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Abstract: The individual-based approach in the modeling of complex adaptive systems named Artificial 
Life is considered. Such approach allows to deal with an intrinsic adaptation of the system, with an organism 
influence on its environment and on other organisms, with altering the whole biosphere and eventually its 
own possibility to exist, i. e. its own fitness. In the Artificial Life research field of digital ecosystems, such 
approach provides the ability to trace an a posteriori fitness, which can be treated as emergent features of 
the system like population size, grouping or stability of exhibited behavior. In the work, we explore the 
model similar to classic Artificial Life models on spatial lattice and discuss relation between combat and 
peaceful behavior due to available resource in the system. It is introduced heterogeneous resource landscape 
in its impact on agent’s behavior, and examine it on the notion of species sustainability. The species 
sustainability is investigated. 
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1. Introduction 
Artificial Life (Alife) is an interdisciplinary 
research field, which try to investigate and use the 
properties of living systems or systems which 
include a large number of living components (for 
example, individuals). Alife usually brings 
together biologists, philosophers, physicists, 
computer scientists, chemists, mathematicians, 
artists, engineers, and more. The examples of 
Alife fields are numerous and includes artificial 
(digital) ecosystems, artificial society, 
evolutionary robotics, biology, origin of life – see 
for examples in [1], [2], [3], [5], [18], [21], [22], 
[24], and many others. Alife systems have been 
implemented as software and as hardware (see 
recent reviews [11], [22]). Remark that one of the 
important examples of the software Alife studies 
build and explore digital ecosystems that provide 
novel methods to study evolution. These studies 
can be useful in answering questions about laws 
how evolution works and how to manage it. 
Traditional evolution in real biological systems is 
extremely slow for study. The computation Alife 
aims to put the evolution process into action on a 
computer so time for evolution to go on is only 
limited by processor performance. Embracing 
evolution instruments opens opportunities for 
researching a great variety of problems that are 
linked with it. Artificial evolving systems are 
used to build complex systems that expose 
intellectual behavior and to study the link 
between intellectuality and complexity [15]. 
Alife systems are plausible playground to explore 

the mechanisms of adaptation: general evolving 
system features such as speciation ([14], [15]), 
aging ([17]), cooperation ([19]), developmental 
processes in artificial systems [10], and learning. 
Many models are developed in purpose to study 
social, ecological, swarming, artificial life and 
other topics. Despite the progress of other 
models, the interconnection between genotype 
and phenotype dynamic is still quite an 
unexplored issue; in current study we reveal an 
example of such unclearness that lurks in 
dynamic of the system. As one of the goals of the 
study, we want to concentrate on the more 
detailed research of agent phenotype 
sustainability. Further in this work, we discuss 
the dependency of combat interaction from input 
resource value and examine the sustainability of 
phenotypic assembly formation in homogeneous 
and heterogeneous spaces. These questions fit 
into the research field of Artificial Life 
determined by Bedau [5], and belong to a group 
of research areas that claim to: 

 Determine predictability of evolutionary 
consequences of manipulating organisms 
and ecosystems. 

 Determine minimal conditions for 
evolutionary transitions from specific to 
generic response systems. 

 Determine what is inevitable in the open-
ended evolution of life. 

Alife consolidate different research fields, such 
as, for example, hardware and software Alife. It 
could be used to study the evolution of 
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complexity, robotics, and digital organisms. One 
of the main approach of constructing simulation 
models in Alife is multi-agent methodology that 
is broadly used in the study of complex adaptive 
systems. Individual-based approach surmounts 
difficulties of equation-based models by granting 
additional flexibility for both development and 
analysis of the model [11].  The popularity of 
multi-agent approach springs from early 
researches such as Sugarspace [12], Bugs [20], 
Echo [14] and Polyworld [23] models. One of 
pioneer models of Artificial Life is the model of 
bugs on spatial lattice that was proposed by 
Norman H. Packard [20] denotes the importance 
of shift from extrinsic to intrinsic adaptation 
approaches in the modeling of evolutionary 
processes. Packard proposed to change the point 
of view on fitness in models of biological 
systems. He claimed that extrinsic approach of 
adaptation such that is defined by an a priori 
fitness function that assumes averaging of the 
environment and individual interactions could 
inflict limitations on the biosphere. Such 
limitation takes place, for the organism affects its 
environment and other organisms, altering the 
whole biosphere and eventually its own 
possibility to exist, i. e. its own fitness [20]. The 
author of [20] defines the intrinsic adaptation of 
a system as a process of changes in interactions 
of all parts of the system aiming to fit it and 
permanently changing the environment. As a 
result of first simulations of his model, H. 
Packard introduced the notion of an a posteriori 
fitness function for the intrinsic adaptation 
evolutionary process and demonstrated with its 
help the emergence of specific behavior that is 
inherent for some individuals. This change in the 
concept of adaptation shifts the focus to the 
emerging characteristics of the system that can be 
treated as an a posteriori fitness function. The 
examples of such values could be population size 
over time, sustainability of emerging phenotypic 
assemblies under different factors such as 
environmental changes or arm races and other 
system features. In particular work the size of 
agents’ group with common phenotype (behavior 
strategy) is treated as the a posteriori fitness 
function. 
Echo model is a Complex Adaptive System that 
was built with a purpose of extending genetic 
algorithms approach to ecological setting by 
adding geography (location), competition for 
resources and interaction among individuals 
(coevolution). The Echo model itself is intended 
to study patterns of behavior that are how 
resources flow through different kinds of 
ecologies take place, how cooperation among 

agents can arise through evolution and arms 
races. Echo corresponds to a set of Echo models, 
where the system of agents evolve empowered 
with combat, trade, move and mate abilities that 
are conditioned by their genotype and phenotype 
traits. Echo model consists of agents that are 
located in two-dimensional grid of sites, and 
migration is supported. Many agents can occupy 
one site and there is a notion of neighborhood. 
The different kinds of resource randomly 
distributed between all cells. Agents use resource 
to pay metabolic tax and to perform chasing, 
combat and mating actions. Reproduction can be 
sexual (crossover) and asexual (replication with 
mutation). The investigations allow identifying 
parameters or collections of parameters that are 
critical for emergence of specific behavior, i.e., to 
perform sensitivity analysis [14]. Simulation 
results and their analysis allow scientists to build 
deep intuitions about how different aspects of the 
digital ecosystem interact one another, reveal 
important dependencies, and provide 
understanding of how evolution interacts with 
ongoing dynamics of the ecosystem [14]. 
In the study [14] Terry Jones reveals dynamics of 
system that is common for ecology systems. A 
commonly observed phenomenon is that vast 
majority of species count relatively a few agents. 
The conditions under which distributions of this 
kind are seen include early successional 
communities, environments perturbed by toxins 
or pollutants, and in appropriately sized samples 
[14]. In his study [13] by analyzing count of 
species in observed data, Preston showed that 
abundance of species in such areas have 
lognormal distributions. In his Echo model, he 
studied agents’ species clustering based on 
genetic distance, stressed species abundance 
notion and showed that model exposes similar 
species abundance distribution characteristic to 
Peterson’s lognormal distribution [13]. 
In continuation to work with Echo model family 
P. Hraber and B. Milne [16] discovered the notion 
of the emergence of community assemblies. They 
showed the existence of agent groups that share 
common behavior that springs in order to 
response on interaction rules in model 
architecture. Certain genotype assemblies 
(complementary genotypes) were born and 
formed quasi-stable domination that was based 
on pairwise interaction between agents. In given 
work we consider digital ecosystem with such 
emergent feature and show that changing of 
system property such as space heterogeneity 
contributes to sustainability of complementary 
phenotypic assemblies over time. By saying 
phenotypic assembly we consider group of agents 
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that share similar behavior. It should be noted that 
such assemblies are less complex than 
community assemblies presented in Hraber and 
Milne study because agents action portfolio in 
that model is wider: its agents can trade and mate 
in addition. While in particular model phenotypic 
assembly by definition not necessarily support 
internal group interactions. 
The further development of digital ecosystem 
models is the models where complex agent’s 
behavior arises from the first principles: it never 
was predefined by fitness function and emerges 
through adaptation process. Remarkable 
examples of such models are Michael Burtsev’s 
[7], [17] model and Robert Grass’ [15] model. 
One of the main achievements of their research is 
that agent speciation i. e. phenotypic grouping 
and distinction emerges without predefined 
fitness function. Agents occupy niches that 
expose predator, prey or even more sophisticated 
behavior without extrinsic predisposition but as 
the result of the evolutional adaptation process. 
Further Michael Burtsev proposed a model that 
resembles pioneer Artificial Life’s Echo [14] and 
Bugs [20] models: the agents with simple 
behavior are acting in a simple space. In the study 
[7] the author develops latter models introducing 
kinship (by introducing culture affinity) and 
using the artificial neural network as a basis for 
agent’s actions. In this model no agent had a 
predefined strategy, instead it emerge as 
phenotype feature from agent’s actions, defined 
by the neural network. By doing this, the authors 
of [7] achieved a great variety of strategies that 
can take into account kinship of the object they 
interact with and are constructed from elementary 
actions as a result of evolution processes. Some 
of the strategies expose cooperative behavior, 
where agents adjusted their behavior due to 
genotypic distance between each other. It was 
shown that in such model emerge strategies that 
correspond to those in well-known game theory - 
dove-hawk-bourgeois, where dove acts like 
peaceful harvester, hawk demonstrates 
aggressive behavior attacking agents in 
neighborhood, and bourgeois that plays as dove 
when low on resource and displays hawk strategy 
in possession of it. Also, two new strategies of 
cooperative attack (when agent attack only non-
relative ones) and defense (when agents gather in 

one location to defense themselves from 
aggression) were emerged [9]. The similar results 
with different model achieves research with novel 
artificial life model with predator-prey behavior 
in study [15], where agents are driven by fuzzy 
cognitive map. Considering results of artificial 
life modeling it can be concluded that such 
approach is not being controversial to game 
theory but on the contrary is an extension that 
provides new research horizons, such as finding 
evolutionary stable strategy, designing an open-
ended evolution, exploring new sophisticated 
agent behavior, and analyzing system 
regularities, e. g. persistent emergence of group 
behavior and arm races. The simulation of the 
model implied correspondence to the evolution of 
territoriality in animals that is a partial feature of 
the general process of species and communitis 
formation. Michael Burtsev’s model captured a 
general for primitive societies trend of increasing 
of the aggression level with rising resource 
supply [7]. Correlation between population 
density and frequency of fight action for the case 
of rich resources in the model is similar to the 
analogous correlation extracted from the 
ethnographic database [7]. By studying the 
model, Burtsev proposed a novel methodology to 
categorize agents’ behavior into strategies and to 
trace population genotype dynamic [14]. 
Analysis of mentioned above researches of Alife 
models show that they open novel regularities 
and emergent behavior. Proceedings study of the 
similar models discovers new aspects of agents’ 
behavior dynamic. Evolution processes in the 
models of digital ecosystems are far from being 
clear and traceable, the interconnection between 
emergent features and system parameters are not 
yet properly established. In this work, we explore 
the correspondence of the phenotype 
sustainability to the heterogeneous or 
homogeneous resource space type and discuss the 
dependency of aggressive and peaceful behavior 
from the amount on income resource. In the 
following part of this article we provide model 
description and its rules. We discuss the dynamic 
on aggressive and peaceful behavior in the next 
section denoting some interesting regularities and 
displaying the dependency between this behavior 
and resource available in the system. The next 
section is dedicated to the description of 
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experiments in the heterogeneous resource space 
that attracted most attention, that is, predator-
prey, and strategy competition cases. Next, we 
demonstrate how variability of strategies changes 
on the type of resource space, concluding the 
article with discussions and future studies 
possibilities. 
 
 

2. MODEL DESCRIPTION 
Here below we describe as the important example 
an agent-based lattice foraging model with 
possible predator-prey behavior which is a 
development of classical artificial life models 
[12], [14], [23]. This model follows mainly to 
Burtsev’s cellular automata approach [9], 
because of the similarities in the neural network 
type, environment rules, and culture affinity 
between agents. The major differences between 
these two models are agent’s perception and 
agent’s world arrangement. In Burtsev’s model 
arbitrary number of agents can occupy single cell 
unlike in ours model, where only one agent can 
live in the one cell. Perception in Burtsev’s model 
is based on averaging of the parameters – the 
agent is aware only of mean attributes (culture 
affinity) of the whole agents’ group in his cell. 
This follows to more generalized interactions. In 
our model, agent’s perception is significantly 
different: each agent is aware of each neighbor 
and his culture affinity. Such architecture 
provides more individualized interactions and 
perception and is more in line with classical Alife 
digital ecosystem models [15], [16], and [23].  
Each agent is characterized by culture affinity: 3-
dimentional vector. Its coordinates can take 
possible integer values in [-2, 2] interval. Agents 
are treated as relatives if Euclidean distance 
between their culture affinity vectors are less than 
0.2 threshold. This vector is also inherited by 
offspring from his parent with some mutations. 
 

 
Fig. 1. Agent in the cellular environment and his 
perception. Agent is aware of resource objects in 
highlighted cells. The grid size is 25x25 cells. 

Agent occupies one grid cell in cellular space 
(Figure 1). He is driven by heading vector that 
defines a cell in front, where interaction may 
exist. Agent can perceive other agents in von 
Neuman neighborhood. For each neighbor cell is 
provided with 2 neural network inputs (see Table 
1), each of that corresponds to relative (whose 
culture vector similar enough in terms of 
Euclidian distance) or non-relative agent (except 
only one input for back cell that tracks non-
relative agent). Therefore, the agent can differ 
whether neighbor is relative or non-relative. r in 
Table 1 is the value of resources collected by the 
agent and rMax is the maximum energy that can 
be carried. The agent gains resources by 
consuming resources or other agents. 
Patches that grow at each iteration present the 
resource, the number of patches to grow is 
defined at startup and is fixed for all experiment. 
For the case of homogeneous resources 
distribution, resource appears in any cell with 
equal probability and the value of this resource is 
uniformly distributed in [0,500] interval. New 
resource is appended to the old one remaining in 
cell. We can track the average resource input 
count for each iteration (timer step) and the 
average value of resource distributed per cell. 
The artificial neural network with no hidden layer 
determines agent’s behavior in experiments 
described below. After birth each agent’s 
offspring inherits the matrix of neural network 
weights perturbed by some mutations. This 
matrix is treated as agent’s genotype that bears 
full control of agent’s behavior. Here we pose 
description of neural network inputs and values 
that they take regarding individual agent’s 
perception and his placement in the environment:  
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Table 1. Input signals for agent and values that they take. s is the input vector for the agent’s neural network. 
If the statement from the first column is true i.e. object is present in the particular cell, then appropriate 
coordinate of input vector s is evaluated with the value from the second column. 

Input signal Value 
s0 – bias rMax (5000) 
s1 – resource in current cell energy of resource placed in agent’s 

cell 
s2 – resource in front energy of resource placed in front 

cell 
s3 – resource in right cell energy of resource placed in right cell 
s4 – resource in left cell energy of resource placed in left cell 
s5 – non-relative agent in 
front 

rMax, if there is non-relative agent 
placed in front 

s6 – non-relative agent right rMax, it there is non-relative agent 
placed by right hand 

s7 – non-relative agent left rMax, it there is non-relative agent 
placed by left hand 

s8 – current resource value (r) current resource value (r) 
s9 – (rMax - r) (rMax - r) 
s10– non-relative agent back rMax, if there is an non-relative agent 

placed from the back 
s11– relative in front rMax, if in front cell placed relative 

agent 
s12 – relative right rMax, if relative agent is placed by 

the right hand 
s13 – relative left rMax, if relative agent is placed by 

the left hand 

 
Table 2. Actions and theirs fee or income values. If the output neuron reaches maximum excitation, the 
corresponding action is selected. The changes of agent’s energy level (∆r) are defined by fee\income vector 
k. 

Action ∆r – changes 
of energy 

Value of fee\income (ki) 

f1 – REST ∆r = -k1 5 
f2 – TURN_LEFT ∆r = -k2 10 
f3 – TURN_RIGHT ∆r = -k3 10 
f4 – EAT ∆r = k4 500 
f5 – MOVE_FORWARD ∆r = -k5 20 

f6 – DIVIDE 
∆r = -k6 

(20 +  r/2), in case of success (r – internal 
agent’s energy);  20, in case of failure 

f7 – ATTACK 
∆r = -k7 

30 and energy that belongs to victim, in  case 
of success; 30, in case of failure 

f8 – ESCAPE ∆r = -k8 25 

In reply to the input signals agent performs the 
following actions: ‘rest’, ‘turn’, ‘move’, ‘attack’, 
‘escape’, ‘divide’, he pays a fee for each of this 
actions (see Table 2). Maximum energy value 
that agent can accumulate is rMax and equals to 
5000. Probability to succeed in attack is equals to 
the ratio of victim’s and attacker’s accumulated 
energy. If agent is attacked he asks his neighbor 
relative agents from Moors neighborhood to help, 
he can add their energy, multiplied by a 
coefficient 0.1, to his own energy when defense 
probability is being counted. 

“Divide” action results with producing of an 
offspring to the environment. The offspring gains 
half of the parent’s energy and genotypic 
features: artificial neural network and culture 
vector. This traits are perturbed by mutations with 
probability rate 0.05 for each coordinate and 
value taken from uniform distribution in the 
interval [-30, 30] for the neural matrix and 
uniform distribution in the interval [-1, 1] for the 
culture vector. The offspring is placed in a 
random cell in Moors neighborhood. If all cells 
are already occupied then the offspring is not 
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created, despite this agent still pays the fee for the 
action, but not losses half of his energy to the 
offspring. 
Agent’s actions are classified into 4 categories: 
‘wander’ – ‘rest’, ‘turn’, ‘move’, ‘eat’ actions; 
‘escape’ – ‘escape’ action; ‘attack’ – ‘attack’ 
action, and ‘divide’ – ‘divide’ action. Then we 
consider the strategy vector that encodes most 
probable agent action in response on specific 
situations. Each coordinate of strategy vector 
takes values from classified categories and 
corresponds to some situation. The vector of 
agent strategies is generated using the 
methodology firstly presented in [10]: to show 
agent’s phenotype behavior, each agent was 
placed in hypothetical situation as if he interacts 
with other agent under various conditions, i. e. 
agent’s internal energy indicator and agent’s 
relative affinity.  After birth, each agent is 
examined with 6 situations, their enumeration can 
be seen in Table 3. This process does not affect 
the simulation itself and is done to display his 
phenotypic behavior. Particular environmental 
vector, that is neural network input, corresponds 
for each situation (see Table 1). For example, to 
emulate the situation when agent is low on 
resource and has a relative in front, the vector is 
evaluated with ‘0’ for all coordinates except 
rMax for s0 (standard bias), 0,98*rMax for s9 
(internal resource input), and rMax for s11 

(relative in front input). Thus, the agent is being 
successively stressed with six input test vectors 
and then the strategy vector is generated 
according to his reactions (Table 3).  The 
motivation behind resource division corresponds 
to the fact that actions seem to have different 
efficiency, regarding the rate of internal agent’s 
resource. Trivial example is that producing the 
offspring is rational action for average and 
maximum internal resource stock, but often is a 
suicide for low resource reserve. Each situation is 
encoded in the corresponding rank of strategy 
vector. For example, if the agent chooses the 
action “rest” when he is low on resource and a 
relative is behind, then the first coordinate of 
strategy vector will be evaluated with ‘0’. 
Strategy for vector ‘020202’ is the so-called crow 
strategy due to [9] (named corresponding to 
typical crow behavior of mobbing, so that crow 
would not harm other crow but intend to attack 
other members of other species). Regardless of 
internal agent energy level, he will attack any 
stranger in his area and make no harm to relatives.  
By referring to the notion of a posteriori fitness 
function the size of the agents’ group with 
common phenotype (behavior strategy) is treated 
as an a posteriori fitness function. Here we do not 
consider other a posteriori fitness functions than 
agent count, because agent count was explored 
from the strategy group formation point of view. 

Table 3. Each bottom row value corresponds to the coordinate of the vector of agent’s strategies a. ai can 
take values from the set of actions {0: ‘wander’; 1: ‘escape’; 2: ‘attack’; 3: ‘divide’}, i = 1,2,3,4. – in 
dependence of upper rows conditions: 

Low resource, r = 
0,02*rMax 

Half of resource, r = 
0,5*rMax 

Many resources, r = 
0,98*rMax 

relative in 
front 

non-
relative in 
front 

relative in 
front 

non-
relative in 
front 

relative in 
front 

non-
relative in 
front 

ai ai ai ai ai ai 

Each simulation run starts with 10 agents placed 
in the environment and equipped with 2000 
points of resource. Agents have artificial neural 
network that has small predefined weights . They 
reinforce by the action eat when resource is in 
front cell and reinforce by suppress move action 
when agent in in front cell (this action ends with 
except of losing resource). At first iteration, 1000 
of resource patches is randomly distributed in 
environment. 
The experiments described in the next section 
were performed with various resource income 
rates (amount of resource patches that appears on 
each iteration) parameter values and 
heterogeneous resource landscape to display 
aggressive and peaceful behavior in system. The 
following set of experiments were performed on 

heterogeneous resource landscape to demonstrate 
predator-prey cycle and competition of strategies. 
Both homogeneous and heterogeneous resource 
landscape cases (for different resource income 
rates) were taken for the next set of experiments 
to display resource landscape influence on the 
phenotypic i. e. strategy sustainability. 
 

3. AGGRESSIVE AND 
PEACEFUL BEHAVIOR 

Current model is a plausible background for 
studies aggressive and peaceful behavior in 
dependence on the number of input resources . 
Also the model displays different types of 
interaction between groups of related agents. The 
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simulation results for different resource input rate 
are represented in this section. 

 
Fig. 2. The graph of agent strategies time dependence in simulation with resource inputs 1,000 units. The 
x-axis corresponds to time and y-axis is the number of agents with given strategies. Curve marked with 
triangles correspond to the whole population count. Other curves display the number of agents that expose 
specific strategy. The legend displays the big number of strategies. 

The graph (Fig. 2) shows strategies curves. Each 
curve displays agents that in some time step share 
this strategy. If agents choose action to attack, the 
color range of their strategies shifted to black, 
otherwise representation shifts to gray. 
The run of Figure 2 corresponds to the low 
amount of input resource – 1000 units. We see the 
dominance of peaceful strategies, aimed mainly 
for a search and acquisition of the resource, 
during the significant amount of time. Remark, 
that the behavior of the population over time is 
divided into two conventional stages: peaceful 
phase (first 7.4 million iterations), and aggressive 
(after 7.4 million iteration). 
In case of low amount of resources one of the 
most effective strategies is peaceful strategy. 
Agents either do not distinguish between relative 
and non-relative agents and prefer to stay at rest 
(for example, the strategy 000000), either run 
away from the relatives in order to avoid 
competition for the resources (e. g. strategy 
000010), either escape the strangers feeling 
threatened, and other variations of these 
strategies.  
Number of cooperative strategies for this 
resource mode slightly surpass number of non-
cooperative strategies, those who do not take 

culture affinity differences into account. Under 
the cooperative notion should be considered 
strategies that allows to distinguish relative and 
non-relative agent using culture affinity and 
adjust agent behavior to benefit from this. For 
example, when agents leave area filled with 
relatives, they reduce competition for local 
resources, or when agents attack only non-
relative agents and ignore relatives. 
Peaceful strategies domination occurs at this type 
of resource income. But this long-term pattern of 
peaceful strategies domination, as in Figure 2, is 
rather the exception to as the regime. Such 
simulation conditions are commonly not able to 
provide a peaceful strategy that survives after the 
first manifestations of aggressive behavior. So 
the peaceful phases change suddenly to much 
more volatile aggressive strategies. 
For smaller amounts of resources peaceful 
strategies playing an important role. With an 
increasing of volume of resources, almost all 
strategies show aggression. Peaceful strategies 
can no longer exist for significant periods of time 
as in the previous cases. Almost all strategies 
exhibit aggressive behavior and are very volatile. 
Calculations display population dynamics with 
permanent aggressive behavior mentioned in the 
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case of a small number of resources. It should be 
noted that the vast majority of strategies 
considers the relativeness factor for at least one 
resource value condition in strategy vector (e. g. 
022222 strategy agent would not attack relative 
agent if he himself has low internal resource 
value and will attack any agent when his resource 
value increase). 
Increased value of environment population 
capacity as in the time interval of 600 thousand - 

800 thousand iterations (Figure 3) usually had 
been caused by domination of fully cooperative 
strategies. These strategies distinguish relatives 
in all cases of the resource value in the strategy 
vector: 020202 (a strategy known as "crow" in 
[8]), 020213 ("escape" from relatives to reduce 
competition for resources), 020203 (action 
"divide" to secure the neighborhood). 

 
Fig. 3. Strategy for a population in case of middle value number of resources. 

For a large number of resource inputs agents have 
the ability to completely fill the grid space and 
competition between strategies becomes 
sluggish. Thus with a large volume of resources 

all cells are filled with aggressive and peaceful 
agents and peace strategies are stable and rarely 
changing each other (Fig. 4). 

 
Fig. 4. Agents’ strategies for a large number of the resource. 

Consider now the generalized dependency of 
aggressive and peaceful behavior on income 
resources rate. It is depicted in Figure 5. 
Frequency of strategies corresponds to y-axis and 
displays the average rate of agents that expose 
strategies of peaceful or aggressive type for one 
simulation run. The strategy is treated as 
aggressive if it has at least one ‘attack’ action in 
its encoding. On the other hand peaceful strategy 
displays no ‘attack’ actions. Three different 
behaviors can be noted at the plot. First behavior 
corresponds to income resource rate 1000 and 
remarkable by the relative low share of 
aggressive actions. This can take place due to low 

resource that can be gained by praying behavior. 
Second behavior corresponds to income rate of 
resources above 1250 and below 3000: the 
aggression is predominant in the share of all 
actions. The decrease of aggressive behavior on 
third interval above 3000 is caused by high 
resource income rate that is sufficient for one 
agent to survive in one cell (the mean resource 
per agent 3500/625=5.6 that is bigger than the fee 
for ‘rest’ action, see table 2). The aggressive 
competition for the resource is suppressed under 
such conditions. It should be noted that in spite of 
some differences the dynamic of aggressive 
behavior is similar for Burtsev’s model. 
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Fig. 5. The dependency of peaceful and aggressive behavior from input resources. The x-axis displays 
income resource count and y-axis corresponds to the frequency of strategies presented in population. 
Triangles and circles show experimental values and continuous curves display smoothing of experimental 
data. 

 
4. HETEROGENEOUS 

RESOURCE SPACE 
The next step in the study of the behavior of the 
model was to investigate the strategy dynamics in 
the case of the heterogeneous resources 
landscape. An example of environment landscape 
map is presented in Figure 6. One can see that the 
resource availability landscape resembles a 
physical map: lowlands portrayed with lighter 
color range (gray) and top – darker (black). The 
map had been generated by uniform distribution 
of 20 smoothed peaks, so that the mean value for 
altitude for all cells is 0.4. In the lowlands, the 
probability for resource to appear is higher than 
on the high ground. Firstly, random cell is 
chosed, and the probability for resource to grow 
in this cell is inversely proportional to its altitude 
value. (If resource is failed to appear the next try 
ettempt with another cell is performed). Though 
the amount of income resource is not changed, its 
distribution is changed. 

 
 
 
 
 
 
 
 
 

 
 

 
Fig. 6. Map of inhomogeneous medium and 
agents are on it. 

In this paper, among the whole set of computer 
experiments were shown few that deserve the 
most attention. They illustrate the new modes of 
interaction between agents that adhere to 
cooperative behavior. Experiments with 
heterogeneous space show the modes with 
competition between strategies. These regimes 
have been already presented in the case of 
discrete homogeneous space (which could be 
easy visible in case of a large number of 
resources). But due to the high variability for 
small and medium resource values and by 
computational difficulties such resource case 
could not be adequately represented in graphs. In 
the case of inhomogeneous resource space, 
agents’ phenotypic assemblies were separated 
from one another by high grounds, and their 
interaction was limited. This resulted in reducing 
the variability of strategies and modes in long-
term strategy competition. 
In computer experiments most strategies engaged 
in competition were mostly cooperative. We 
assume as antagonistic the peaceful (absence of 
the "attack" strategies in the vector) and 
aggressive (if there is at least one action "attack" 
strategies in the vector) strategy. It was found the 
competition between both antagonistic and 
between similar behavior strategies. 
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Fig. 7. Strategies chart for simulation in heterogeneous space with competition of strategies. 

Figure 7 shows the behavior of the population for 
the value of input resource 2000 units per time 
step (clock). The behavior of the population is 
conventionally divided into two stages: a steady, 
if only dominated by a few strategies and period 

with a high value of vicissitudes and aggression 
for strategies. We show in Figure 8 more details 
of in the first phase. It displays competitive 
interaction strategies that alter one another. 
Consider a closer interval 1.8 - 5 million. 

 
Fig. 8. Details of behavior in interval 1.8 - 5 million iterations from Figure 8. The x-axis corresponds to 
time steps and y-axis c to the number of agents with different strategies. Peaceful strategies are displayed 
by grey and aggressive by black. 

In Figure 8 we can see the peaks of peaceful 
population strategy (000000) peaks of population 
change agents who use aggression against non-
relative agents (those agents that have different 

culture affinity vector ) and have the neutral 
attitude to the related agents (020202, 020200). 
This behavior resembles the model of predator-
prey in population dynamics.  

 
Fig. 9. The x-axis corresponds to iterations and y-axis is energy gain. The black curve displays all energy 
that agents obtained by performing ‘attack’ action in the case of Figure 8.  

If we consider the outbreak of successful 
aggressive behavior (Figure 9), they occur at 
points around the largest drop in peaceful 
strategies: 2500-2600, 3500-3900. However, the 
pattern of murders reveals that a significant role 
during the transition of the dominance of one 
strategy over the other played the genetic switch, 
as also was mentioned by Epstein J. M. and Axtel 

R. in Sugarspace model [12]. Also, the similar 
complementary behavior of phenotypic 
assemblies appeared in research with Echo model 
[14]. Thus, the aim of further studies may be 
setting the real impact of each of these factors 
(genotypic switch or combat) on forming such 
behavior. 
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We had considered also the case of partial 
competitive strategies, the interaction between 
the strategies, which have similar behavior. One 

of the result of computer experiment is displayed 
below (Fig. 10). 

 
Fig. 10. The interaction between 020202 and 020212 strategies for modeling in heterogeneous space with 
the number of inputs resource 2334 units. 

In this simulation (Figure 10) it can be seen as 
different locations of related agents (carriers of 
‘020202’ and ‘020212’ strategies) on both sides 
of the landscape compete with each other. In this 
case, the competitors the ‘ravens’ (‘020202’ 
strategy) could just make another similar strategy 
that follows the same behavior but with the 
amendment "the best defense is a good offense". 
Consider their vector of strategy ‘020212’: value 
‘1’ in 5th place in vector means that agents are 
running away from relatives when their resource 
is maxed – after accumulating a large number of 
resources with this strategy agents are moving 
towards the local formation of non-relatives, 
which can cause combat. These strategies have 
more antagonistic than complementary 
interaction. The main question that arises 
considering such cases of phenotypic transition is 
whether they occurs though combat or by 
peaceful genotype transition. 
 

5. SUSTAINABILITY OF THE 
STRATEGIES 

Considering strategies dynamic from the 
previous chapters It can be noted that strategies 
dynamics from previous section are too volatile – 
luck sustainability. By encouraging agents’ 

phenotypic assemblies localization in space 
through heterogeneous resource landscape we 
suppress strategies volatility. It can be useful in 
the search of evolutionarily stable strategy - the 
strategy that cannot be invaded by any other 
strategy presented in arbitrarily small amounts 
[4]. Let us consider a characteristic of the 
strategies variability that is the frequency of 
existence of strategies over time. In the previous 
sections, we looked at the frequency charts of 
peaceful and aggressive strategies. Obviously, 
the larger frequency value corresponds to the 
greater time when strategy is presented in 
population over time. Usually we had calculated 
the mean strategy frequency value. Strategy 
correlates with the phenotype of the species, for 
it reflects genetically encoded behavior. Such 
feature could be treated as abundance of species 
characteristic, because the decreasing of 
frequency follows to the grows of the rate of 
species abundance. 
Let wi be the relative frequency of the i-th 
strategy throughout the experiment: the ratio of 
the number of time steps when the strategy is 
presented in population to the total number of 
time steps. Let us consider the average of the 
duration of the strategies in the experiment:                         
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Here in the Table 4 we represent the mean 
strategies frequencies in computer experiments 
with different values of the resource inputs: 
 

 

 

Table 4. Values of average strategy frequencies (K) for different values of resource inputs and types of 
terrain. The table presents the average values for 4-5 experiments lasting 2-3 million cycles. 

Terrain Small value of 
input resource 
(1000-1500) 

Average value of 
input resource 
(1750-2450) 

Large value of 
input resource 
(3000-3500) 

Homogeneous 0.0061 0.023 0.3 

Heterogeneous 0.0074 0.08 0.38 

It can be seen from Table 4 that strategies 
volatility decreased with increasing resource 
input. Frequency values for heterogeneous 
landscape are greater than for homogeneous in all 
cases and much greater for average value 
resource input. Such results align to the 
knowledge that environmental variation play an 
integral role in limiting species’ abundance [16]. 
It should be noted that strategy does not exhibit 
evolutionary stability as it is familiar for Game 
Theory models [19]: a strategy that cannot be 
invaded by any other strategy present in 
arbitrarily small amounts.  
The alternative classification of agent assemblies 
in research of population divergence [6] claims 
that agent population assembly belong to the 
space of stable instability if under the same 
conditions different experiments can give 
different population structure and it is not 
inevitable this assembly will be presented in 
population. All (phenotypic) groups of agents in 
the given model experiments belong to the space 
of stable instability because of great variability 
and instability of strategies. These populations 
are called unstable. In contrast, it is defined 
"waist" population, the one that constricts to a 
single assembly [6]. In model considered in this 
study ‘waist’ behavior can be exposed by 
cooperative peaceful or cooperative aggressive 
phenotypic assemblies in a large number of 
resources. In this case the cooperative behavior 
that appeared first is fixed further for entire 
population. However, tracing strategies evolution 
is a complicated task due many reasons such as 
complex model architecture, and computational 
performance restrictions. 
 

6. DISCUSSIONS 
In this study, we considered phenotypic 
assemblies (grouping agents by strategies), their 
shared behavior and its sustainability under 
different resource environmental conditions: 

resource income rate and resource landscape 
distribution. One of the goals of investigations 
was to increase phenotypic assemblis 
sustainability during time. 
The given model architecture is connected mainly 
to Burtsev’s cellular automata approach [9], but 
bears significant differences which provide more 
individualized interactions and make the model 
more closer to classical Alife digital ecosystem 
models [15], [16], and [23]. We have illustrated 
how aggressive and peaceful behavior is 
dependent from the volume of input resources. 
Such behavior correlates with resulting behavior 
in model [9]. This allows to speak about 
continuation of the model development without 
losing its emergent features. The goal of new 
experiments with was to make strategies less 
volatile. And the simulation results for 
heterogeneous cellular space showed decreasing 
variability of strategies in such case and provided 
an opportunity to illustrate the emergence and 
development of strategies competition.  
In experiments with heterogeneous space, we 
have identified modes of competitive agents’ 
interaction with the complementary and similar 
behavior. So, paradoxically more diversity of 
conditions follows to the unification of behavior. 
Other very interesting conclusion (or 
confirmation of intuition) is that the aggressive 
behavior is more intrinsic for the lack of 
resources. The illustrated strategy competitions 
cases state the question about the nature of 
phenotypic transition between strategies having 
both complementary (predator-prey) and 
antagonistic (predator-predator) interactions. It is 
needed to clarify whether the transition occurs 
though combat or by peaceful genotype 
transition. The enhancements on model 
architecture and analysis could shed light on this 
question. In spite of powerful and demonstrative 
strategy analysis methodology, the given model 
demands precise tracking of agents culture 
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grouping and genotype dynamic. Culture group 
members can have various phenotypic (strategy) 
features. The emphasize on combat actions 
between agents should be done. 
Agent’s neural architecture is the very important 
factor for such kind of Artificial Life models. A 
simple artificial neural network with no hidden 
layer can achieve the scope of predator-prey 
behavior considered in this study as it is 
implemented in the model. More complex 
behavior such as group hunting and wandering 
could be simulated using more sophisticated 
methods of neuroevolution such as, for example, 
NEAT (neuroevolution of augmented topologies) 
[10]. Authors of the work [10] use the NEAT 
algorithm to investigate the evolution of effective 
predator group or group of collective foragers. 
The crucial advantage of NEAT for multiagent 
modeling is natural origin of agents’ grouping by 
genotype affinity. This could provide useful 
insights on agent behavior emergence. Alife 
models could benefit from NEAT usage by 
inheriting its methodology of tracking genes 
evolution through historical markings. It is 
effective and sophisticated resolution of the 
speciation tracking problem. 
As the possible development of given model and 
of other models of artificial life, we can posed the 
following problems: overcoming the great 
computational complexity of the experiments; 
improving accounting of interaction between the 
agent and the environment; replacing the discrete 
space type on continuous; introduction the new 
types of interaction between agents and building 
new computer tools for analysis of populations. 
Software enhancement of models with high 
computation performance would give the 
possibility to observe long-term trends that 
provide valuable efforts for understanding of 
such type models. Remark that application cross-
over to high-performance computation 
environment is pending task for many Artificial 
Life models [9], [15]. 
The important issue is introduction and usage of 
novel analysis method for agent-based complex 
adaptive systems. For example, Burtsev proposed 
a promising methodology that considers evolving 
agents’ population as a dynamic system in [8]. 
The open question is the study of the competition 
of groups and establishing the intensity of the 

impact of various factors, such as aggression and 
phenotype transition strategies, on the success in 
the competition. And some final remark. Here at 
given paper we formally speak in digital ecology 
terms. But it is possible to extend the models to 
other fields. One of them is investigation of real 
society by artificial society models. Other recent 
applications are the searching principles for 
arranging evolving teams of robots. 
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