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Abstract: - This paper is based on the design and analysis of three different types of controllers for stabilizing the 

Rössler chaotic system. The controllers are based on Takagi-Sugeno (T-S) fuzzy model, Mamdani fuzzy model 

and Sliding mode control (SMC). The concept behind the design of each controller is to drive the highly 

oscillating chaotic dynamics to a stable steady state value. The control action for the fuzzy controllers are based 

on the design of fuzzy rules. In case of sliding mode control (SMC), the control action is attained by designing 

an asymptotically stable sliding surface in such a way that the system states reach the sliding surface in a finite 

time. MATLAB toolbox YALMIP is used for solving Linear Matrix Inequality (LMI) optimization problems in 

the case of T-S fuzzy model and SMC. The Mamdani fuzzy model is implemented using MATLAB fuzzy 

inference system toolbox. The effectiveness of the above three methods is validated by MATLAB simulation 

results. Lastly a comparative study based on the results of the above methods is presented for identifying the best 

method. 
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1 Introduction 

The theory behind the chaotic dynamics is that small 

changes in a system can cause large effects as time 

progresses. In the late 1800s Poincaré was the first 

person to examine the possibility of chaotic 

phenomena in a deterministic system that exhibited 

aperiodic behavior and found sensitive dependence 

on initial conditions in a three-body problem [1]. In 

1963, the MIT meteorologist Edward Lorenz 

experimented on a simplified model of convecting 

fluids in the atmosphere to get an insight about the 

uncertainty in weather predictions [1]. Lorenz found 

that the system never reached a stable equilibrium 

state rather it was oscillating in an irregular and 

aperiodic manner. He started doing the simulation of 

his equations by taking two initial conditions very 

close to each other and found that as the time 

progresses the resulting behaviors were totally 

different. This led to the invention of the famous 

“Lorenz chaotic attractor” [1]. The theory of chaos 

has bloomed after the year 1970 and lot more 

researches [2-4] are being carried out in this field. 

However, obtaining analytical solution is very 

difficult.  

In the recent years the subject of artificial intelligence 

has gained a rapid development in the field of 

research. The adaptive control, neural control, fuzzy 

control provides a good platform for the design of 

control system for solving complex nonlinear 

systems associated with various uncertainties. Neural 

network and fuzzy system have the advantage that the 

smooth nonlinear functions can be modelled in a 

precise set thereby reducing the error [5]. The 

concept of fuzzy logic was introduced in “Fuzzy 

Sets” which was published by Lofti A. Zadeh in the 

year 1965 [6]. In the year 1975, E. H. Mamdani and 

S. Assilian developed a controller capable to follow 

instructions and provide strategies based on verbal 

communication and not on experience [7]. The plant 

to be controlled is combination of a steam engine and 

boiler which is highly nonlinear. The model of the 

plant has two inputs: heat injected to the boiler and 

opening of the throttle at the input of the engine 

cylinder and two outputs: steam pressure in the boiler 

and engine speed [7]. In 1985, T. Takagi and M. 

Sugeno proposed a mathematical procedure to 

construct the fuzzy model of a particular system 

where fuzzy rules and reasoning were used [8]. The 

main advantage of the T-S fuzzy model is that for 

each rule the local dynamics of the system are 

expressed in a way that the system model becomes 

linear. For each of the fuzzy subsystem rule, a 

corresponding control rule is designed by using 

parallel distributed compensation (PDC) method. 

In the year 1977, Vadim I. Utkin published a survey 

paper based on variable structure systems with 

sliding modes [9]. The motivation behind the design 
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of variable structure systems (VSS) is that the control 

parameter has the ability to change its structure at any 

instant from one member of a set to another member 

of the same set of all possible continuous functions 

of the state. The switching logic is defined based on 

the selection of parameters from each structures. The 

SMC is the special form of variable structure control 

[10]. SMC is designed to drive the system and 

constrain the system states to remain within the 

neighbourhood of the switching function [10]. This 

approach has an advantage that the system becomes 

completely insensitive to parametric variations and 

thereby making the plant disturbance free. 
This paper is divided into seven sections. Section (2) 

presents the Rössler system and uncontrolled 

behaviour of its state trajectories. In section (3), T-S 

fuzzy model is presented along with five subsections. 

The subsections include: parallel distributed 

compensation (PDC), stability analysis using LMI, 

fuzzy modeling, fuzzy control and simulation results 

and output. Section (4) presents Mamdani fuzzy 

model with five subsections. The subsections 

include: defining inputs and outputs, universe of 

discourse and membership functions, defining rule 

matrix table, defuzzification process, and simulation 

results and output. In section (5), sliding mode 

control is presented along with four subsections. The 

subsections include: system description, sliding 

surface design, controller design and simulation 

results and output. In section (6), a comparison table 

for selecting the best controller is presented. Finally 

in section (7), the conclusion part is presented. 

 

 

2 Rössler System 

The most widely known chaotic attractor is the 

Lorenz attractor which consists of two nonlinear 

terms. In the 1970s, the German scientist O.E. 

Rössler found a new way of making a system in three 

dimensions based on relaxation-type systems which 

consists of an autonomous oscillation in two 

variables which upon moulding with a third variable 

forms an S-shaped slow manifold in the phase space. 

The Rössler system is derived from a system by the 

combination of a two variable chemical oscillator 

(variable 𝑥1 and 𝑥2) and a single variable chemical 

hysteresis term 𝑥3. The set of equations are given by 

(1) as mentioned in [11]- 

𝑥̇1(𝑡) = 𝑘1 + 𝑘2𝑥1(𝑡) −
(𝑘3𝑥2(𝑡) + 𝑘4𝑥3(𝑡))𝑥1(𝑡)

(𝑥1(𝑡) + 𝐾)
 

𝑥̇2(𝑡) = 𝑘5𝑥1(𝑡) − 𝑘6𝑥2(𝑡) 

𝜇𝑥̇3(𝑡) = 𝑘7𝑥1(𝑡) + 𝑘8𝑥3(𝑡) − 𝑘9𝑥3
2(𝑡)

−
𝑘10𝑥3(𝑡)

𝑥3(𝑡) + 𝐾
′
                                  (1) 

where 𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡) denotes the concentration 

of substances 𝐴, 𝐵 and 𝐶 respectively. 𝐾 and 𝐾′ are 

Michaelis constants. On simplication of equation (1), 

the Rössler system equations and are given by 

equation (2) as mentioned in [12]- 

𝑥1̇(𝑡) = −𝑥2(𝑡) − 𝑥3(𝑡)   

𝑥2̇(𝑡) = 𝑥1(𝑡) + 𝑎𝑥2(𝑡)                   (2) 

𝑥3̇(𝑡) = 𝑏𝑥1(𝑡) + (𝑥1(𝑡) − 𝑐)𝑥3(𝑡) 
 

where 𝑎, 𝑏 and 𝑐 are the system parameters. The 

Rössler equations consist of a single nonlinear term 

(i.e. 𝑥1(𝑡)𝑥3(𝑡)). Considering two cases of parameter 

values. In the first case, the parameter values of the 

system is chosen as 𝑎 = 0.34, 𝑏 = 0.4 and 𝑐 = 14. 

In the second case, the parameter values of the system 

are 𝑎 = 0.2, 𝑏 = 0.2 and 𝑐 = 5.7. The parameter 

values for the above two cases gives rise to two 

different chaotic attractors. The Lyapunov exponents 

for the system by considering the first case are 

approximately found to be 0.055013, -0.056818 and 

-12.802656. The Lyapunov exponents for the second 

case are 0.006788, -0.258514 and -5.137789. The 

Lyapunov exponents are calculated by using 

Lyapunov Exponent Toolbox [13]. A positive 

Lyapunov exponent indicates chaotic phenomenon 

[14]. Since one of the Lyapunov exponent found to 

be positive hence, the Rössler system behaves as a 

chaotic system. The Rössler attractor formed by 

considering both the case are shown in Fig. 1 and Fig. 

2 respectively. 

Fig. 1 Rössler attractor for first case with an initial 

condition [1, -1, 0] 
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Fig. 2 Rössler attractor for second case with an 

initial condition [1, -1, 0] 

For the first case, the behavioural patterns of the 

uncontrolled state trajectories of Rössler system with 

initial condition as [1, -1, 0] are shown in Figure 3a), 

3(b) and 3(c) respectively. 

 

Fig. 3(a) Uncontrolled state trajectory of 

𝑥1(concentration of substance A) vs 𝑡𝑖𝑚𝑒 (seconds) 

 

Fig. 3(b) Uncontrolled state trajectory of 

𝑥2(concentration of substance B) vs 𝑡𝑖𝑚𝑒 (seconds) 

 

Fig. 3(c) Uncontrolled state trajectory of 

𝑥3(concentration of substance C) vs 𝑡𝑖𝑚𝑒 (seconds) 

For the second case, the behavioural patterns of the 

uncontrolled state trajectories of Rössler system with 

initial condition as [1, -1, 0] are shown in Figure 4(a), 

4(b) and 4(c) respectively. 

 

Fig. 4(a) Uncontrolled state trajectory of 

𝑥1(concentration of substance A) vs 𝑡𝑖𝑚𝑒 (seconds) 

 

Fig. 4(b) Uncontrolled state trajectory of 

𝑥2(concentration of substance B) vs 𝑡𝑖𝑚𝑒 (seconds) 

 

Fig. 4(c) Uncontrolled state trajectory of 

𝑥3(concentration of substance C) vs 𝑡𝑖𝑚𝑒 (seconds) 

 

In section (3), the design of T-S fuzzy model is 

illustrated for modelling of Rössler system. 

 

 

3 Takagi-Sugeno (T-S) Fuzzy Model 

The nth rule of the T-S model is as follows [15]: 

Rule n: 

IF                  𝑧1(𝑡) is 𝑀𝑛1 and................ 𝑧𝑝(𝑡) is 

𝑀𝑛𝑝(𝑡), 

THEN             𝑥̇(𝑡) = 𝐴𝑛𝑥(𝑡) + 𝐵𝑛𝑢(𝑡), 
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𝑦(𝑡) = 𝐶𝑛𝑥(𝑡),   for 𝑛 = 1,2, … , 𝑟            (3) 

where 𝑀𝑛𝑗 represents fuzzy set, 𝑟 indicates total 

number of rules; 𝑥(𝑡) ∈ 𝑅𝑛 indicates state vector, 

𝑢(𝑡) ∈ 𝑅𝑚 indicates input vector, 𝑦(𝑡) ∈ 𝑅𝑞 

indicates output vector, 𝐴𝑖 ∈ 𝑅
𝑛×𝑛, 𝐵𝑖 ∈ 𝑅

𝑛×𝑚 and 

𝐶𝑖 ∈ 𝑅
𝑞×𝑛; 𝑧1(𝑡), … , 𝑧𝑝(𝑡) represents the premise 

variables that are the function of state variables. Each 

linear consequent term represented by 𝐴𝑛𝑥(𝑡) +
𝐵𝑛𝑢(𝑡) are called “fuzzy subsystem”. The resulting 

fuzzy systems are given by: 

𝑥̇(𝑡) =
∑ 𝑤𝑛(𝑧(𝑡)){𝐴𝑛𝑥(𝑡) + 𝐵𝑛𝑢(𝑡)}
𝑟
𝑛=1

∑ 𝑤𝑛(𝑧(𝑡))
𝑟
𝑛=1

                

= ∑ℎ𝑛(𝑧(𝑡)){𝐴𝑛𝑥(𝑡) + 𝐵𝑛𝑢(𝑡)},             

𝑟

𝑛=1

(4) 

𝑦(𝑡) =
∑ 𝑤𝑛(𝑧(𝑡))𝐶𝑛𝑥(𝑡)
𝑟
𝑛=1

∑ 𝑤𝑛(𝑧(𝑡))
𝑟
𝑛=1

 

= ∑ℎ𝑛(𝑧(𝑡))𝐶𝑛𝑥(𝑡),                          (5)

𝑟

𝑛=1

 

where 𝑧(𝑡) = 𝑧1(𝑡), … , 𝑧𝑝(𝑡), 

𝑤𝑛(𝑧(𝑡)) =∏𝑀𝑛𝑗 (𝑧𝑗(𝑡)) ,

𝑝

𝑗=1

                                

ℎ𝑛(𝑧(𝑡)) =
𝑤𝑛(𝑧(𝑡))

∑ 𝑤𝑛(𝑧(𝑡))
𝑟
𝑛=1

,                          (6) 

The term 𝑀𝑛𝑗(𝑧𝑗(𝑡)) represents membership 

function. 

Since ∑ 𝑤𝑛(𝑧(𝑡)) > 0
𝑟
𝑛=1  and 𝑤𝑛(𝑧(𝑡)) ≥ 0,    

for n = 1,2,… , 𝑟 

We have∑ ℎ𝑛(𝑧(𝑡)) = 1
𝑟
𝑛=1  and ℎ𝑛(𝑧(𝑡)) ≥ 0,    

for n = 1,2,… , 𝑟 

In the subsection 3.1, the design of the fuzzy 

controller is done by using PDC method. 

 

 

3.1 Parallel Distributed Compensation 

(PDC) 

The nth rule of the PDC is as follows [15]: 

Rule n: 

IF 

                  𝑧1(𝑡) is 𝑀𝑛1 and................ 𝑧𝑝(𝑡) is 

𝑀𝑛𝑝(𝑡), 

THEN 

𝑢(𝑡) = −𝐾𝑛𝑥(𝑡),      𝑛 = 1,2, … , 𝑟                 (7) 

Then the resulting controller is 

𝑢(𝑡) = −
∑ 𝑤𝑛(𝑧(𝑡))𝐾𝑛𝑥(𝑡)
𝑟
𝑛=1

∑ 𝑤𝑛(𝑧(𝑡))
𝑟
𝑛=1

 

= −∑ℎ𝑛(𝑧(𝑡))𝐾𝑛𝑥(𝑡)

𝑟

𝑛=1

                        (8) 

Substituting equation (8) in equation (4) thereby 

obtaining the closed loop system as 

𝑥̇(𝑡) = ∑ℎ𝑛(𝑧(𝑡)){𝐴𝑛 − 𝐵𝑛𝐾𝑛}𝑥(𝑡)

𝑟

𝑛=1

,               (9) 

After the design of the controller, the subsection 3.2 

is about obtaining the optimized value of state 

feedback gain matrices for the design of the stable 

fuzzy controller. 

 

 

3.2 Stability Analysis using LMI 

For the design of stable decay rate fuzzy controller, 

the inequalities in equation (10), (15) and (16) are to 

be satisfied [15]: 

𝑃 > 0                                      (10) 

(𝐴𝑛 −𝐵𝑛𝐾𝑛)
𝑇𝑃 + 𝑃(𝐴𝑛 −𝐵𝑛𝐾𝑛) < 0, 

for n = 𝑗 = 1,2, … , 𝑟                             (11) 

and                  𝐺𝑛𝑗
𝑇𝑃 + 𝑃𝐺𝑛𝑗 ≤ 0,    for n < 𝑗 ≤ 𝑟 

such that  hn ∩ hj ≠ ∅                             (12) 

where 

𝐺𝑛𝑗 =
(𝐴𝑛 −𝐵𝑛𝐾𝑗) + (𝐴𝑗 − 𝐵𝑗𝐾𝑛)

2
 

for a stable fuzzy controller design, pre-multiply and 

post-multiply the equations (11) and (12) by 𝑃−1 and 
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define 𝑋 = 𝑃−1 (such that 𝑋 > 0) and 𝑀𝑛 = 𝐾𝑛𝑋 

yields: 

𝑋𝐴𝑛
𝑇 + 𝐴𝑛𝑋 −𝑀𝑛

𝑇𝐵𝑛
𝑇 −𝐵𝑛𝑀𝑛 < 0,  

for n = 𝑗 = 1,2, … , 𝑟                             (13) 

and  

𝑋𝐴𝑛
𝑇 + 𝐴𝑛𝑋 + 𝑋𝐴𝑗

𝑇 + 𝐴𝑗𝑋 − (𝐵𝑛𝑀𝑗 +𝐵𝑗𝑀𝑛)

− (𝑀𝑛
𝑇𝐵𝑗

𝑇 +𝑀𝑗
𝑇𝐵𝑛

𝑇) < 0,  

for n < 𝑗 ≤ 𝑟                                    (14) 

For guaranteed exponential decay of states 𝑥(𝑡) → 0, 

the condition is 𝛼𝑉(𝑥) + 𝑉̇(𝑥) ≤ 0. So, equation 

(13) and (14) are modified to [16]: 

𝑋 > 0, 

𝑋𝐴𝑛
𝑇 + 𝐴𝑛𝑋 −𝑀𝑛

𝑇𝐵𝑛
𝑇 − 𝐵𝑛𝑀𝑛 + 𝛼𝑋 < 0,  

for n = 𝑗 = 1,2,… , 𝑟                           (15) 

𝑋𝐴𝑛
𝑇 + 𝐴𝑛𝑋 + 𝑋𝐴𝑗

𝑇 + 𝐴𝑗𝑋 − (𝐵𝑛𝑀𝑗 +𝐵𝑗𝑀𝑛)

− (𝑀𝑛
𝑇𝐵𝑗

𝑇 +𝑀𝑗
𝑇𝐵𝑛

𝑇) + 𝛼𝑋 ≤ 0,  

for n < 𝑗 ≤ 𝑟                                 (16) 

where 𝛼 > 0, 𝑋 = 𝑃−1 and 𝑀𝑛 = 𝐾𝑛𝑋 

The next two subsections 3.3 and 3.4 is all about the 

fuzzy modelling and fuzzy control of the Rössler 

system. 

 

 

3.3 Fuzzy Modelling 

Considering the Rössler chaotic system in equation 

(2) having an input term 𝑢(𝑡) is given as: 

𝑥1̇(𝑡) = −𝑥2(𝑡) − 𝑥3(𝑡) 

𝑥2̇(𝑡) = 𝑥1(𝑡) + 𝑎𝑥2(𝑡) 

𝑥3̇(𝑡) = 𝑏𝑥1(𝑡) + (𝑥1(𝑡) − 𝑐)𝑥3(𝑡) + 𝑢(𝑡) 

where 𝑎, 𝑏 and 𝑐 are the system parameters and 𝑢(𝑡) 
is the control input to be designed. The single 

nonlinear term is 𝑥1(𝑡)𝑥3(𝑡). If somehow the 

nonlinearity can be resolved, the system becomes 

linear. To obtain the linear system, assume that 

𝑥1(𝑡) ∈ [−𝑑,+𝑑] and 𝑑 > 0. Then the fuzzy model 

that exactly representing the Rössler’s system under 

𝑥1(𝑡) ∈ [−𝑑,+𝑑] as: 

Rule 1: 

𝐼𝐹 𝑥1(𝑡) is 𝑀1,  

𝑇𝐻𝐸𝑁 𝑥̇(𝑡) = 𝐴1𝑥(𝑡) + 𝐵𝑢(𝑡)                   (17) 

Rule 2: 

𝐼𝐹 𝑥1(𝑡) is 𝑀2,  

𝑇𝐻𝐸𝑁 𝑥̇(𝑡) = 𝐴2𝑥(𝑡) + 𝐵𝑢(𝑡)                   (18) 

Here, 𝐵𝑛 = 𝐵 that is a common input matrix is taken 

and 𝑥(𝑡) = [𝑥1(𝑡) 𝑥2(𝑡) 𝑥3(𝑡)]
𝑇. 

 𝐴1 = [
0 −1 −1
1    𝑎    0
𝑏    0 −𝑑 − 𝑐

],𝐴2 [
0 −1 −1
1     𝑎    0
𝑏     0   𝑑 − 𝑐

], 

𝐵 = [
0
0
1
] 

Also 𝑀1(𝑥1(𝑡)) =
1

2
(1 −

𝑥1(𝑡)

𝑑
), 𝑀2(𝑥1(𝑡)) =

1

2
(1 +

𝑥1(𝑡)

𝑑
), 

where 𝑑 = 3. The plot of triangular membership 

function is shown in Figure 5. 

 

 

3.4 Fuzzy Control 
 

Fig. 5 Plot of Triangular Membership functions of 

𝑀1(𝑥1(𝑡)) and 𝑀2(𝑥1(𝑡)) 

Rule 1: 

𝐼𝐹 𝑥1(𝑡) is 𝑀1,  
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     𝑇𝐻𝐸𝑁 𝑢(𝑡) = −𝐾1𝑥(𝑡)                                  (19) 

Rule 2: 

𝐼𝐹 𝑥1(𝑡) is 𝑀2,  

𝑇𝐻𝐸𝑁 𝑢(𝑡) = −𝐾2𝑥(𝑡)                                           (20) 

Since the fuzzy model of the Rössler system has only 

two rules, the PDC also have only two rules. So, the 

resulting PDC fuzzy controller is 

𝑢(𝑡) = −
∑ 𝑤𝑛(𝑧(𝑡))𝐾𝑛𝑥(𝑡)
2
𝑛=1

∑ 𝑤𝑛(𝑧(𝑡))
2
𝑛=1

 

= −∑ℎ𝑛(𝑧(𝑡))𝐾𝑛𝑥(𝑡),                     (21)

2

𝑛=1

 

Substituting equation (21) in equation (4) thereby 

obtaining the closed loop system as: 

𝑥̇(𝑡) = ∑ℎ𝑛(𝑧(𝑡)){𝐴𝑛 − 𝐵𝐾𝑛}𝑥(𝑡)            (22)

2

𝑛=1

 

The design of fuzzy modelling & control is done in 

MATLAB Simulink and suitable simulation results 

& output are obtained which are shown in subsection 

3.5. 

 

 

3.5 Simulation Results and Output 

For the first case, solving the set of LMIs in equations 

(15) and (16) taking 𝛼 = 2 using MATLAB 

YALMIP toolbox [17], the optimized values of 

symmetric positive definite matrix and state feedback 

gain matrices are given as- 

𝑃 = [
 31.2427    39.8487   −6.6334
 39.8487 60.5482 −7.7181
−6.6334 −7.7181    1.8910

] 

𝐾1 = [−28.2032 −31.5142 −9.4327] 

𝐾2 = [−28.2032 −31.5142 −3.4327] 

By substituting the above 𝐾1 and 𝐾2 values in the 

MATLAB Simulink, the controlled state trajectories 

are shown in Figure 6(a), 6(b) and 6(c) respectively. 

The control input is added after 𝑡 > 10 sec for 

showing the oscillating nature up to 10 sec. 

 

 

Fig. 6(a) Controlled state trajectory of 

𝑥1(concentration of substance A) vs 𝑡𝑖𝑚𝑒(seconds) 

 

Fig. 6(b) Controlled state trajectory of 

𝑥2(concentration of substance B) vs 𝑡𝑖𝑚𝑒 (seconds) 

 

Fig. 6(c) Controlled state trajectory of 

𝑥3(concentration of substance C) vs 𝑡𝑖𝑚𝑒(seconds) 

For the second case, solving the set of LMIs in 

equations (15) and (16) taking 𝛼 = 2 using 

MATLAB YALMIP toolbox [17], the optimized 

values of symmetric positive definite matrix and state 

feedback gain matrices are given as- 

𝑃 = [
 27.4868    31.3198   −6.2322
 31.3198 44.0859 −6.4242
−6.2322 −6.4242    1.8997

] 

𝐾1 = [−24.7149 −23.8654 −1.5691] 

𝐾2 = [−24.7149 −23.8654     4.4309] 

By substituting the above 𝐾1 and 𝐾2 values in the 

MATLAB Simulink, the controlled state trajectories 

are shown in Figure 7(a), 7(b) and 7(c) respectively. 

The control input is added after 𝑡 > 10 sec for 

showing the oscillating nature up to 10 sec. 
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Fig. 7(a) Controlled state trajectory of 

𝑥1(concentration of substance A) vs 𝑡𝑖𝑚𝑒(seconds) 

 

Fig. 7(b) Controlled state trajectory of 

𝑥2(concentration of substance B) vs 𝑡𝑖𝑚𝑒 (seconds) 

 

Fig. 7(c) Controlled state trajectory of 

𝑥3(concentration of substance C) vs 𝑡𝑖𝑚𝑒(seconds) 
 

 

4 Mamdani Fuzzy Model 

The Mamdani fuzzy controller is implemented using 

MATLAB fuzzy inference system toolbox. This 

method is implemented using IF-THEN rules. 

Consider the Rössler system in equation (2) along 

with the output 𝑦 = 𝑥1(𝑡) [18]. 

𝑥̇1(𝑡) = −𝑥2(𝑡) − 𝑥3(𝑡) 

𝑥̇2̇(𝑡) = 𝑥1(𝑡) + 𝑎𝑥2(𝑡)                 (23) 

𝑥̇3(𝑡) = 𝑏𝑥1(𝑡) + (𝑥1(𝑡) − 𝑐)𝑥3(𝑡) 

𝑦 = 𝑥1(𝑡) 

Figure 8 represents the block diagram for Mamdani 

fuzzy model associated with Rössler system. 

 

 

Fig. 8 Mamdani fuzzy model of Rössler system 

The steps involved in the fuzzy inference system to 

obtain the crisp value at the output is: defining the 

inputs and outputs, deciding the universe of discourse 

and membership functions, defining the rules and 

combining them to obtain the overall control 

response, defuzzification of the overall fuzzified 

control response. 

The next subsections 4.1, 4.2, 4.3 and 4.4 are 

illustrated on the basis of the above-mentioned steps.  

 

 

4.1 Defining Inputs and Outputs 

The Mamdani fuzzy inference system has two inputs: 

𝑥1 and 𝑥̇1 and one output: 𝑢. The reference input to 

the closed loop system is taken as: step input. 

 

 

4.2 Universe of Discourse and Membership 

Functions 

Table 1.  Variables and Membership Functions 

Input and 

Output 

Variables 

Universe of 

Discourse 

Type of 

Membership 

functions 

𝑥1 

 

-30 to +30 Triangular 

𝑥̇1 

 

-300 to +300 Triangular 

u 

 

-30 to +30 Triangular 

The formula for triangular membership function is 

given by [5]- 
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𝑓(𝑥, 𝑎, 𝑏, 𝑐) =

{
 
 

 
 

0                     𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
            𝑎 ≤ 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
            𝑏 ≤ 𝑥 ≤ 𝑐

0                     𝑥 ≥ 𝑐

           (24) 

The membership functions of 𝑥1, 𝑥̇1 and 𝑢 are shown 

in Figure 9, Figure 10 and Figure 11 respectively. 

 

Fig. 9 Membership function plot of 𝑥1 

 

Fig. 10 Membership function plot of 𝑥̇1 

 

Fig. 11 Membership function plot of 𝑢 

 

 

 

 

 

 

 

 

 

 

 

4.3 Defining Rule Matrix Table 

Table 2.  Fuzzy Rule Matrix 

    𝑥1 

𝑥̇1 

 

 

NL 

 

NM 

 

NS 

 

ZE 

 

PS 

 

PM 

 

PL 

 

NL 

 

 

NL 

 

NM 

 

 

NM 

 

NM 

 

NS 

 

NS 

 

ZE 

 

NM 

 

 

NM 

 

NM 

 

NS 

 

NS 

 

NS 

 

ZE 

 

PS 

 

NS 

 

 

NM 

 

NM 

 

NS 

 

NS 

 

ZE 

 

PS 

 

PS 

 

ZE 

 

 

NM 

 

NS 

 

NS 

 

ZE 

 

PS 

 

PS 

 

PM 

 

PS 

 

 

NS 

 

NS 

 

ZE 

 

PS 

 

PS 

 

PM 

 

PM 

 

PM 

 

 

NS 

 

ZE 

 

PS 

 

PS 

 

PS 

 

PM 

 

PM 

 

PL 

 

 

ZE 

 

PS 

 

PS 

 

PM 

 

PM 

 

PM 

 

PL 

where  

NL = Negative Large 

NM = Negative Medium 
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NS = Negative Small 

ZE = Zero 

PS = Positive Small 

PM = Positive Medium 

PL= Positive Large 

The rule matrix table is expressed as: 

Rule 1: IF 𝑥1 is NL and IF 𝑥̇1 is NL - THEN u is NL 

Rule 2: IF 𝑥1 is NM and IF 𝑥̇1 is NL - THEN u is 

NM 

    . 

    . 

    . 

Rule 48: IF 𝑥1 is PM and IF 𝑥̇1 is PL - THEN u is 

PM 

Rule 49: IF 𝑥1 is PL and IF 𝑥̇1 is PL - THEN u is PL 

Based on the above rule matrix table, the fuzzy 

surface plot is shown in Figure 12. 

 
Fig. 12 Fuzzy Surface plot 

 

 

4.4 Defuzzification Process 

The Defuzzification method is chosen to be Centroid 

(also known as Center of gravity) method. The 

formula for centroid method is given by- 

𝑋∗ =∑
𝜇(𝑥). 𝑥

∑ 𝜇(𝑥)𝑛
𝑥=1

𝑛

𝑥=1

,                             (25) 

where 𝑥 is the fuzzy variable and 𝜇(𝑥) is the 

membership function and 𝑋∗ is the defuzzified value. 

 

 

4.5 Simulation Results and Output 

The control input is added after 𝑡 > 10 sec for 

showing the oscillating nature up to 10 sec. The 

controlled state trajectories of 𝑥1, 𝑥2 and 𝑥3 are 

shown in Figure 13(a), Figure 13(b) and Figure 13(c) 

respectively for the first case. 

 

Fig. 13(a) Controlled state trajectory of 

𝑥1(concentration of substance A) vs 𝑡𝑖𝑚𝑒(seconds) 

Fig. 13(b) Controlled state trajectory of 

𝑥2(concentration of substance B) vs 𝑡𝑖𝑚𝑒 (seconds) 

Fig. 13(c) Controlled state trajectory of 

𝑥3(concentration of substance C) vs 𝑡𝑖𝑚𝑒 (seconds) 

The control input is added after 𝑡 > 10 sec for 

showing the oscillating nature up to 10 sec. The 

controlled state trajectories of 𝑥1, 𝑥2 and 𝑥3 are 

shown in Figure 14(a), Figure 14(b) and Figure 14(c) 

respectively for the second case. 
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Fig. 14(a) Controlled state trajectory of 

𝑥1(concentration of substance A) vs 𝑡𝑖𝑚𝑒(seconds) 

 

Fig. 14(b) Controlled state trajectory of 

𝑥2(concentration of substance B) vs 𝑡𝑖𝑚𝑒 (seconds) 

 

Fig. 14(c) Controlled state trajectory of 

𝑥3(concentration of substance C) vs 𝑡𝑖𝑚𝑒 (seconds) 

 

 

5 Sliding Mode Control 

For the design of a robust controller for an uncertain 

system, SMC is frequently used [19]. The main 

advantages of the SMC are: easily realized, response 

is faster, transient response is better and not sensitive 

to plant variations or external disturbances. The 

design of the SMC consists of two steps: first is the 

design of an asymptotically stable sliding surface and 

second is the design of a suitable reaching law such 

that the system states reaches the sliding surface in 

finite time. 

The next subsection 5.1, is about the description of 

Rössler system and representation of the system in 

matrix form. 

 

 

5.1 System Description 

Consider the Rössler system with two input terms 𝑢1 

and 𝑢2 in the second and third equation of equation 

(2).  
𝑥1̇(𝑡) = −𝑥2(𝑡) − 𝑥3(𝑡) 

𝑥2̇(𝑡) = 𝑥1(𝑡) + 𝑎𝑥2(𝑡) + 𝑢1           (26) 

𝑥3̇(𝑡) = 𝑏𝑥1(𝑡) + (𝑥1(𝑡) − 𝑐)𝑥3(𝑡) + 𝑢2 

where 𝑎 = 0.34, 𝑏 = 0.4, 𝑐 = 14 are the system 

parameters and 𝑢 = (𝑢1, 𝑢2) are the control inputs to 

be designed. The Rössler system can be represented 

as [19]: 

𝑥̇ = 𝐴𝑥 + 𝑓(𝑥) + 𝐵𝑢                      (27) 

where 

𝐴 = [
0 −1 −1
1     𝑎    0
𝑏     0 −𝑐

] , 𝑓(𝑥) = [
0
0

𝑥1(𝑡)𝑥3(𝑡)
],  

𝐵 = [
0 0
1 0
0 1

] 

The control inputs in a SMC is designed as: 

𝑢 = 𝑢𝑒𝑞 + 𝑢𝑠                           (28) 

where 𝑢𝑒𝑞 is called the equivalent control and 𝑢𝑠 is 

called the switching control. 

The next subsection 5.2, is about the design of the 

sliding surface. 

 

 

5.2 Sliding Surface Design 

The basic aim in this section is the design the sliding 

surface for the nonlinear Rössler system in equation 

(26). The presence of the nonlinear term 𝑓(𝑥) in the 

system makes the design of the sliding surface 

difficult. Therefore, a dynamic compensator is 

introduced. The equation of the dynamic 

compensator is given by [19]- 

𝑧̇ = 𝐾𝑥 − 𝑧                                  (29) 

where 𝑧 represents the compensator states in 𝑅2, 𝐾 is 

the suitable gain matrix to be designed in 𝑅2×3 using 

LMI. The sliding surface is designed as 

𝑠 = 𝐶𝑥 + 𝑧                                  (30) 
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where 𝐶 = [𝐶1, 𝐼] in 𝑅2×3, 𝐶1 in 𝑅2×1 and 𝐼 in 𝑅2×2. 

Differentiating equation (30) with respect to time 

yields 

𝑠̇ = 𝐶𝑥̇ + 𝑧̇ = 𝐶𝐴𝑥 + 𝐶𝑓(𝑥) + 𝐶𝐵𝑢 + 𝐾𝑥 − 𝑧          

(31) 

It can be easily inferred that 𝐶𝐵 = 𝐼. For the design 

of the equivalent control 𝑢𝑒𝑞 make 𝑠̇ = 0. So 𝑢𝑒𝑞 is 

given by- 

𝑢𝑒𝑞 = −𝐶𝐴𝑥 − 𝐶𝑓(𝑥) − 𝐾𝑥 + 𝑧                (32) 

Substituting equation (32) in equation (27) yields 

𝑥̇ = 𝐴𝑥 + 𝑓(𝑥) + 𝐵(−𝐶𝐴𝑥 − 𝐶𝑓(𝑥) − 𝐾𝑥 + 𝑧) 

 = (𝐴 − 𝐵𝐶𝐴 − 𝐵𝐾)𝑥 + 𝐵𝑧                          (33) 

On the sliding surface 𝑠 = 0 yields 𝑧 = −𝐶𝑥. Hence, 

equation (33) is expressed as 

𝑥̇ = (𝐴 − 𝐵𝐶𝐴 − 𝐵𝐾 − 𝐵𝐶)𝑥                     (34) 

Based on the Lyapunov’s stability criterion, the 

closed loop system in equation (34) is asymptotically 

stable if there exists a scalar energy function 𝑉(𝑥) >

0 and 𝑉̇(𝑥) < 0. Consider 𝑉(𝑥) =
1

2
𝑥𝑇𝑥 as the 

Lyapunov function candidate of the system in 

equation (34). The derivative of 𝑉(𝑥) with respect to 

time is given by- 

𝑉̇(𝑥) =
1

2
𝑥𝑇Ѱ𝑥 

where  

Ѱ = 𝐴 − 𝐵𝐶𝐴 − 𝐵𝐾 − 𝐵𝐶 + 𝐴𝑇 − 𝐴𝑇𝐶𝑇𝐵𝑇 −
𝐾𝑇𝐵𝑇 − 𝐶𝑇𝐵𝑇  (35)     

The controller design is illustrated in the next 

subsection 5.3.  

 

 

5.3 Controller Design 

The switching control 𝑢𝑠 is obtained by considering 

the exponential reaching law [19]. The exponential 

reaching law is given as- 

𝑠̇ = −µ𝑠,    µ > 0                              (36) 

Here µ = 1.5. The solution to equation (36) is 𝑠 =
𝑠(0)𝑒−µ𝑡 [10] implies that the states of the system 

𝑥(𝑡) approaches the switching manifolds faster when 

𝑠 is large. For achieving asymptotic stability of 𝑢𝑠, 
the Lyapunov function is chosen as- 

𝑉(𝑥) =
1

2
𝑠𝑇𝑠                                 (37) 

The derivative of 𝑉(𝑥) with respect to time is given 

as- 

𝑉̇(𝑥) =
1

2
(𝑠𝑇𝑠̇ + 𝑠̇𝑇𝑠) = −µ‖𝑠‖                  (38) 

By making 𝑠̇ = 0, the switching control is given as- 

𝑢𝑠 = −µ𝑠                                  (39) 

Substituting equation (32) and equation (39) in 

equation (28), the overall SMC is given as- 

𝑢 = (−𝐶𝐴𝑥 − 𝐶𝑓(𝑥) − 𝐾𝑥 + 𝑧) + (−µ𝑠)           
(40) 

In subsection 5.4, simulation results & output are 

shown. 

 

 

5.4 Simulation Results and Output 

For the first case, solving the LMI in equation (35) 

using MATLAB YALMIP toolbox [17] the 

optimized values of 𝐶 and 𝐾 are obtained as- 

𝐶 = [
−0.9201 1 0
   0.9201 0 1

] 

𝐾 = [
−0.0799 −0.4245 0
−1.9201 0 1.4158

] 

The control input is added after 𝑡 > 10 sec for 

showing the oscillating nature up to 10 sec. The 

controlled state trajectories of 𝑥1, 𝑥2 and 𝑥3 are 

shown in Figure 15(a), Figure 15(b) and Figure 15(c) 

respectively.  

Fig. 15(a) Controlled state trajectory of 

𝑥1(concentration of substance A) vs 𝑡𝑖𝑚𝑒 (seconds) 
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Fig. 15(b) Controlled state trajectory of 

𝑥2(concentration of substance B) vs 𝑡𝑖𝑚𝑒 (seconds) 

 

Fig. 15(c) Controlled state trajectory of 

𝑥3(concentration of substance C) vs 𝑡𝑖𝑚𝑒 (seconds) 

For the second case, solving the LMI in equation (35) 

using MATLAB YALMIP toolbox [17] the 

optimized values of 𝐶 and 𝐾 are obtained as- 

𝐶 = [
−0.9201 1 0
   0.9201 0 1

] 

𝐾 = [
−0.0799 −0.4245 0
−1.9201 0 1.4158

] 

The control input is added after 𝑡 > 10 sec for 

showing the oscillating nature up to 10 sec. The 

controlled state trajectories of 𝑥1, 𝑥2 and 𝑥3 are 

shown in Figure 16(a), Figure 16(b) and Figure 16(c) 

respectively.  

 

Fig. 16(a) Controlled state trajectory of 

𝑥1(concentration of substance A) vs 𝑡𝑖𝑚𝑒 (seconds) 

 

 

Fig. 16(b) Controlled state trajectory of 

𝑥2(concentration of substance B) vs 𝑡𝑖𝑚𝑒 (seconds) 

 

Fig. 16(c) Controlled state trajectory of 

𝑥3(concentration of substance C) vs 𝑡𝑖𝑚𝑒 (seconds) 

 

 

6 Comparison of T-S Fuzzy Controller 

with Mamdani Fuzzy Controller with 

Sliding Mode Controller 

For the first case, Table 3 indicates the comparison 

chart among the T-S fuzzy controller, Mamdani 

fuzzy controller and the sliding mode controller. 

Table 3.  Comparing T-S fuzzy controller, Mamdani 

fuzzy controller, Sliding Mode Controller 

 T-S 

Fuzzy 

Control  

Mamdani 

Fuzzy 

Control 

Sliding 

Mode 

Control 

Maximum 

value of 𝑥1 

(concentration 

of substance 

A) 

3.741 3.976 3.941 

Maximum 

value of 𝑥2 

(concentration 

of substance 

B) 

8.631 5.194 5.164 

Maximum 

value of 𝑥3 

(concentration 

of substance 

C) 

0.437 0.157 0.162 
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Transient 

period of 𝑥1 

(concentration 

of substance 

A) (in 

seconds) 

 

15.643 

 

25 24.668 

Transient 

period of 𝑥2 

(concentration 

of substance 

B) (in 

seconds) 

 

15.643 

 

25 24.668 

Transient 

period of 𝑥3 

(concentration 

of substance 

C) (in 

seconds) 

 

15.643 

 

25 24.668 

For the second case, Table 4 indicates the comparison 

chart among the T-S fuzzy controller, Mamdani 

fuzzy controller and the sliding mode controller. 

Table 4.  Comparing T-S fuzzy controller, Mamdani 

fuzzy controller, Sliding Mode Controller 

 T-S 

Fuzzy 

Control  

Mamdani 

Fuzzy 

Control 

Sliding 

Mode 

Control 

Maximum 

value of 𝑥1 

(concentration 

of substance 

A) 

2.335 2.4 2.370 

Maximum 

value of 𝑥2 

(concentration 

of substance 

B) 

3.933 2.690 2.698 

Maximum 

value of 𝑥3 

(concentration 

of substance 

C) 

0.527 0.132 0.135 

Transient 

period of 𝑥1 

(concentration 

of substance 

 

15.643 
25 24.668 

A) (in 

seconds)  

Transient 

period of 𝑥2 

(concentration 

of substance 

B) (in 

seconds) 

 

15.643 

 

25 24.668 

Transient 

period of 𝑥3 

(concentration 

of substance 

C) (in 

seconds) 

 

15.643 

 

25 24.668 

 

 

7 Conclusion 

It is clearly observed from the MATLAB simulation 

that the T-S fuzzy controller, Mamdani fuzzy 

controller and sliding mode controller successfully 

drives the highly chaotic system states to a stable 

steady state value. So far as settling time is 

concerned, the T-S fuzzy controller has better 

performance as compared to the other two controllers 

as it is evident from Table 3 and Table 4. The T-S 

fuzzy controller has a faster settling time but it has 

the highest magnitude of oscillations during the 

transient period. From both the tables, it can be easily 

seen that during the transient periods, the sliding 

mode controller has less magnitude of oscillation 

compared to the other two controllers. The Mamdani 

fuzzy controller takes maximum time to settle down 

and its magnitude of oscillations is slightly greater 

than that of SMC. Among the three controllers, the 

SMC has the best overall performance in reference to 

transient period and magnitude of oscillations with 

two input terms. 
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