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Abstract: - In this paper, authors propose a new design of an unknown input observer, in discrete time-domain, 
for a class of bilinear singular systems. In this contribution, a variable delay is considered on the state vector and a 
constant one is represented in both known input vector and bilinear form present in the system dynamic equation. 
Authors propose to apply the Lyapunov Krasovskii stability theory to compute the observer gain independently 
from the unknown input. Then, an unbiasedness dynamic of the observer is given to reconstruct both a state 
functional and a part of the unknown input. A numerical example is presented to prove the effectiveness of the 
proposed approach.
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1 Introduction
Numerous researches have considered bilinear mod-
els when studying control, filtering and stability
subjects [6, 11, 17, 19]. In fact, bilinear mod-
els describe well engineering systems, especially,
when non-linear representations generate compli-
cated mathematical constraints and when linear
descriptions fail to reproduce real evolutions of the
considered systems. Moreover, bilinear models
are widely used when representing real systems
in various domains such economic field, chemical
processes, automotive district, nuclear researches
[20].

Furthermore, delays consideration has been the
focus of many studies [3, 4, 7, 15]. In fact, such
parameter describes the time delay of the input
propagation through the actuators dynamics to the
measurement provided by sensors. Thus, state delay
can affect stability and system performances. Then,
many results are developed to be used for stability
analysis and control loop synthesis purposes for
delayed models [12, 18].

In addition, singular representations are of great
utility. Such models describe well engineering
systems rather than regular configurations [5]. They
combine dynamic evolution with state algebraic
constraints. In this context, numerous results have
been developed to revise stability, controllability and
observability theories [13].

In one hand, in the last decade, many researchers
have been interested in the state estimation by devel-
oping a suitable observer for a class of linear singular

delayed systems in the continuous time-domain
[14]. A wide attention has been given, also, when
considering non-linear models. Then linear results
have been improved and applied when adopting a
linear submodels approach [16]. Besides, a great
focus has been dedicated to the state estimation and
partial or full reconstruction of the unknown input
for fault detections purposes [9].

In the other hand, few results have been made in
the discrete time-domain to reconstruct a functional
state of a delayed singular bilinear model [1, 2, 8, 10].

Motivated by these facts, authors propose in this
contribution, an observer design algorithm for a class
of singular delayed bilinear systems in the discrete
time-domain. The considered state-space model, in
this paper, is affected by two types of delay present in
the dynamic equation. A variable delay is considered
in the state vector and a constant one present in the
known input vector. The delayed input vector is, also,
represented in the bilinear form. The authors aim to
reconstruct both a functional state and a part of the
unknown input. The proposed observer gain is com-
puted by imposing unbiasedness conditions leading
to a stable dynamic. Observer stability is ensured by
considering a Lyapunov functional condition which
is transformed to a set of linear matrix inequalities.

The present paper is organized as follows. Para-
graph 2 is dedicated to compare the present approach
to a set of similar results and to define the context
of some used results. Section 3 defines the proposed
bilinear model and formulates the problem to solve.
The fourth section presents the observer scheme and
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the synthesis steps. Then, authors propose a numeri-
cal example to prove the effectiveness of the observer
design approach and section 6 concludes the paper.

2 Related Works

This contribution is based on [9, 17, 19] which deal
with observers for a class of bilinear models. In
fact, comparing to [17], the present contribution pro-
poses delays in both state and input vectors. Besides,
the proposed approach uses decoupling scheme intro-
duced in [17, 19] to isolate the unknown input vec-
tor and results have been applied for descriptor sys-
tems as shown in [9]. In this paper and comparing
to [9], discrete time case is discussed for singular bi-
linear systems and variable time delay is considered
in the state vector. Thus, constant delay is present in
both regular input vector and bilinear form described
in the dynamic equation of the presented state space
bilinear model. In order to develop a stable observer
dynamic, the proposed approach is based on the Lya-
punov Krasovskii stability theory as done in [12, 13,
15], so the observer gain is calculated using a set of
LMI conditions.

3 Problem Formulation

Let us consider a system described by the next bilinear
model:

Ex(k + 1) = Ax(k) +Adx(k − h1(k)) (1)

+Fv(k) +Bu(k) +Bdu(k − h2)

+
m∑
i=1

Diui(k)x(k)

+

m∑
i=1

Didui(k − h2)x(k)

y(k) = Cx(k) +Gv(k) (2)

z(k) = Lx(k) (3)

x(k) is the state vector, y(k) is the output vector,

u(k) = [u1(k) u2(k) . . . um(k)]
T
is the known

input vector, z(k) is the functional state vector and
v(k) is the considered unknown input vector.
E, A, Ad, B, Bd, Di1≤i≤m

, Ddi1≤i≤m
, C, F , G and

L are known and invariant matrices of appropriate
dimensions.
h1(k) is the variable state delay such h1 the upper
bound: 0 < h1(k) < h1.
h2 is the considered constant known input delay.

Assumptions: [17]
The proposed approach is based on the next assump-

tions:

rang

[
F
G

]
= q (4)

rang (G) = q̄ < q (5)

Then, according to [17] there exists a non-singular
matrixW and an orthogonal matrix V as follows:

V TGW =

[
Iq̄ 0
0 0

]
(6)

When multiplying y(k) explicated in (2) by V T and
according to (6), we obtain:

y1(k) = C1x(k) + v1(k) (7)

y2(k) = C2x(k) (8)

with [
C1

C2

]
= V TC,

[
y1(k)
y2(k)

]
= V T y(k),

y1(k) ∈ Rq̄, y2(k) ∈ Rp−q̄ (9)

When deducing v1(k) from (7), the system (1-3) was
transformed into the following form:

Ex(k + 1) = A1x(k) +Adx(k − h1(k)) (10)

+F1y1(k) + F2v2(k) +Bu(k)

+Bdu(k − h2) +
m∑
i=1

Diui(k)x(k)

+
m∑
i=1

Didui(k − h2)x(k)

y1(k) = C1x(k) + v1(k) (11)

y2(k) = C2x(k) (12)

z̄(k) = L̄x(k) + Īy1(k) (13)

Where[
v1(k)
v2(k)

]
= W−1v(k), v1(k) ∈ Rq̄, v2(k) ∈ Rq−q̄ (14)

A1 = A− F1C1 (15)

[F1 F2] = FW (16)

L̄

(
L

−C1

)
(17)

Ī

(
0

In×q̄

)
(18)

y(k) is decomposed into y1(k) and y2(k). According
to (7), y1(k) is totally affected by the unknown input
v1(k) and as shown in (8), v2(k) is disturbance free.
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4 The Observer Design
By this contribution, authors aim to reconstruct the
state functional given by (3) and, then, deduce v1(k).
There exists a non-singular matrix S:

S =

(
a b
c d

)
(19)

such that

aE + bC2 = L̄ (20)

cE + dC2 = 0 (21)

The proposed observer scheme is given as follow:

η(k + 1) = Hη(k) +Hdη(k − h1(k)) (22)

+L1y1(k) + L2y2(k)

+Ldy2(k − h1(k)) + Ju(k)

+Jdu(k − h2)

+

m∑
i=1

Niui(k)y2(k)

+

m∑
i=1

Nidui(k − h2)y2(k)

ˆ̄z(k) = η(k) + P1y1(k) + P2y2(k) (23)

where η(k) is the state vector of the proposed ob-
server and ˆ̄z is the estimation of the functional state
z̄(k). H , Hd, L1, L2, Ld, J , Jd, Ni, Nid, P1 and P2

are matrices of appropriate dimensions.

Objectif:
The observer given by (22) and (23) is determined
when H , Hd, L1, L2, Ld, J , Jd, Ni, Nid, P1 and P2

are computed such as ˆ̄z converges asymptotically to
z̄(k).

lim
t−>∞

(ˆ̄z(t)− z̄(t)) = 0 (24)

4.1 Conditions of the unknown input

observer synthesis
The estimation error is given by:

e(k) = ˆ̄z(k)− z̄(k) (25)

When replacing z̄(k) and ˆ̄z(k) by their expressions
given, respectively, by (13) and (23), we have:

e(k) = η(k)+(P1−Ī)y1(k)+(P2C2−L̄)x(k) (26)

Let us suppose that:

Ī = P1 (27)

According to (20)-(21), we have:

e(k) = η(k)−(a+βc)Ex(k)+(P2−b−βd)C2x(k)
(28)

we suppose that:

P2 = b+ βd (29)

then, we can write:

e(k) = η(k)− ϕEx(k) (30)

with
ϕ = a+ βc (31)

Theorem 1 The system (22-23) is a functional ob-
server for the system (1-3) if and only if the following
conditions are reached:

1. e(k + 1) = He(k) +Hde(k − h1) is asymptoti-
cally stable

2. HϕE + L2C2 − ϕA1 = 0

3. HdϕE + LdC2 − ϕAd = 0

4. J = ϕB

5. Jd = ϕBd

6. L1 = ϕF1

7. ϕF2 = 0

8. Na = ϕDaC
+
a = 0

with

ϕ = [F2 DaκCa] (32)

Ca =

C2 . . . 0 0 . . . 0
0 . . . C2 0 . . . 0
0 . . . 0 C2 . . . 0
0 . . . 0 0 . . . C2

 (33)

Na = [N1 . . . Nm Nd1 . . . Ndm] (34)

Da = [D1 . . . Dm Dd1 . . . Ddm] (35)

Proof 1 When computing the quantity ∆e(k) by re-
placing η(k+1) by its expression in (22) andEx(k+
1) by its expression in (10) and by ensuring an unbi-
asedness dynamic Theorem 1 becomes obvious.

4.2 Computing of observer matrices

When replacing relation (31) in conditions b), c), g)
and h) from the Theorem 1, we have:

aA1 = HaE +KC2 − βcA1 (36)

adAd = HdaE +KdC2 − βcAd (37)

aF2 = −βcF2 (38)

aDaC
+
a = Na − βcDaC

+
a (39)

K = L2 −Hβd (40)

Kd = Ld −Hdβd (41)
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Equations (36)-(41) are transformed in a matrix form
as follows:

XΣ = Θ (42)

where

X = [H Hd K Kd β Na] (43)

Θ =
[
L̄A1 L̄Ad L̄Di L̄F2

]
1≤i≤m

(44)

Σ =


aE 0 0 0
0 aE 0 0
C2 0 0 0
0 C2 0 0

−cA1 −cAd −cF2 −cDa

0 0 0 Ca

 (45)

There exists a solution of (42) if and only if:

rang

[
Σ
Θ

]
1≤i≤m

= rang(Σ) (46)

The solution of equation (42) is:

X = ΘΣ+
1≤i≤m − Z(I − ΣΣ+) (47)

WithΣ+is the inverse of the matrixΣwhereasZ is an
arbitrary matrix of appropriate dimension which will
be determined by the LMI approach.
The matrix H to be computed, is given by:

H =


I
0
0
0
0
0

 (48)

By replacing X given by (42) in (43), we obtain the
following expression:

H = ΘΣ+


I
0
0
0
0
0

− Z(I − ΣΣ+)


I
0
0
0
0
0

 (49)

We consider that:

H1 = ΘΣ+


I
0
0
0
0
0

 and H2 = (I−ΣΣ+)


I
0
0
0
0
0

 (50)

Then
H = H1 − ZH2 (51)

By using the same algorithm given by equation (48)-
(51), we obtain the matrix Hd:

Hd = Hd1 − ZHd2 (52)

where

Hd1 = ΘΣ+


0
I
0
0
0
0

 and Hd2 = (I − ΣΣ+)


0
I
0
0
0
0


(53)

At this stage, we propose the following theorem to
compute the observer gain Z.

Theorem 2 The functional observer is an unknown
input functional observer for the system (1-3) if there
exist matrices P = P T > 0, Q = QT > 0 and Y
which satisfy the following matrix inequality−P

√
h1(PH1 − Y H2)

√
h1(PHd1 − Y Hd2)

∗ Q+R− h1P 0
∗ ∗ R−Q

 < 0

(54)

Where the arbitrary matrixZ is given by the following
equation:

Z = P−1Y (55)

Proof 2 It’s obtained by considering the following
Lyapunov functional [18].

V (k) = V1(k) + V2(k) (56)

V1(k) = h1e
T (k)Pe(k) +

k−1∑
i=k−h1

eT (i)Qe(i) (57)

V2(k) =

h1∑
i=1

eT (k + 1− i)Re(k + 1− i) (58)

Using condition a) of Theorem 1 and equations (56)-
(58), ∆V (k) is calculated as follow:

∆V1(k) = V1(k + 1)− V1(k) (59)

= eT (k)[h1H
TPH − h1P +Q]e(k)

+h1e
T (k)HTPHde(k − h1(k))

+h1e
T (k − h1(k))H

T
d PHe(k)

+eT (k − h1)[h1H
T
d PHd −Q]e(k − h1(k))

∆V2(k) = eT (k)Re(k)−eT (k−h1(k))Re(k−h1(k))
(60)
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Based on equation (59) and (60), we can write:

∆V (k) = εT (k)Ψε(k) (61)

with

ε(k) =

(
e(k)

e(k − h1(k))

)
(62)

Ψ =

(
χ h1H

TPHd

h1H
T
d PHd −Q−R

)
< 0 (63)

where χ = h1H
TPH − h1P +Q+R

So ∆V (k) < 0 is equivalent to Ψ < 0.

To avoid the quadratic from present in equations
(63), we propose to rewrite this equation as following
form:

Ψ = U − ΩTΞ−1Ω (64)

where:

U =

[
Q−R− h1P 0

0 −Q−R

]
(65)

Ω =
[√

h1H
√
h1Hd

]
(66)

Ξ = −P−1 (67)

According to the Schur lemma [14],Ψ < 0 andΞ < 0
if and only if:

Λ =

[
Ξ Ω
ΩT U

]
< 0 (68)

By applying a congruence transformation [14] to Λ
such as:

ΠTΛΠ < 0 (69)

with

Π =

[
P 0 0
∗ I 0
∗ ∗ I

]
< 0 (70)

Replacing Λ andΠ by their expressions (68) and (69)
and using (48)-(53), Theorem 2 holds.

5 Numerical Example

5.1 The model matrices

E =

(
1 0
1 0

)
, A =

(
−5 0
0 −3

)
, Ad =

(
−1 0
0 −0.5

)
,

B =

(
2 0
−1 3.2

)
, Bd =

(
2 −1
2 0

)
, C =

(
1 −1
0.5 3

)
,

F =

(
4 1
0 −2

)
, D1 =

(
−1
−2

)
, D2 = Dd1 =

(
0
0

)
,

Dd2 =

(
1
2

)
, G =

(
2 1
0 0

)
, L = (2 −1)

The state delay has a sinusoid form such h1(k) =
3sin(0.5k), then we can easily deduce that h1 = 3s.
The input delay h2 is such h2 = 1s.

5.2 Observer matrices

H =

(
−3.22 22.17
1.73 −11.94

)
, Hd =

(
−0.57 2.8
0.3 −1.51

)
,

L1 =

(
8.66
−4.66

)
, P1 =

(
0
1

)
, Jd =

(
4.33 −4.33
−2.33 2.33

)
,

L2 =

(
5.05
−2.72

)
, J =

(
10.83 −6.93
−5.83 3.73

)
,

P2 =

(
−0.33
0.33

)
, Ld =

(
0.36
−1.19

)
, N2 = Nd1 =

(
0
0

)
,

N1 = 10−15

(
−1.7
−0.97

)
, Nd2 = 10−15

(
5.66
−3.4

)
5.3 Figures and interpretations
Fig.1 and Fig.2 explicit, respectively, the used known
and unknown input vectors in the numerical example.
As shown both inputs have two components.

Figure 1: The known input vector

Figure 2: The used unknown input
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Fig.3 draws both real and estimated functional
state vectors. We can remark a quick convergence
during the permanent phase and a short transitory
phase t ∈ [0, 5].

Figure 3: The real and estimated functional state vec-
tors

Fig.4 draws both real and estimated functional un-
known input vectors. we can check the quick conver-
gence dynamic of the proposed observer.

Figure 4: The real and estimated functional state vec-
tors

Fig.5 and Fig.6 show the estimation error of the
functional state vector and the unknown input which
converge asymptotically to 0 and confirm the effec-
tiveness of the proposed approach.

Figure 5: The state estimation error

Figure 6: The unknown input estimation error

6 Conclusion
In this paper, authors have presented an observer
scheme for singular bilinear systems with variable
state delay. A constant delay has been also consid-
ered in the input vector in both regular and bilinear
form. The observer proves its effectiveness tested
on a numerical example and reconstruct both func-
tional state vector and a part of the unknown input
vector. The proposed approach is based on the Lya-
punov Krasovskii stability theory so the observer gain
is calculated by using a Lyapunov functional and en-
sures an unbiasedness dynamic. The estimation error
is independent from the presented unknown input and
the considered input delay.
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