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Abstract: The nonlinear vibration control of a nonlinear dynamical system modeled as the well known Duffing oscillators is 
investigated within this article. The conventional positive position feedback (PPF) controller is proposed to mitigate  sys-
tem nonlinear vibrations. The whole system mathematical model is analyzed by applying the multiple time scales perturbati-
on method. The slow-flow modulation equations that govern the oscillation amplitudes of both the main system and control-
ler are derived. The stability analysis is investigated according to Routh–Hurwitz criterion. The obtained analytical and nu-
merical results illustrated that the PPF controller can eliminate the main system nonlinear vibrations once the controller natu-
ral frequency is tuned to be the same value as the external excitation frequency, otherwise, the controller adds excessive vi-
brational energy to the main system rather than suppressing it. In addition, the PPF controller can destabilize the main sys-
tem motion when excited by strong excitation force. 
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1. Introduction 

Vibrations are unwanted phenomenon, it 
damages a lot of dynamical systems. Therefore, 
much researches have been done to study how to 
control this phenomenon. So there are many 
types of control that are used for this reason. Re-
cently, the vibrations of several vibration systems 
[1-6] have been suppressed using different types 
of control. Amer et al. [7] used the proportional 
derivative controller to suppress the vibrations of 
a Hybrid Rayleigh-Van der Pol- Duffing oscilla-
tor. They found that, the controller adds more 
damping to the vibrating system. Time delay 
strategy is one of the most important types of 
control used recently. Abdelhafez and Nassar [8], 
used the positive position feedback controllers in 
existence of two different time delays for sup-
pressing the vibrations of a self-exited non-linear 
beam. They notified that, the time margin de-
pends on the overall delays of the system 1 2  . 

Liu et al. [9] investigated the influence of two 
different delays the first is displacement delay 
and the second is velocity delay in a cantilever 
beam. They used the method of multiple scales to 
determine all super-harmonic and sub-harmonic 
resonance cases. Effect of a pair of delay positive 
position feedback controller were used to control 
the vibrations of coupled Van der Pol harmonic 
oscillators by El-Sayed [10].  
Ferrari and Amabili [11], offered an experimen-
tally studying for the effectiveness of the PPF 
controllers on suspended the vibrations of sand-
wich plate. Niu et al [12] realize the fractional-
order positive position feedback (FOPPF) con-
troller. They found that, the FOPPF controller 
gives better results comparing with PPF control-
ler. Omidi et al [13,14] presented three kinds of 
control to suppress the vibrations of vibrating 
systems such that, the Integral resonant control-
lers (IRC), PPF controllers and the non-linear 
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Integral Positive Position feedback (NIPPF). For 
the important of the positive position feedback 
controllers in suppressing the vibrations of many 
vibrating systems [15-17], it is a suitable for 
small natural frequencies as the bandwidth of the 
vibration reduction increases. Bauomey and El-
Sayed [18], used a negative velocity feedback 
controllers to control the vibrations of the sus-
pended cable. They investigated the suspended 
cable's stability near a sub-harmonic-combined 
simultaneous case. The controller succeeded in 
reducing the vibrations about to Ea (amplitude 
without control/amplitude with control)=2000 for 
x and Ea=800 for y.  
In this article, we used PPF controller to suppress 
the vibrations of micro-electro-mechanical sys-
tem. The multiple scale method is applied to de-
duce several resonance cases, the worst reso-
nance case is simultaneous resonance case (one-
to-one internal and primary) is studied to get the 
response of the non-linear system. The equations 
of frequency response are in use to investigate the 
stability of the obtained solution. The influence 
of some chosen coefficient is illustrated numeri-
cally and analytically. The rapprochement be-
tween numeric and analytic solution is offered.   
2. Perturbation Analysis 
Consider the  model of micro-electro- mechani-
cal system [19,20] 
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This model  represented the modified Duffing 
equation subjected to weakly non-linear paramet-
ric and external ex citations,  and described   

the main motions at time scales of the natural 
vibrations of the microstructure  and fast dy-
namic at time scales of the high-frequency volt-
age, is the coefficient of viscous damping,  is 

a small parameter, 1   is linear natural fre-

quency ,   is the frequency of the external ex-
citation, is the coefficient of linear term , 21,  
are the coefficients of the nonlinear terms 21, ff

~are the coefficient of linear and nonlinear pa-
rameters excitations.We present a positive posi-
tion feedback (PPF) Controller(PPF), which de-
signed to control the micro-electro- mechanical 
system. Then, the equation commanding the dy-
namics of the controller (PPF) is indicated as 

2
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so the closed loop system equations are 
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where 21,   are gains,  is damping coeffi-
cient  of the (PPF) controller, 2 is the natural 

frequency of ( PPF) controller we determine the 
control signal 

yFc  and the feedback signal uFf  . 

2.1 Mathematical Treatment(MSPT) 
The multiple scales method is applied to get the as-

ymptotic first-order approximate solutions for the sys-

tem (3) which we use the multiscale  perturbed-
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where ., 10 tTtT   are the fast and slow time 

scales, respectively. The time derivatives became 
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Substituting (4) and (5) into (3), and equating the coef-

ficients of equal power of   lead to: 
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The solution of system of equations(6) are 
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Where 21, AA  are unknown complex function in 

1T and c.c.denotes the complex conjugate of the 

previous terms, insert eqs.(8) into eqs.(7) we get 
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the solutions of equations (9),(10) after eliminat-
ing the secular terms 
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 where }19,...,2,11{, iE  are presented at appen-

dix. 

3. Stability Analysis  
In this paper, the case of the simultaneous prima-
ry and internal resonance  121,    

which is the worst resonance case, is considered 
to study the stability of the system of equations 
(3) . Introducing the detuning parameters 21, ac-

cording to: 
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secular terms, leads to the solvability conditions 
for the first order approximation, hence the        
following differential equations are obtained:     
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where 21,aa   are the amplitudes of steady state, 

21,  are the motions phases. By substituting 
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  compare the imaginary part and the real terms 
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4. Fixed point solutions 
The steady-state solution of our dynamical sys-

tem corresponding to the fixed point of           
equations (21) , (22) is obtained when

, , 1,2,m ma m   
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 From equations (23) to (26)  the amplitude and 
phase modulating equations take the form 
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in 11, mma  we obtain 

21 10
11 10 2 10 2 10 11

1 1

2 3
1 10 1 10 2 10 10 2 10 11

1 1

20 1 20 1
20 21 20 21

1 1

3 1sin( ) ( 3 )sin(2 )
4 2

1 1(4 3 )cos( ) (4 3 )cos(2 )
8 4

sin( ) cos( ) , (32)
2 2
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a a
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 
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 

 
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 

   
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 The following linear system is topologically 
equivalent to the nonlinear system given by 
Equations from(32) to (35) as long as the eigen-
values are hyperbolic 

11 11 12 13 14 11

21 22 23 2411 11

21 31 32 33 34 21

2141 42 43 4421

(36)

a r r r r a

r r r r

a r r r r a

r r r r

 



    
    
    
    
      

   

  

 The eigenvalues of the Jacobian matrix can be ob-

tained by resolving the following  determinant 

 )37(,0

44434241

34333231

24232221
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











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


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







 

 the values of  eigenvalues are the roots of the fol-

lowing polynomial 

 )38(,043
2

2
3

1
4  RRRR   

According to Routh–Hurwitz criterion, the neces-
sary and sufficient conditions for the system sta-
bility are: 

.0,0)(,0,0 44
2
132133211  RRRRRRRRRRR 

5. Time history 
 we simulated numerically equation (1) which 
introduced the nonlinear dynamical model with-
out and with involved PPF control to show the 
reduce of vibration after adding this control. Af-

ter inserting the   values of parameters as
,2.0,01.,1.0 2    

.4,01.0,3 2121    

the time history can be illustrated as in Fig.(1) a 
and  b which  represents the uncontrolled am-
plitude time history  at primary resonance of the 
main model and  the time histories of both con-
trolled amplitude of the main model with PPF. It 
is worth to notice that from the Fig. (1) a, b that 
the steady-state amplitude of the  micro-electro- 
mechanical system with PPF controller was re-
duced to about 99.9%  from its value without 
PPF controller. This means that the effectiveness 
of the controller Ea ( Ea= steady state amplitude 
of the micro-electro- mechanical system without 
controller steady state amplitude of the micro-
electro- mechanical system with controller) is 
about 20 for the main system.  

 
Fig. 1. The vibration amplitudes of main system : a  without control and b with 
PPF control 
We study the  effects of different parameters by solving 
the frequency response equations (23) - (26). The results are 
illustrated graphically in Figs. (2 to 9). From the obtained 
figures, the steady state amplitudes 21,aa and are present-
ed against detuning parameters 21,  for the selected 
practical case 0,0 21  aa  
 The following curves represent the frequency response of 
the system with PPF control, where Fig. (a) shows the fre-
quency response curves for the system) and Fig. (b) shows 
the frequency-response curves for PPF controller. At

01   the minimum steady-state amplitude 01 a .Fig. 
(2), (3) shows that the steady state amplitudes  for both the 
main system and the PPF controller are increased according 
to the increasing values of the excitation forces amplitudes

21, ff Figs. (4), (5)  shown the effect of the feedback sig-
nal gains 21,  the vibration reduction frequency band-
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width of the control for the amplitude of the main system 
1a is wider for increasing the values of  21, and the 

controller amplitude 2a  decrease for  increases 1 , 
increase for  increases 2 . 
Figure (6)   shows that for increasing values of the damp-
ing coefficients   both the main system 
and the controller are decreasing.  Fig (7). show that the 
increase of linear natural frequency 1 makes an increases 
in the  amplitude of the main system and the vibration 
reduction frequency bandwidth of the control for the ampli-
tude of the main system 1a is wider.The figure( 8)shows 
that when taking different values of the internal detuning 
parameter  2 the shape of the frequency response curves 
for both the main system and the controller are affected by 
different values, for example when 5.02   the mini-
mum steady state amplitude for the main system occurs 
when 5.01   for  02  the minimum steady state 
amplitude for the main system occurs when 01   and 
for 5.02   The steady-state widening of the main sys-
tem of the small candle occurs when 5.01  So, the 
lower main system 
Steady-state amplitude occurs when 21, Fig.(9) repre-
sent the affect of the damping coefficient of the (PPF) con-
troller for increasing   the  amplitude of the main sys-
tem and control are decreasing. 

 
 Fig. 2. Effect of the linear external excitation force 1f  on: a the main system

1a and b the controller 2a   

 
Fig.3 .Effect of the linear external excitation force 2f  on: a the main system 1a

and b the controller 2a   

 

 
 

Fig. 4. The feedback gain 1  effectiveness  on : a  main system  
and b on the PPF controller  

 
Fig.5. The feedback gain 2 effectiveness on: a   main system and  b on  

the PPF control       

 
Fig.6.   Effect of µ is the coefficient of viscous damping on the amplitudes of  
main system and PPF 

.                   
Fig. 7. Effect of linear natural frequency on the amplitudes of  main system 
and PPF control 

 
Fig. 8 The effect of  damping parameter 2  on both  the amplitudes of  main 
system and PPF control 
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Fig. 9. The effect of  damping coefficient of controller  on both  the ampli-
tudes of  main system and PPF controller 

6. Comparison between analysis and 
numerical solutions 

Figure (10) represents the comparison between the nu-
merical solution of equations (3) and the analytical solution 
The solution given by equations (28-31) for the modified 
Duffing equation with the PPF controller for  chosen val-
ues of system parameters. The dashed lines show the ana-
lytical solution and represent the continuous lines numerical 
solution. 
 

 Fig.10. Comparison between the numerical solution and 
the perturbation analysis of closed loop 

7. Conclusions 
In this paper, the modified duffing equation is stud-
ied with  PPF controller to reduce the vibration. 
We use the simultaneous primary and internal reso-
nance case by the method of multiple scales. The 
stability of the system under the simultaneous reso-
nances is studied to drive  the frequency response 
equations. The effects of the different parameters of 
the system and the controller are studied numerical-
ly. The numerical results are focused on both the 
effects of different parameters and the response of 
the system. 
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Appendix  

Coefficients of Eqs. (11) and (12) 
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