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Abstract: -This paper compares three control strategies to stabilize a two-wheeled inverted pendulum (TWIP). 

The study of TWIP or balancing robot has been extensive because of its unstable and multivariable nature with 

highly non-linear dynamics. The mathematical model was derived using Lagrangian approach and was linearized 

around the equilibrium point where was considered that the pitch angle tends to zero. The study used a classic 

PID control, a Linear-Quadratic Regulator (LQR) and a Slide Mode Control (SMC). The SMC part of state-space 

representation of the system and the slide surface was designed from the poles obtained from LQR, therefore 

design an Optimal SMC. All the close-loop controllers are in discrete-time; therefore, they were implemented in 

a digital way. The results were obtained by simulation using Matlab. The stabilization results were compared in 

terms of disturbances rejection capability and the integral square error (ISE) is used to measure their performance.
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1 Introduction 
In the early 60s, several laboratories of prestigious 

universities [1] guided and made experiments which 

showed a rod mounted on a carriage, if the rod is 

placed in an upright position manually, it could 

maintain its position autonomously by the action of 

the vehicle displacement on which it is stood. This 

mechanism would represent an unstable open loop 

system with nonlinear dynamics which can be 

interpreted by differential equations; therefore, 

inverted pendulum control to maintain its vertical 

position independently became a classic problem of 

nonlinear control. [2] [3] 

This platform has been a great help in research to 

test the effectiveness of different control techniques 

on a nonlinear system with unstable dynamic. 

Additionally, it presents feature of an underactuated 

system difficult to apply conventional approaches to 

robotics [4]. 

Several works have studied different control 

strategies that have been applied to this kind of 

systems. In [4], a dynamic model was derived using 

a Newtonian approach and presented a comparison of 

LQR and PID-PID input in terms of tracking and 

disturbances. 

In [5], a dynamic model was derived using a 

Newtonian approach and two decoupled state-space 

controllers around an operating point to design a 

system control. In [6] sliding mode control for robust 

velocity eliminating the steady velocity tracking error 

is designed. In [7], a dynamic model was derived 

using Lagrangian approach, two-level velocity 

controllers via partial feedback linearization and 

stabilizing position were designed.  

This paper compares three control strategies to 

stabilize a two-wheeled inverted pendulum (TWIP). 

As it was mentioned, the study of TWIP or balancing 

robot has been extensive because of its unstable 

nature with highly non-linear dynamics. The paper 

begins with an introduction, the second section 

provides an explanation of the model under study, in 

the third section basic concepts of control strategies 

employed are described and the design of PID, LQR 

and SMC are developed, the fourth section presents 

the simulation results with a performance analysis 

based on ISE criterion for each control technique, and 

finally the conclusions are presented. 

 

2 Description of the Two Wheeled 

Inverted Pendulum 
 

By rotating the wheels in an appropriate direction 

TWIP balance is stable. For stabilization the control 

actions are carried out in micro-electromechanical 

with a sampling frequency of 100 Hz. The signals 

required are obtained from a sensor gyroscope who 

measures angular velocity and angular position by 

estimating of the pendulum in the vertical plane. The 

J. Villacres et al.
International Journal of Control Systems and Robotics 

http://www.iaras.org/iaras/journals/ijcsr

ISSN: 2367-8917 29 Volume 1, 2016



measure of the angle rotation of each wheel is 

obtained by encoders localized at each wheel in the 

robot body. The motors DC are controlled by a signal 

Pulse Width Modulated (PWM). [15] 

The system receives as inputs the voltages of each 

spare tire (𝑢𝑙 and 𝑢𝑑) and its outputs are the body 

pitch angle 𝜓 [rad], the average angular position of 

the wheels 𝜃 [rad] and their velocities 𝜓̇ [rad/s], 𝜃̇ 

[rad/s], in Fig.1 is shown. 

 
Fig. 1 Input/output Scheme of TWIP 

 

In Fig. 2 the variables of the system are shown. 

 

𝜓: Body pitch angle.  

𝜃: Average angular position (right and left). 

𝜙: Body yaw angle. 

 

 

 
 

Fig. 2 System Views: Frontal, lateral and top 

 

2.1 Model of Two-Wheeled Inverted 

Pendulum 

The system’s model is taken from [9], TWIP is 

described with nonlinear differential equations 

obtained by Lagrange method, and the model is 

linearized around an equilibrium point where the 

body pitch angle tends to zero. 

The model is represented in space state: 

𝑥̇1 = 𝐴1𝑥1 + 𝐵1𝑢                       (1) 

Where: 

𝑥1 =

[
 
 
 
𝜃
𝜓

𝜃̇
𝜓̇]

 
 
 
                               (2) 

𝑢 = [
𝑢𝑙

𝑢𝑟
]                              (3) 

𝐴1 = [

0 0
0 0

1 0
0 1

0 𝑎32

0 𝑎42

𝑎33 𝑎34

𝑎43 𝑎44

]                   (4) 

𝐵1 = [

0 0
0 0

𝑏3 𝑏3

𝑏4 𝑏4

]                           (5) 

Where: 

 

𝑎32 = −𝑔𝑀𝐿𝑒12/det (𝐸)                                       (6) 

𝑎42 = 𝑔𝑀𝐿𝑒11/det (𝐸)                                         (7) 

𝑎33 = −2(𝜎𝑒22 + 𝛽𝑒12)/det (𝐸)                          (8) 

𝑎43 = 2(𝜎𝑒12 + 𝛽𝑒11)/det (𝐸)                              (9) 

𝑎34 = 2𝛽(𝑒22 + 𝑒12)/det (𝐸)                              (10) 

𝑎44 = −2𝛽(𝑒11 + 𝑒12)/det (𝐸)                          (11) 

𝑏3 = 𝛼(𝑒22 + 𝑒12)/det (𝐸)                                 (12) 

𝑏4 = −𝛼(𝑒11 + 𝑒12)/det (𝐸)                              (13) 

𝑒11 = (2𝑚 + 𝑀)𝑅2 + 2𝐽𝑤 + 2𝑛2𝐽𝑚                   (14) 

𝑒12 = 𝑀𝐿𝑅 − 2𝑛2𝐽𝑚                                            (15) 

𝑒22 = 𝑀𝐿2 + 𝐽𝜓 + 2𝑛2𝐽𝑚                                    (16) 

det(𝐸) = 𝑒11𝑒22 − 𝑒12
2                                          (17) 

𝛼 = 𝑛𝐾𝑡/𝑅𝑚                                                         (18) 

𝛽 = 𝑛𝐾𝑡𝐾𝑏/𝑅𝑚 + 𝑓𝑚                                           (19) 

𝜎 = 𝛽 + 𝑓𝑤                                                           (20) 

The parameter values are described in Table 1; they 

were taken from [10]. 

Table 1. Parameter of TWIP  

Parameter Unit Description 

𝑔 = 9.8 
[𝑚
/𝑠𝑒𝑐2] 

Gravity acceleration 

𝑚 = 0.03 [𝑘𝑔] Wheel mass 

𝑅 = 0.021 [𝑚] Wheel radius 

𝐽𝑤
= 𝑚𝑅2/2 

[𝑘𝑔𝑚2] Wheel inertia moment 

𝑀 = 0.6 [𝑘𝑔] Body mass 

𝑊 = 0.09 [𝑚] Body width 

𝐷 = 0.05 [𝑚] Body depth 

𝐻 = 0.26 [𝑚] Body height 

𝐿 = 𝐻/2 [𝑚] 
Distance of the center 

of the mass from the 

Wheel axle 

𝐽𝜓
= 𝑀𝐿2/3 

[𝑘𝑔𝑚2] 
Body pitch inertia 

moment 

𝐽𝜙 = 𝑀(𝑊2 

+𝐷2)/12 
[𝑘𝑔𝑚2] 

Body yaw inertia 

moment 

𝐽𝑚
= 1𝑥10−5 

[𝑘𝑔𝑚2] 
DC motor inertia 

moment 
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𝑅𝑚 = 6.69 [Ω] DC motor resistance 

𝐾𝑏 = 0.468 
[V sec
/rad] 

DC motor back e.m.f 

constant 

𝐾𝑡 = 0.317 [Nm/A] 
DC motor torque 

constant 

𝑛 = 1 Gear ratio 

𝑓𝑚
= 0.0022 

Friction coefficient between body 

and DC motor 

𝑓𝑤 = 0 
Friction coefficient between body 

and motion surface 

 

Replacing the parameter values of Table1 in the 

equation from (4) to (20). The following matrices 

are obtained: 

𝐴1(𝑡) = [

0          0          1
0          0          0

0
1

         0 −698.30 −416.80
         0 139.96 53.41

416.80
−53.41

] 

(21) 

𝐵1(𝑡) = [
 
0            0
0            0

  405.11   405.11
−51.91 −51.91

] 

(22) 

In order to design the discrete controllers, the 

continuous-time system is converted into a discrete-

time system, with the next equations: [3] 

 

𝐴𝑑 = 𝑒𝐴𝑐𝑇𝑜                        (23) 

 

𝐵𝑑 = 𝐴𝑐
−1(𝐴𝑑 − 𝐼)𝐵𝑐               (24) 

Where: 

 

𝐴𝑐: Continuous-time State matrix 

𝐵𝑐: Continuous-time Input matrix 

𝐴𝑑: Discrete-time State matrix 

𝐵𝑑: Discrete -time Input matrix 

𝑇0: Sampling time 

 

Replacing equations (21) and (22) into equations 

(23) and (24), with 𝑇0 = 10 ms, the following 

matrices are found: 

 

𝐴[𝑘] = [

1 −0.010 0.003
0 1.004 0.0009

0.007
0.0091

0 −1.122 0.1207
0 0.649 0.1129

0.8690
0.8910

] 

(25) 

 

𝐵[𝑘] = [

0.0068 0.0068
−0.0009 −0.0009
0.8546 0.8546

−0.1097 −0.1097

] 

(26) 

The open-loop poles for the discrete-time system 

are: 

𝑝1 = 1                             (27) 

𝑝2 = 0.0091                         (28) 

𝑝3 = 1.0703                         (29) 

𝑝4 = 0.9362                         (30) 

 

In equation (27) the pole is on the unit circle while 

in (29) the pole is outside the unit circle, which 

evidences the instability of the system in open-loop. 

3 Controllers 
 

In this section, three strategies of control are 

developed. The controllers are used to stabilize the 

Two-Wheeled Inverted Pendulum. The controllers 

developed and later compared are: A classic PID 

controller, an optimal LQR regulator and a Slide 

Mode Controller.   

 

3.1 PID 

The continuous PID (31) must be discretized. For the 

integral component the trapezoidal integration and 

for the derivative component the forward integration 

are used, the equation is given as (32). [11] 

𝐺𝑐 = 𝐾𝑃 + 𝐾𝐷𝑠 +
𝐾𝐼

𝑠
                  (31) 

𝑈(𝑧)

𝐸(𝑧)
= 𝑘𝑝 + 𝑘𝑖 (

𝑇0

2

𝑧 + 1

𝑧 − 1
) + 𝐾𝑑 (

1

𝑇0

𝑧 − 1

𝑧
) 

(32) 

Applying the inverse Z transform (33) into (32), (34) 

is obtained. 

𝑧−𝑛𝐹(𝑧) = 𝐹(𝑘 − 𝑛)                     (33) 

𝑢(𝑘) = 𝑢(𝑘 − 1) + 𝐸(𝑘) (𝐾𝑃 +
𝐾𝐼𝑇0

2
+

𝐾𝐷

𝑇0
) +

𝐸(𝑘 − 1) (−𝐾𝑃 +
𝐾𝐼𝑇0

2
−

2𝐾𝐷

𝑇0
) + 𝐸(𝑘 − 2) (

𝐾𝐷

𝑇0
)  

(34) 

And: 

𝐸(𝑘) = 𝑥𝑟𝑒𝑓(𝑘) − 𝑥(𝑘)                  (35) 

Where: 

𝑥𝑟𝑒𝑓: It represents the desired states, in this case to 

stabilize the TWIP the 𝑥𝑟𝑒𝑓 = 0. 

𝑥: It represents the value of the system outputs. 

Two PID controllers are designed. The first PID 

controller designed is the one who controls the body 

pitch angle. The second PID controller designed is 
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the one which controls the angular position of the 

wheels. 

The parameters of the PID controllers are 

obtained by trial and error. The tuned parameters are 

given as in table 2. 

Table 2. PID parameters 

 KP KI KD 

𝜓 -77.97 -0.01 -8.79 

𝜃 -1.07 -0.01 -1.36 

 

3.2 LQR 

The Linear Quadratic Regulator is a state feedback 

control which is useful to handle multivariable 

systems. 

It is assumed that the system is given by the following 

equation: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)             (36) 

 

The input for the system will be: 

𝑢(𝑘) = −𝐾𝑥(𝑘)                      (37) 

 

Where K is the gain matrix. The matrix 𝐾 has to bring 

the system into a final state 𝑥(𝑘1) = 0 from an initial 

state 𝑥(𝑘0). 

To determine the matrix 𝐾, the performance index 

should be minimized. 

𝐽 = ∑ 𝑥𝑇(𝑘 + 1)𝑄𝑥(𝑘 + 1) + 𝑢𝑇(𝑘)𝑅𝑢(𝑘)

𝑘1−1

𝑘=𝑘0

 

(38) 

Where: 

𝑄 ∈ ℝ𝑛𝑥𝑛: It is a symmetric matrix, at least positive 

semidefinite. 

𝑅 ∈ ℝ𝑚𝑥𝑚: It is a symmetric matrix positive 

semidefinite. 

Replacing (37) into (36): 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) − 𝐵𝐾𝑥(𝑘) = (𝐴 − 𝐵𝐾)𝑥(𝑘) 

(39) 

 

In order to solve the equation (38), the Optimality 

Principle [10] is used: 

𝐾(𝑖) = [𝑅 + 𝐵𝑇𝑃(𝑖 + 1)𝐵)−1𝐵𝑇𝑃(𝑖 + 1)𝐴 
(40) 

 

𝑃(𝑖) = 𝑄 + 𝐾𝑇(𝑖)𝑅𝐾(𝑖) + [𝐴 − 𝐵𝐾(𝑖)𝑇𝑃(𝑖 + 1)[𝐴
− 𝐵𝐾(𝑖)] 

(41) 

 

The iterative calculation begins with 𝑃(𝑁) = 𝑄 y 

𝐾(𝑁) = 0 from 𝑢(𝑁 − 1) until 𝑢(0). 
This iterative sequence converges when 𝑁 → ∞ 

The objective is to verify the convergence of the 

matrix 𝐾. 

‖𝐾𝑁 − 𝐾𝑁−1‖ <
𝛾

‖𝐾𝑁‖
                 (42) 

Where:  

𝛾: It is a parameter which allows calibrate the 

convergence condition. 

 

The matrices 𝑄 and 𝑅 selected are: 

 

𝑄 = [

0.38 0
0 0.43

0      0
0      0

0      0
0      0

0.09 0
0 0.09

]           (43) 

 

𝑅 = [
0.00017 0

0 0.00017
]                (44) 

The matrix 𝐾 obtained is: 

 

𝐾 = [
−1.099 −81.44 −1.368 −10.860
−1.099 −81.44 −1.368 −10.860

] 

(45) 

3.3 Slide Mode Control (SMC) 

It is assumed that the system is given by the following 

equation: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)             (46) 

It is supposed that the pair (𝐴, 𝐵) is controllable, 

therefore, there is a non-singular matrix 𝑇 ∈ ℝ𝑛𝑥𝑛  
which makes the system in its controllable canonical 

form. [12-13] 

𝑥̅(𝑘 + 1) = 𝐴̅𝑥̅(𝑘) + 𝐵̅𝑢(𝑘)            (47) 

Where: 

𝐴̅ = 𝑇1
−1𝐴𝑇1                        (48) 

𝐵̅ = 𝑇−1𝐵                            (49) 

It is defined a linear function, called sliding surface: 

𝑠(𝑥(𝑘)) = 𝑆𝑥(𝑘) = 𝑆̅𝑥̅(𝑘)           𝑆̅ ∈ ℝ1𝑥𝑛         (50) 

Where: 𝑆̅ = 𝑆𝑇1                                                    (51) 
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𝑆̅ = [𝑠̅1 𝑠̅2 … 𝑠̅𝑛−1 1]            (52) 

Thus, the design of the sliding mode for the reduced 

order system defined by (53) is stable. [12-13] 

𝑠(𝑥(𝑘)) = 𝑆̅𝑥̅(𝑘) = 0                        (53) 

𝑆𝑥̅(𝑘) = 𝑠̅1𝑦 + 𝑠̅2𝑦
𝑘 + ⋯+ 𝑠̅𝑛−1𝑦

𝑘(𝑛−2) + 𝑦𝑘(𝑛−1)

= 0 
(54) 

The equivalent control must guarantee that: 

𝑆𝑥(𝑘 + 1) = 0                         (55) 

𝑆𝑥(𝑘 + 1) = 𝑆 (𝐴𝑥(𝑘) + 𝐵𝑢𝑒𝑞(𝑘)) = 0                         

(56) 

So, 

𝑢𝑒𝑞(𝑘) = −(𝑆𝐵)−1𝑆𝐴𝑥(𝑘)            (57) 

 

The control law (58) has two components, a 

continuous one 𝑢𝑒𝑞(𝑘) and a discontinuous one 𝑣.  

𝑢(𝑘) = 𝑢𝑒𝑞(𝑘) + 𝑣                  (58) 

In order to achieve steady state equal to zero: [12] 

𝑣 = {

𝑐𝑡𝑒, 𝑠(𝑥) < 0
0, 𝑠(𝑥) = 0

−𝑐𝑡𝑒, 𝑠(𝑥) > 0
 

(59) 

 

To design the slide surface, the new poles (60), (61) 

obtained from feedback the matrix 𝐾 (45) are: [13] 

𝑝1,2 = 0.9318 ± 0.0042𝑖           (60) 

𝑝3 = 0.9797                      (61) 

With these poles, the slide surface obtained is given 

by: 

𝑠(𝑥(𝑘))
= [−1.924 −147.918 −1.669 −21.065] 

(62) 

And the equivalent control law is: 

𝑢𝑒𝑞(𝑘) = [1.924 160.270 2.717 21.581] 
(63) 

To reduce the chattering produced by high frequency 

switching, a filter for chattering reduction is used 

[14], the filter is shown in fig.3 described by (64) 

 

 
Fig. 3 Filter for chattering reduction 

𝑣 = {

𝑐𝑡𝑒, 𝑠(𝑥(𝑘)) < 𝐿

−
𝑠

𝐿
, |𝑠(𝑥(𝑘))| ≤ 𝐿

−𝑐𝑡𝑒, 𝑠(𝑥(𝑘)) > 𝐿

  (64) 

 

4 Simulation Results 
 

In this section, the performance of the three 

controllers is compared. The simulations are 

performed by using Simulink-Matlab. 

    The simulation scheme is similar for the 

controllers, as shown in fig. 4, where a sampler and 

zero-order holder are used in order to simulate a 

discrete-time system. 

 

B
1
s C

A

CONTROL

Saturation

+
+

Sampler

Zero-Order Holder

 
Fig. 4 Linear System and Control scheme 

 

As it had been indicated the states of TWIP 

are 𝑥 = [𝜃 𝜓 𝜃̇ 𝜓̇]𝑇. The main purpose of the 

control is to keep the TWIP in a vertical position. 

 

4.1 Simulations with initial conditions and 

without any disturbance 

 
Assuming that the initial states are: 

𝑥𝑜 = [0 0.1 0 0]𝑇 
           (65) 

The next figures show the responses, when each 

controller is used. 
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Fig. 5 TWIP, angular wheel position response  

 

Fig. 6 TWIP, body pitch angle response 

 

Fig. 7 TWIP, angular wheel speed response  

According with the fig. 6, the SMC presents a smooth 

response to stabilize the body pitch angle. The three 

controllers have similar settling time as shown in fig. 

5. To stabilize the body pitch angle the SMC has the 

lowest value of ISE, but to get steady state of the 

angular wheel position, the PID has the lowest value 

of ISE as shown in table 3. 

 

Fig. 8 TWIP, body pitch angle speed response 

 

Fig. 9 TWIP, input system 𝑢 

In fig. 9, it is shown that LQR uses less energy, at the 

start than the others. 

 

Fig. 10 TWIP, Phase Portrait body pitch angle 

 

Table 3. ISE Comparison of three controllers without 

disturbance 

 

 PID LQR SMC 

 ISE ∗ 10−3 

𝜓 0.271 0.393 0.247 

𝜃 526.6 810 660.9 
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4.2 Simulations with initial conditions and 

disturbance on the body pitch angle 
 

Once the TWIP is stabilized, an external force is 

applied to the body pitch angle, in order to test the 

response to disturbances. 

 

Assuming that the initial states are:  

𝑥𝑜 = [0 0.1 0 0]𝑇  (66) 

The next figures show the responses, when each 

controller is used. 

 
Fig. 11 TWIP, angular wheel position response  

 

 
 

Fig. 12 TWIP, body pitch angle response with an 

external force applied. 

 

In fig. 12 the SMC response is faster than LQR and it 

has a smaller overshoot than PID, when the 

controllers are tested with a disturbance. 

 

In figures from 5 to 12, there is no chattering present, 

because of the filter. 

 

 

Table 4. ISE Comparison of three controllers with 

disturbance 

 PID LQR SMC 

ISE ∗ 10−3 

𝜓 0.666 0.622 0.572 

𝜃 653.2 947.9 768.2 

5 Conclusion 

The three controllers were developed and compared 

by simulations. 

The SMC presented the best ISE for both cases, 

without disturbances and with disturbances.  

 

From implementation point of view, LQR and SMC 

are easy to design, and PID does not need a model to 

be tuned. 

 

The Two-wheeled Inverted Pendulum is a good 

teaching tool for learning conventional and modern 

control strategies implementation.  
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