenological indices at 

level of pastoral zones were raised. First with low 

values are zones of high atlas, eastern,  rif, argan 

zone, pre-Saharan and Saharan. While, second, 

which has high values of middle atlas, northern 

atlasic plateaus, and coastal meseta and Mâamora. 

The low values were divided by 3000 (Hypothesis 

1) and the high pixel values were divided by 100 

(Hypothesis 2) (Figure 2). Thus, two types of shrub 

and herbaceous classes of pre-Saharan and Saharan 

zone are not expressed. This may be due to 

landscape noise (mountains and plains) and high 

diversity of vegetation in the study area.  

 

Hypothesis for calibration FAPAR-DMP at 

areas with low values: We divide raw values / 3000.  

Hypothesis for calibration FAPAR-DMP at 

areas with high values: We divide raw values / 100.  

 

 

 
Fig 2. Example of raw and converted data from FAPAR and DMP used in this study. 

 

3.2 Multivariate Polynomial Regression 

(MPR) in calibration step 
Figure 3 and 4 shows that initial and corrected 

FAPAR and DMP with the first hypothesis (low 

values / 3000) have a significant correlation with 

Rsq = 0.98. Mean errors show that corrected data 

are more consistent than original data (Max Err = 

116.94/ RMSE = 48.47) and (Max Err = 0.04/ 

RMSE = 0.016). On the other hand, figure 5 and 6 

shows that initial and corrected FAPAR and DMP 

with the second hypothesis (high values / 100) have 

a significant correlation with Rsq = 0.90. Mean 

errors show that corrected data are more consistent 

than original data (Max Err = 30.4/ RMSE = 9.59) 

and (Max Err = 0.30/ RMSE = 0.09). 

 

Original data of all Moroccan rangelands from April 

2007 to 2017 show that values of these two indices 

are outliers and overestimated. These averages do 

not represent reality of vegetation in the study area.  

The results of scaling correction confirm that 

corrected 11 km resolution data are encouraging for 

pastoral areas with low recovery rates. The existing 

300 m data set may be more accurate. 

Hypothesis 1 

Hypothesis 2 
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Unfortunately, these data do not exist in large 

quantities, whereas our study requires a series of 10 

years or less to modeling rangelands phytomass 

drought.

  

  

Fig. 3 Multivariate Polynomial Regression (MPR) 

between actual FAPAR-DMP at areas with low values 

and NDVI (befor application the hypothesis 1). 

Fig. 4 Multivariate Polynomial Regression (MPR) 

between corrected FAPAR-DMP at areas with low 

values and NDVI (after application the hypothesis 

1). 
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Fig. 5 Multivariate Polynomial Regression (MPR) 

between actual FAPAR-DMP at areas with high values 

and NDVI (befor application the hypothesis 2). 

Fig. 6 Multivariate Polynomial Regression (MPR) 

between actual FAPAR-DMP at areas with high 

values and NDVI (after application the hypothesis 

2). 

3.3 Multivariate Polynomial Regression 

(MPR) in modeling step 
Relationship between photosynthetic fraction, dry 

matter production and soil moisture index is made in 

this study for case of Moroccan rangelands. For this 

purpose, annual averages of SWI were calculated 

from November to February and those of 

phenological indices for period from February to 

April; according to three types of these rangelands. 

Figures 7 and 8 show a good behavior of SWI, 

FAPAR and DMP indices. A high regression was 

obtained between SWI and DMP (r² = 0.90 / Max 

Err = 5.97 / RMSE = 2.9). The estimated correlation 

between SWI and FAPAR soil moisture index is 

perfect according to three types of courses (r² = 0.87 

/ Max Err = 6.25 / RMSE = 3.25). Based on these 

results we assume that Multivariate Polynomial 

Regression Model (MPR) between SWI and 

FAPAR and DMP tends to estimate production of 

areas where two indices are very consistent with 

each other. In particular, estimation with a similar 

model is even more important because it depends on 

low soil moisture of rangelands. Similarly, the 

results that allow us to model pasture production are 

those based on low SWI.

   

  

Fig. 7 Multivariate Polynomial Regression (MPR) 

between SWI (November to February) and FAPAR 

(February to April) from 2007 to 2017. 

Fig. 8 Multivariate Polynomial Regression (MPR) 

between SWI (November to February) and DMP 

(February to April) from 2007 to 2017. 

 

3.4 Comparison between field measurements 

and data from remote sensing 
The estimate of phytomass shows a reduction in 

production of Artemisia herba-alba and an increase 

in that of Macrochloa tenacissima, during year 2015 

compared to that of 2014 (Table 1). Also, many 

species indicative of rangeland degradation are 

ubiquitous. 

In terms of floristic diversity, the dominant 

perennial species in the study area are represented 

by: Macrochloa tenacissima, Artemisia herba-alba, 

Peganum harmala, Anabasis aphylla and Atactylis 

serratuloides. 

Our floristic sampling during year 2015 allowed us 

to detect a high field of Macrochloa tenacissima, 

2496.77 kg/ha, while in field this species is in a 

moderately degraded state. 

Asmae Zbiri et al.
International Journal of Environmental Science 

http://www.iaras.org/iaras/journals/ijes

ISSN: 2367-8941 17 Volume 6, 2021



Table 1.  Result of field phytomass, FAPAR, and DMP data from 2014 and 2015.

 

  

4 Discussion  
In order to make effective data derived from remote 

sensing we have studied possibility of recovering 

FAPAR photosynthesis and DMP phytomass data 

on Moroccan rangelands. Once calibrated. these 

indices will be used to predict phytomass anomalies 

using SWI soil moisture index.  

Soil moisture observations are in principle a more 

efficient and robust means of quantifying water 

availability. However. remote sensing approach also 

has its inherent drawbacks. Soil moisture data 

obtained by passive remote sensing have significant 

errors in areas of high vegetation density [54]. 

Therefore. semi-arid or arid regions have been 

selected where soil moisture data are more reliable 

to assess relationships between soil moisture and 

vegetation. An additional complication is that only 

soil moisture content of surface layer can be 

obtained from satellite observations. and not that of 

all Moroccan rangelands. Thus. for time being. only 

surface hydrological cycles and their impact on 

vegetation can be quantified [55]. 

Recent advances in estimation of biophysical 

products obtained from Proba-V and SPOT data 

have made considerable effort to validate them [56, 

57, 58]. SPOT-FAPAR product has been 

extensively validated on a range of vegetation types 

and climatic regimes. It should be noted that  

validation refers to both direct and indirect 

validation. The former refers to comparison of 

satellite measurements with ground truth, while 

latter refers to an exercise. The validated products 

can be used by scientific research community [59, 

60, 61, 62]. In our study. Initial values of FAPAR 

and DMP indices are corrected throughout the study  

 

area. Fraction of photosynthetically active radiation 

absorbed by vegetation and dry matter productivity 

are important biophysical variables for quantifying 

water, carbon and nutrient cycling in ecosystems.  

 

5 Conclusion 
Ensuring reliability of raw database is an important 

step especially in studies using remotely sensed 

data. After this step of verification of two 

phenological indices: FAPAR and DMP we were 

able to show that our two phenological indices 

would be reliable in such a drought forecast. Our 

data concerning fraction of photosynthetic radiation 

and productivity of dry matter emanating from two 

satellites SPOT-VEGETATION and PROBA-V. 

were evaluated by NDVI method of eMODIS which 

has shown its validity in many rangeland studies. 

The provision of pixel quality and validation 

information greatly facilitated use of these products. 

With recent research efforts focusing on product 

consistency. Validation framework can act 

synergistically to further refine accuracy and 

precision of these products over long term. 

 

Acknowledgments: At the end of this work, 

we thank the editor-in-chief and Assistant 

Editor of WSEAS Transactions on Signal 

Processing journal and we thank Reviewers 

that reviewed the paper. 
 

References: 

[1] Cox P., Betts R., Jones C., Spall S., 

Totterdell I. Acceleration of global 

warming due to carbon-cycle feedbacks in 

Year Areas 

Dry matter 

productivity 

Fraction of absorbed 

photosynthetically 

active radiation  Species Phytomasse (kg /ha) 

      

 

Shrubland 94 0,40 Artemisia herba alba 1871,64 

2014 Sparse vegetation 18 0,11 Macrochloa tenacissima 361,99 

 

Degraded area 33 0,13 Peganum harmala 0,24 

      

 

Shrubland 93 0,39 Artemisia herba alba 529,47 

2015 Sparse vegetation 20 0,11 Macrochloa tenacissima 2496,77 

 

Degraded area 34,67 0,14 Peganum harmala 61,62 

    

Atractylis serratuloides 32,66 

    

Noaea mucronata 42,08 

        Anabasis aphylla 127,64 

Asmae Zbiri et al.
International Journal of Environmental Science 

http://www.iaras.org/iaras/journals/ijes

ISSN: 2367-8941 18 Volume 6, 2021



a coupled climate model. Nature. 408. pp. 

184-187. 2000. 

[2] Schwalm C., Williams C., Schaefer K., 

Baldocchi D., Black T., Goldstein A., Law 

B., Oechel W., Paw U.K., Scott R. 

Reduction in carbon uptake during turn of 

the century drought in western North 

America. Nat. Geosci., 5. pp. 551-556. 

2012. 

[3] Parry M. Impacts. adaptation and 

vulnerability. Contribution of Working 

Group II to the Fourth Assessment Report 

of the Intergovernmental Panel on Climate 

Change. Cambridge University Press. 

976pp. 2007. 

[4] Baldocchi D., Falge E., Gu L., Olson R., 

Hollinger D., Running S., Anthoni P., 

Bernhofer Ch., Davis K., Evans R., Fuentes 

J., Goldstein A., Katul G., Law B., Lee X., 

Malhi Y., Meyers T., Munger W., Oechel 

W., Paw U K.T., Pilegaard K., Schmid 

H.P., Valentini R., Verma S., Vesala T., 

Wilson K., Wofsyn S. A new tool to study 

the temporal and spatial variability of 

ecosystem-scale carbon dioxide. water 

vapor. and energy flux densities. Bull. Am. 

Meteorol. Soc., 82. pp. 2415-2434. 2001. 

[5] Boisvenue C., Running S. Impacts of 

climate change on natural forest 

productivity-Evidence since the middle of 

the 20th century. Glob. Chang. Biol., 12. 

pp. 862-882. 2006. 

[6] Woillez M.N., Kageyama M. Combourieu-

Nebout N., Krinner G. Simulating the 

vegetation response in Western Europe to 

abrupt climate changes under glacial 

background conditions. Biogeosciences. 

10. pp. 1561-1582. 2013. 

[7] Richardson A.D., Keenan T.F., 

Migliavacca M., Ryu Y. Sonnentag O., 

Toomey M. Climate change. phenology. 

and phenological control of vegetation 

feedbacks to the climate system. Agric. For. 

Meteorol., 169. pp. 156-173. 2013. 

[8] Los S., Collatz G., Bounoua L., Sellers P., 

Tucker C. Global interannual variations in 

sea surface temperature and land surface 

vegetation. air temperature. and 

precipitation. J. Clim., 14. pp. 1535-1549. 

2001. 

[9] Wang W., Anderson B., Entekhabi D., 

Huang D., Su Y., Kaufmann R., Myneni R. 

Intraseasonal interactions between 

temperature and vegetation over the boreal 

forests. Earth Interact.,  11. No. 1. pp. 30. 

2007. 

[10] Beer C., Reichstein M., Tomelleri E., Ciais 

P., Jung M., Carvalhais N., Rödenbeck C., 

Arain M., Baldocchi D., Bonan G. 

Terrestrial gross carbon dioxide uptake: 

Global distribution and covariation with 

climate. Science. 329. pp. 834-838. 2010. 

[11] Forzieri G., Vivoni ER., Feyen L. 

Ecosystem biophysical memory in the 

southwestern North America climate 

system. Environ. Res. Lett. 2013. 

[12] Diffenbaugh N. Sensitivity of extreme 

climate events to CO2 induced biophysical 

atmosphere-vegetation feedbacks in the 

western United States. Geophys. Res. Lett., 

32. pp. 1-4. 2005. 

[13] Lorenz R., Davin E., Lawrence D., Stöckli 

R., Seneviratne S. How important is 

vegeta-tion phenology for European 

climate and heatwaves?. J. Clim., 26. pp. 

10077-10100. 2013. 

[14] Reichstein M., Bahn M., Ciais P., Frank D., 

Mahecha M., Seneviratne S., Zscheischler 

J., Beer C., Buchmann N., Frank D. 

Climate extremes and the carbon cycle. 

Nature. 500. pp. 287-295. 2013. 

[15] Gobron N., Pinty B., Mélin F., Taberner 

M., Verstraete M., Belward A., Lavergne 

T., Widlowski  J.L. The state of vegetation 

in Europe following the 2003 drought. Int. 

J. Remote Sens., 26. No. 9. pp. 2013-2020. 

2005. 

[16] Ceccherini G., Gobron N., Migliavacca M. 

On the Response of European Vegetation 

Phenology to Hydroclimatic Anomalies. 

Remote Sens., 6. pp. 3143-3169. 2014. 

[17] Xin Q., Gong P., Yu C., Yu L., Broich M., 

Suyker A., Myneni R.A. Production effi-

ciency model-based method for satellite 

estimates of corn and soybean yields in the 

Midwestern US. Remote Sens., 5. pp. 5926-

5943. 2013. 

[18] Tao F., Yokozawa M., Zhang Z., Xu Y., 

Hayashi Y. Remote sensing of crop produc-

tion in China by production efficiency 

models: Models comparisons. estimates 

and uncertain-ties. Ecol. Model., 183. pp. 

385-396. 2005. 

[19] Kogan. F.N. Drought Watch System Using 

Satellite Observations. Proceedings 7th 

International Conference on Interactive 

Information and Processing Systems for 

Meteorology. Oceanography and 

Hydrology. 1991. pp. 379-82.  

Asmae Zbiri et al.
International Journal of Environmental Science 

http://www.iaras.org/iaras/journals/ijes

ISSN: 2367-8941 19 Volume 6, 2021



[20] Doraiswamy P.C., Moulin S., Cook P.W., 

Stern A. Crop yield assessment from 

remote sensing. Photogramm. Eng. Remote 

Sens., 69. pp. 665-674. 2003.   

[21] Prasad A.K. Chai L., Singh R.P., Kafatos 

M. Crop yield estimation model for Iowa 

using remote sensing and surface 

parameters. Int. J. Appl. Earth Obs. 

Geoinf., 8. pp. 26-33. 2006. 

[22] Duveiller G., Baret F., Defourny P. 

Remotely sensed green area index for 

winter wheat crop monitoring: 10-Year 

assessment at regional scale over a 

fragmented landscape. Agric. For. 

Meteorol., 166-167. pp. 156-168. 2012. 

[23] Zbiri A., Haesen D., El Alaoui-faris F.E., 

Mahyou H. Drought monitoring using soil 

water index and normalized difference 

vegetation index time series in Moroccan 

rangelands. Wseas Transactions on 

Environment and Development. 15. 30. 

261-278. 2019a. 

[24] Goward S.N., Huemmrich K.F. Vegetation 

canopy PAR absorptance and the normal-

ized difference vegetation index: An 

assessment using the SAIL model. Remote 

Sens. Environ., 39. pp. 119-140. 1992. 

[25] Lind M., Fensholt R. The spatio-temporal 

relationship between rainfall and 

vegetation development in Burkina Faso. 

Geogr. Tidsskr. Dan. J. Geogr., 2. pp. 43-

55. 1999. 

[26] Fensholt R., Sandholt I., Rasmussen MS. 

Evaluation of MODIS LAI. FAPAR and the 

relation between FAPAR and NDVI in a 

semi-arid environment using in situ 

measurements. Remote Sens. Environ., 91. 

pp. 490-507. 2004. 

[27] Fensholt R., Sandholt I., Rasmussen M.S., 

Stisen S., Diouf A. Improved primary 

production modelling in the semi-arid sahel 

using MODIS vegetation and stress indices 

com-bined with Meteosat PAR data. 

Remote Sens. Environ., 105. pp. 173-188. . 

2006.   

[28] Brandt M., Verger A., Diouf A.A., Baret 

F., Samimi C. Local vegetation trends in 

the Sahel of Mali and Senegal using long 

time series FAPAR satellite products and 

field measure-ment (1982–2010). Remote 

Sens., 6. pp. 2408-2434. 2014.  

[29] Diouf A.A., Djaby B., Diop M.B., Wele A., 

Ndione J.A. Tychon B. Fonctions 

d’ajustement pour l’estimation de la 

production fourragère herbacée des 

parcours naturels du Sénégal à partir du 

NDVI s10 de SPOT-VEGETATION. 

XXVIIe Colloque de l’Association 

Internationale de Climatologie – Dijon 

(France). 6p. 2014. 

[30] Diouf A.A., Brandt M., Verger A., El 

Jarroudi M., Djaby B., Fensholt R.,  

Ndione J.A., Tychon B. Fodder Biomass 

Monitoring in Sahelian Rangelands Using 

Phenological Metrics from FAPAR Time 

Series. Remote Sens., 7. pp. 9122-9148. 

2015. 

[31] Garba I., Djaby B., Salifou I., Boureima A., 

Toure I., Tychon B. Analyse de la per-

formance du modèle d’estimation de la 

biomasse du ministère de l’élevage et des 

industries animales (MEIA) du Niger. 

Journal of Applied Remote Sensing., 

pp.13-28. 2012.  

[32] McCallum I., Wagner W., Schmullius C., 

Shvidenko A., Obersteiner M., Fritz S., 

Nilsson S. Satellite-Based terrestrial 

production efficiency modeling. Carbon 

Balance Manag., pp. 4-8. 2009. 

[33] Ruimy A., Kergoat L., Bondeau A., 

Intercomparison T.P. Comparing global 

models of terrestrial Net Primary 

Productivity (NPP): Analysis of differences 

in light absorption and light use efficiency. 

Glob. Chang. Biol., 5. pp. 56-65. 1999. 

[34] Monteith J.L. Solar radiation and 

productivity in tropical ecosystems. J. appl. 

Ecol., 9. pp. 747-766. 1972. 

[35] Monteith J.L., Moss C.J. Climate and the 

efficiency of crop production in britain. 

Philos. Trans. R. Soc. B Biol. Sci., 281. pp. 

277-294. 1977. 

[36] Mahyou H. Estimation de la production 

fourragère des terres de parcours des hauts 

plateaux de l’oriental (Maroc) par les 

indices de télédétection. AFRIMED AJ –Al 

Awamia (128). p. 17‐35. 2020. 

[37] Zbiri A., Hachmi A., Haesen D., El Alaoui-

faris F.E., Mahyou H. Efficiency of climate 

and remote sensing data to drought 

monitoring in arid areas: Case of Eastern 

Morocco. Wseas Transactions on 

Environment and Development. 15 (42): 

378-394. 2019b. 

[38] Hoffman M.T. & Vogel C. Climate change 

impacts on African rangelands. Range-

lands. 30 (3) : 12–17. 2008. 

[39] Mahyou H., Maâtougui A., Acherkouk M., 

Tiedeman J., El Mourid M. Etude de la 

dégradation des parcours de la commune 

Asmae Zbiri et al.
International Journal of Environmental Science 

http://www.iaras.org/iaras/journals/ijes

ISSN: 2367-8941 20 Volume 6, 2021



Rurale de Maâtarka. Proceeding du 

séminaire. Gestion durable des ressources 

agropastorales de base dans le Maghreb. 

Oujda. 161-174. 2005.  

[40] Mahyou. H., Tychon. B., Balaghi. R., 

Mimouni. J., Paul. R. Désertifcation des 

parcours arides au Maroc. Tropicultura. 

Vol. 28. 2010. pp. 107-114. 

[41] Braun-Blanquet J., Roussine N., Negre R, 

Les groupements végétaux de la France 

méditerranéenne. Paris: CNRS édition. 

297p, 1951. 

[42] Brown D, Methods of surveying and 

measuring vegetation. Bull. Com. Agric. 

Dom. Farnham Royal, 42: 223, 1954. 

[43] Hachmi A, Potentiel des terres de parcours 

arides au Maroc : vers un système de 

gestion durable, cas des hauts plateaux de 

l’oriental, Thèse de l’université Mohamed 

V Rabat, 209p, 2019. 

[44] Mayaux P., Bartholome E., Fritz S., 

Belward A. A new land-cover map of 

Africa for the year 2000. Journal of 

biogeography. 31. pp. 861-877. 2004. 

[45]  Wagner. W., Lemoine. G., Rott. H. A 

Method for Estimating Soil Moisture from 

ERS MetOp-A / ASCAT and Soil Data. 

Remote Sensing of Environment. Vol. 70. 

pp. 191-207. 1999. 

[46] Prince S.D. A model of regional primary 

production for use with coarse resolution 

satellite data. International Journal of 

Remote Sensing. 12. No. 6. pp. 1301-1312. 

1991. 

[47] Verger A., Baret F., Weiss M. Algorithm 

theorethical basis document. Leaf Area 

Index (LAI) Fraction of Absorbed 

Photosynthetically Active Radiation 

(FAPAR). Fraction of green Vegetation 

Cover (FCover). Collection 1km. version 2. 

2017. 

[48] Swinnen E., Van Hoolst R.,  Toté C, 

Scientific quality evaluation dry matter 

productivity (DMP) collection 1km, version 

2, Copernicus Global Land Operations 

“Vegetation and Energy” ”CGLOPS-1”,  

(JRC), VITO, 2018. 

[49] Jenkerson, C.B., Maiersperger, T.K., & 

Schmidt, G.L, eMODIS—a user-friendly 

data source. US Geological Survey 

OpenFile Report. 22p, 2010. 

[50] Floret C., Pontannier R, L’aridité en 

Tunisie présaharienne, climat, sol, 

végétation et aménagement. ORSTOM. 

544p, 1982. 

[51] Kirmse R.D., Norton B, Comparison of the 

reference unit method and dimensional 

analysis for two large shrub by species in 

Caatinga woodlands. J. Range Manage, 38: 

425-428, 1985. 

[52] Eerens. H., Haesen. D., Rembold. F., 

Urbano. F., Tote. C., Bydekerke. L. Image 

time series processing for agriculture 

monitoring. Environmental Modeling & 

Software. Vol. 53. pp. 154-162. 2014. 

[53] Vaccari D.A, TaylorFit Users' Manual, 

www.TaylorFit-RSA.com , accessed 

January 2021. 

[54] Parinussa R.M., Meesters A.G.C.A., Liu 

Y.Y., Dorigo W., Wagner W., Jeu R.A.M. 

Error estimates for near-real-time satellite 

soil moisture as derived from the land 

parameter retrieval mode. IEEE Geosci 

Remote S., 8. pp. 779-783. 2011. 

[55] Chen T. Terrestrial plant productivity and 

soil moisture constraints. Subject headings: 

Soil Moisture / drought index / GPP / NPP 

/ light use efficiency / eddy flux / croplands. 

Ph.D. thesis. VU University Amsterdam. 

ISBN: 978 90 5383 077 2. NUR-code: 934. 

. 2014. 

[56] Morisette J.T., Baret F., Privette J.L., 

Myneni R.B., Nickeson J.E., Garrigues S., 

Sha-banov N.V. Validation of global 

moderate-resolution LAI products: a 

framework proposed within the CEOS land 

product validation subgroup. IEEE Trans 

Geosci Remote Sens., 44. No. 7. pp. 1804-

1817. 2006. 

[57] Pisek J., Chen JM. Comparison and 

validation of MODIS and VEGETATION 

global LAI products over four Big Foot 

sites in North America. Remote Sens 

Environ., 109. No. 1. pp. 81-94. 2007. 

[58] Garrigues S., Lacaze R., Baret F., Morisette 

J.T., Weiss M., Nickeson J.E. Fernandes R. 

Validation and intercomparison of global 

Leaf Area Index products derived from 

remote sensing data. J Geophys Res., 113. 

G2. pp. G02028. 2008. 

[59] Tan B., Hu J.N., Huang D., Yang W.Z., 

Zhang P., Shabanov N.V., Knyazikhin Y. 

Assessment of the broadleaf crops leaf area 

index product from the Terra MODIS 

instrument. Agric For Meteorol., 135. No. 

1-4. pp. 124-134. 2005.   

Asmae Zbiri et al.
International Journal of Environmental Science 

http://www.iaras.org/iaras/journals/ijes

ISSN: 2367-8941 21 Volume 6, 2021

http://www.taylorfit-rsa.com/


[60] Huang D., Yang W.Z., Tan B., Rautiainen 

M., Zhang P., Hu J.N. Shabanov N.V. The 

importance of measurement errors for 

deriving accurate reference leaf area index 

maps for validation of moderate-resolution 

satellite LAI products. IEEE Trans Geosci 

Remote Sens., 44. No. 7. pp. 1866-1871. 

2006. 
[61] Yang W., Tan B., Huang D., Rautiainen 

M., Shabanov N.V., Wang Y., Privette J.L. 

MODIS leaf area index products: from 

validation to algorithm improvement. IEEE 

Trans Geosci Remote Sens., 44. No. 7. pp. 

1885-1898. 2006.  

[62] Kauwe M.G.D., Disney M.I., Quaife T., 

Lewis P., Williams M. An assessment of 

the MODIS collection 5 leaf area index 

product for a region of mixed coniferous 

forest. Remote Sens Environ., 115. No. 2. 

pp. 767-780. 2011.  

 

Asmae Zbiri et al.
International Journal of Environmental Science 

http://www.iaras.org/iaras/journals/ijes

ISSN: 2367-8941 22 Volume 6, 2021




