
MC2E: The Environment for Interdisciplinary Research

R. SMELIANSKY

Computational Mathematics and Cybernetic Department

Moscow State University

Lomonosov Moscow State University, 1 Leninskiye Gory, Moscow, 119991,

RUSSIA

Abstract: - The Meta Cloud Computing Environment (MC2E) project is a Russian-Chinese project dedicated to

the study of methods and means of building an informational and computational environment for scientific

computational experiments and interdisciplinary research, based on the federal principle of management. Such

a federation was supposed to be a specialized, heterogeneous ecosystem of cloud data processing centers (DC),

high-performance computer installations united by telecommunication resources. The article provides a brief

overview of the main results of this project.

Keywords: High Performance Computing, Supercomputer, Cloud, Data-Center

1 Introduction
Today's interdisciplinary research in

various fields of science involves collaboration

of multiple research teams, unique scientific

instruments and large demands in

computational resources. Such collaboration

requires an informational, computational and

communicational infrastructure specifically

tuned for each project. Efforts to create such

infrastructure in a traditional way (a local DC

with domain-specific software) cause a number

of problems:

1. It requires significant financial and

material investments, since each new

experiment needs specific software

adjusted by highly qualified IT-

specialists. The problem becomes more

complicated if such experiments are

performed by independent research

teams, because such teams often have

different internal business processes,

specialize in different subject areas,

have their own hardware and software

preferences and may be located far from

each other;

2. At the initial stage of a project the

requirements to the project

infrastructure are known roughly and

overestimated. This could lead to waste

the efficiency of investments;

3. A lot of difficulties arise when scientific

data is distributed and used by different

teams simultaneously. Data that is

needed for one team could be acquired

by another. And without a specialized

system that manages infrastructure such

cases are hard to solve;

4. The groups of researchers from different

projects may already have tools,

software for processing, collecting and

storing data. Creating or mastering new

ones for a project is usually

unacceptable. Therefore, it is necessary

to provide the possibility to bring into

the environment already existing

developments.

The main instrument for numerical

experiments and simulation has been High

Performance Computing (HPC). Computational

R. Smeliansky
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 40 Volume 6, 2021

resources for HPC are provided by

supercomputers, mainframes and servers

clusters. The general trend today is the usage of

supercomputers and HPC installations.

However, a trend analysis at TOP500.org

[Σφάλμα! Το αρχείο προέλευσης της

αναφοράς δεν βρέθηκε.] suggests that the

number of applications is growing faster than

the number of supercomputers and HPC

installations. At the same time, we can see the

rapid growth in the popularity of cloud

computing, the usage of Data Centers Networks

(DCN) to increase the power of cloud

computing platforms. A good example is EGI

Association [Σφάλμα! Το αρχείο προέλευσης

της αναφοράς δεν βρέθηκε.].

These two kind computational platforms

have a different computational capability but

they also have big differences in their load.

Most applications will run faster on a

supercomputer than on a server cluster in DC.

However, it may turn out that the total delay of

the application in the queue plus the execution

time on HPC-Supercomputer (HPC-S) would be

more than execution time plus waiting time in

the queue on HPC cloud server cluster (HPC-

C). We will call this total delay as program time

in system (PTS criterion).

MC2E project mission was to study how

to develop an environment that would allow

easy way to create an informational and

computational infrastructure, which meet the

listed above specifics of a certain

interdisciplinary project. One of the actual

research topic and still weakly explored

problems of this mission is the integration two

pretty different HPC environments –

supercomputers and DС Clouds. These

environments vary in many ways: differences in

the level of resource management in the

computational environment in use, by the

virtualization technique, by the composition of

the parameters and the specification form of the

request for program execution, by scheduling

and resource allocation policy. On-demand

clouds could help solve this problem by

offering virtualized resources customized for

specific purposes. Cloud platform offers more

flexibility and convenience for researchers in

compare with HPC-S. But in any case the HPC-

S and HPC-C platforms heterogeneity makes it

hard to switch automatically between them if

some platform becomes highly loaded. So in

order to change the target platform, researchers

need to spend time and resources adjusting their

software for the new API.

Another problem on the way to the

integration of HPC-S and the HPC-C is how to

choose the proper computer installation for MPI

program execution in heterogeneous integrated

environment: HPC-S or HPC-C? Other words

for every MPI program in the queue of the

environment make a decision where it should be

executed more effectively in term of PTS

criterion in the current resource

amount/configuration. On the way of solution

to this integration problem we need to justify

the hypothesis that the sharing of physical

resources by several MPI programs (several

tenants) in HPC-С environment will reduce the

total execution time of these programs, i.e. this

time will be less than the sum of the execution

times of each program separately.

One more problem is the ability of the

environment aggregates the resources of DC

network (DCN). At this point the key problem

is feasibility the Bandwidth-on-Demand (BoD)

service problem. This service should

develop/allocate, under request, the channels

between two or more DC with the appropriate

QoS parameters and total throughput for

transmitting specified amount of data at

particular interval of time through TCP/IP

transport network. It should be emphasized that

such a service does not imply a dedicated

channel between the interacting parties.

Moreover, it should be dynamically created

through the aggregation of existing network

resources.

Here the overview the main results of

MC2E project are presented in the following

structure. We will shortly present the

architecture of the MC2E environment (section

2); the experimental exploring of DC network

influence on CPU utilization in the clouds and

on resources sharing ability for MPI programs

(section 3); new approaches to the prediction of

the MPI programs execution time on a certain

set of computer installations to determine a

proper choice of order and place for program

R. Smeliansky
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 41 Volume 6, 2021

execution (section 4); and approaches to BoD

service development (section 5).

2 MC2E Architecture
The MC2E environment architecture is

based on the following principles:

1. The infrastructure is a federation of

locations called federates with local

computing, storing and networking

resources. Federation administrates all

resources (CPU, memory, network,

software) provided by federates;

2. Resources of the same federate can be

shared between different projects

simultaneously;

3. All physical resources are virtualized;

4. Resources on a user level have a high

level of abstraction. Usage of such

resources should not require strong

qualification from system administrator;

5. Experiments’ results could be saved.

Saved results could be used by other

research teams to reproduce or continue

the experiment;

6. The federation provides data processing

as a virtualized service.

On the figure 1 the MC2E architecture is

layout with responsibilities allocation between

the international project participants.

An example of the federate

computational resource could be an HPC

cluster, DC, supercomputer under unique

administration. And each federate has its own

policy which regulates federate resource

allocation to the users. Infrastructures that are

built as federation of heterogeneous

computational resources are already used in

many existing projects. Several such projects

are designed to perform experiments in

computer networking. For example, the GENI

project (Global Environment for Network

Innovations) [Σφάλμα! Το αρχείο προέλευσης

της αναφοράς δεν βρέθηκε.] that was initiated

by the US National Scientific Foundation (NSF)

is a virtual laboratory aimed to provide an

environment for networking experiments on an

international scale. Today more than 200 US

universities contribute to the GENI project.

Another project which supported by NSF is

FABRIC [Σφάλμα! Το αρχείο προέλευσης

της αναφοράς δεν βρέθηκε.]. FABRIC is an

adaptive programmable research infrastructure

for computer science and science applications.

Similar but less known projects are Ophelia

[Σφάλμα! Το αρχείο προέλευσης της

αναφοράς δεν βρέθηκε.] (supported by the

EU) and Fed4Fire [Σφάλμα! Το αρχείο

προέλευσης της αναφοράς δεν βρέθηκε.]

(supported by 17 companies from 8 countries).

Fig. 1. MC2E Architecture

SDN

Meta Cloud Orchestrator (MSU)

R. Smeliansky
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 42 Volume 6, 2021

There are some other ones provide

environments for computational experiments

regardless of their domain [Σφάλμα! Το αρχείο

προέλευσης της αναφοράς δεν βρέθηκε.],

[Σφάλμα! Το αρχείο προέλευσης της

αναφοράς δεν βρέθηκε.], [Σφάλμα! Το αρχείο

προέλευσης της αναφοράς δεν βρέθηκε.].

However, these projects have several

following drawbacks:

1. Weak integration between HPC-S and

HPC-C, which does not allow you to

automatically select an effective

computational resource from the

available;

2. Drawbacks in service chaining to

perform experiments and bring already

existed services/tools into the new

environment;

3. Resource planning doesn’t take into

account possible services scaling;

4. The lack of DCN control and

management services like monitoring

and BoD services.

The basic technologies for MC2E

project to develop a virtual infrastructure for

interdisciplinary research project as a flexible

and economically effective way were Software-

Defined Networking (SDN) and Network

Function Virtualization (NFV). These

technologies allow increase the level of

resource abstraction, enable coordinated

resource optimization and automatize

infrastructure management. Instead of providing

individual resources, users receive complete

virtual infrastructures (computational power,

communication channels and storage systems)

with guaranteed performance and QoS based on

the service level agreement (SLA).

Actually there were two cloud

environments used for experiments in MC2E

project: Docklet [10] and Cloud Conductor (C2)

[11]. The goal of Docklet is to provide Personal

Development Workspace in the Cloud solution

[53]. It covers all the SaaS, PaaS and IaaS layer

of cloud computing architecture. The basic of

Docklet is LXC vcluster [54], but not Docker

container. For Docklet users, what they face

directly is their Workspace. They use browser

to do software development, debugging and

testing, etc. using tools Docklet provide,

working in a high layer. With the help of

Docklet, research groups can easily virtualize

their small scale data centers, creating

virtualized clusters, and then providing users a

customizable Workspace in the cloud. Users

only need a modern browser to visit their own

Workspace located in the enterprise's Intranet

from anywhere, at any time. They can do works

like online editing source codes, debugging,

testing, managing data files, analyzing data,

visualizing results, etc.

The C2 Platform architecture is based on

the reference implementation ETSI NFV

MANO model and provides the full VNF life-

cycle support: initialization, configuration,

execution and deinitialization. This description,

called TOSCA-template [11], is all that needed

to set a VF. TOSCA template includes the

structure of a cloud application, application

management policies, OS image and scripts to

start, to stop and to configure the application

that implements the VF. The C2 platform

assumes that a cloud administrator should

provide the TOSCA-template as a zip or tar

archive with a predetermined structure.

The proposed federation-based

environment has the following advantages:

1. Easy locating, setup and scaling

resources across a variety of services in

minutes;

2. Developing application as a chain of

multiple services based on NFV

technology;

3. Merging infrastructures from different

research teams and adjust access

policies;

4. Automated resource planning to perform

user requests based on access policies

and SLA;

5. Extensive application description

environment, that allows to abstract

away low-level system details;

6. A decentralized resource accounting

system for settlements between project

participants;

7. Wide possibilities for experiments

tracing and monitoring;

R. Smeliansky
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 43 Volume 6, 2021

8. Increased efficiency of network

virtualization with SDN, that allows to

adjust virtualized network channels for

each particular experiment;

9. Common specification language that is

necessary for transferring existed

research software into MC2E

environment.

The main MC2E architecture

components or subsystems are listed below:

1. Meta-Cloud – orchestrate user

applications, allocate and schedule them

between federates;

2. Interface – provides a unified API for

users to submit their applications and for

federate administrator to manage and

control the resources of the federate;

3. Networking – regulates network

resource usage and provides Capacity-

on-Demand service;

4. Monitor – performs resource monitoring

and clearance for all federates in MC2E;

5. Quality of Service, Administration

Control and Management – enforces

resource usage policy, provides QoS

based on user requirements and

guarantees resource reliability.

These components are described in

details in [12] General MC2E workflow looks

as follows:

1. By unified MC2E interface a user send

his application and data to the front-end

server;

2. The front-end server invokes Meta-

Cloud scheduler and monitor to choose

a federate for application execution;

3. Meta-Cloud analyze the queue and

predicts application execution time and

data transmission time for all available

federates;

4. Based on the prediction Meta-Cloud

chooses the federate that will minimize

the total of application in system (data

transmission time + queue waiting time

+ execution time);

5. Meta-Cloud call the Networking for

channel development to the destination

federate and sends application and its

data;

6. Federate executes the application and

returns results to the user;

7. In the case of a federate failure, an

application will be migrated by Meta-

Cloud QoS to another federate.

The following resources were used for the

experiments in MC2E project:

1. Supercomputer Lomonosov-2 [13];

2. HPC computer installation Polus - IBM

Power 8 [14];

3. HPC computer installation BlueGene –

IBM Power PC [15];

4. HPC computer installation МВС-10П

Tornado [16];

5. mini DC: head server – Intel Xeon CPU

E5-2650 v4 @ 2.20GHz with 48 cores

with 64 Gb RAM and 6 workers – Intel

Xeon CPU E5-2667 v4 @ 3.20GHz

with 16 cores with 32 Gb RAM, HD –

3.5 TB, Ubuntu 18.04.4 LTS; each

physical link had 10 Gbps;

6. DC Peking University [17];

7. VMs (4 cores, 16 GB) in Alibaba Cloud

DC.

3 Cloud as HPC environment

Clouds are less powerful than

specialized server clusters or supercomputers

[18]. Nevertheless they are becoming more

popular as a platform for HPC due to the low

cost and easy to access. Several papers [19],

[20] have shown that one of the main

performance bottlenecks in HPC-clouds issues

from communication delays within the DС

network. While supercomputers use fast

interconnections like [21], [22] HPC-clouds

mostly rely on usual Ethernet networks. This

performance bottleneck could also lead to CPU

underutilization with network-intensive

applications, since such applications may spend

a lot of time waiting for their messages to pass

through the network.

One of the important results of MC2E

project is the verification and justification of the

hypothesis that network-intensive HPC-

applications could share CPU cores among each

other with negligible performance degradation.

Such behaviour could be used to improve CPU

utilization and to increase the effectiveness of

R. Smeliansky
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 44 Volume 6, 2021

HPC-application execution. The hypothesis was

validated in a cloud environment with HPC

benchmark – NAS Parallel Benchmarks (NPB)

[23] on mini-DC (the parameters see above)

with QEMU/KVM hypervisor 64 virtual

machines (VMs) (Ubuntu 16.04, 1 vCPU, 1024

Mb RAM). MPI version was 3.2. Head server

contained 16 VMs, other servers contained 8

VMs per each. Average RTT between different

VMs was near 400 μs. Bandwidth between

VMs was at the same server – 18.2 Gbps, on

different servers – 5.86 Gbps.

In this experiment, the network

bandwidth influence on CPU utilization was

explored. Sequentially 5 NPB MPI programs

with 2, 4, 8, 16, 32, 64 MPI processes on

separate VM were run on network with three

bandwidths: 100 Mbps, 1Gbps, 10Gbps. As it

should be seen on Fig. 2 when the number of

MPI processes increases, CPU usage drops,

because different MPI processes run on

different virtual machines and data is

transferred over the network between the

different physical servers and so the delay

increases. Also, CPU usage drops when MPI

program run in one physical server (2, 4 and 8

CPUs). This CPU usage decrease allows share

the same CPU between different MPI programs.

In another experiments series the ability

different HPC-applications to share CPU cores

was explored. The experiment methodology

was as follow: sequentially 5 pairs of NPB MPI

programs (each pair contained two identical

programs) on (2, 4, 8, 16, 32, 64) VMs (N MPI

processes in each MPI program). To evaluate

the ability MPI programs to share CPU

resources the queue metric, see Fig. 3, was

used, where pure time is execution time without

resources sharing; sharing time is execution

time when two MPI programs use the same

CPUs and cores. It is not hard to see if value of

queue metrics is more than 1 therefore two

programs run simultaneously take less time to

complete than in sequential order. According to

the Fig. 3 even in the cloud with slow network

(100 Mbps) we can get up to 20 percent

execution time acceleration.

Fig. 2. CPU utilization for NPB

R. Smeliansky
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 45 Volume 6, 2021

However as it shown on Fig.3 not all MPI

programs can effectively share resources with

other MPI programs.

Fig. 1. Queue metric

4 MPI program execution time

prediction
As it was already said one of the main

criteria for the effectiveness of a cloud

computing environment for HPC applications is

the time spending by MPI program in this

environment (PTS criterion). This time consists

of the time spent by program in the queue

(waiting time) and the program execution time

(execution time). These values depend on the

resources allocation algorithms of the cloud

environment (CE) (mapping virtual computer

installations to physical ones) and the queue

discipline, taking into account the heterogeneity

of physical computer installations.

Look at the «path» of a program from

the coming in the CE up to getting the result of

its execution:

1. User forms a set of input data: the text

of the program, initial values of the

program input parameters, program

running resources like number of MPI

processes or the requested resources

(CPU, RAM), a special script to compile

program;

2. User send a set of input data to the CE

through a single portal of the federation.

The input data from the portal come to

the orchestrator of the CE, which is

responsible for implementing the virtual

infrastructure and executing the

programs in it;

3. The orchestrator responsible for

federation resources allocation and has a

unique algorithm to do this. This

algorithm determines the best order and

the best federate and physical computer

installation inside federate for program

execution, in sense of the PTS

effectiveness criterion. When computer

installation is selected this program is

sent to there;

4. Each federate has its own queue of

programs. The arrived program is

processed by the local resources

scheduler and will start running at a

certain time defined by the local

scheduler;

5. When the program execution is

completed the results is returned to the

orchestrator which in its term sends it to

the users in the proper form.

From the path above, it can be seen that

step 3 (meta-scheduling) and step 4 (local

scheduling) are optimization points by criterion

PTS. The important part of MC2E project was

R. Smeliansky
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 46 Volume 6, 2021

the research and development the algorithm to

choose the most effective computer installation

in the federation for the received MPI program

based on the minimum execution time criterion.

Within MC2E project the algorithms for

program execution time prediction on a certain

set of computer installations based on the

execution history of the program on different

computer installations were developed (detailed

description of the algorithms see [24]).

The problem of predicting the execution

time of a program on a computer is well known

and is a classical one. For example program

execution time on the specific computer

installation, as well as the waiting time in the

queue, can be predicted based on the histories

of its running on this computer installation [25],

[26], [27], [28]. Many extrapolation algorithms

can be proposed for that like [29], [30], or

regression [31], or more complex algorithms

like the ensemble of decision trees (Random

Forest) [32]. The main disadvantage of these

algorithms is that they applicable only to the

same computer installation. But the point of the

question in MC2E was a program execution

time prediction on a certain set of computer

installations. These are the computer

installations whose characteristics meet the

requirements of the virtual infrastructure. Of

course, the algorithms mentioned above can be

used to estimates programs execution time on

the several computer installations. However,

this requires a history of running of this

program on each computer installation from the

set. It is unlikely this information will be

available.

The logic for choice of computer

installation based on the histories of program

execution can be described as follows. One of

the well-known algorithms [25], [26], [27], [28]

is applied to program execution histories to

estimate program execution time on each of the

computer installation from a certain set of

computer installations. One of the widely used

the form of such history could be a trace of

program execution [33]. Based on the estimates,

one can either developing scheduling for a

group of programs, or follow a greedy strategy

and send each program to the computer

installation that has the minimum execution

time. However, the usage any of the above

approaches, we need all the execution histories

of all programs on each of the computers in the

set under consideration.

One of the important and new results of

the MC2E project is the development the MPI

program execution time prediction method

which allows relaxing this requirement: to

predict the program execution time on several

computer installations, only some running

histories of this program on them are sufficient

(the detailed description of the method see

[24]). Moreover, it is not necessary to run each

program on each computer installation.

The main idea of proposed new

approach to MPI program execution time

prediction problem is based on the association

that the problem under consideration is very

similar to the problem solved in the

recommendation systems or recommender

system [34]. A recommender system (RS), or a

recommendation system (sometimes replacing

'system' with a synonym such as platform or

engine), is a subclass of information filtering

system that seeks to predict the "rating" or

"preference" a user would give to an item [35].

The examples of the items could be movies,

books or any other goods. So recommender

system restore, predict the relationships

between users and items based on some user

estimations, preferences.

RS system has a rating matrix where the

rows (or columns) correspond to movies, books,

or goods, and the columns (or rows) correspond

to users. This matrix is often sparse, since there

are a lot of users and items, and users can't

physically evaluate all the items under

consideration. The RS system tries to predict

the preferences of each user for each item,

based on individual user ratings for some items.

So, in other words, RS system has to fill in the

empty entries in the rating matrix. In these

terms consider the following analogy: users are

the computer installations, items are the

programs, and user ratings are execution times.

Thus, computer installations “evaluate”

programs and the smaller the rating (execution

time), the better.

In the proposed approaches, the problem

of the program execution time prediction is

R. Smeliansky
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 47 Volume 6, 2021

reduced to the problem of filling empty entries

in the matrix “Programs-Computers” built for a

given set of programs and a given set of

computer installations. In the entries of this

matrix there is an execution time a certain

program with certain sets of arguments

corresponding to a specific computer

installation.

It should be clear that accuracy of the

prediction depends on the number of program

running histories on computer installations from

a certain set. There were proposed two

approaches to the program execution time

prediction problem on a certain set of computer

installations. The first one is based on computer

installations grouping based on the Pearson

correlation [36]. It was shown that this method

reasonably apply in the case of a "densely"

(dense matrix) filled matrix «Programs-

Computers» (at least 95% of entries are filled).

The second one was developed for the

sparse «Programs-Computers» matrix and relies

on decomposition of that matrix into vector

representations of computer installations and

programs, so-called embeddings. An

embedding is a relatively low-dimensional

space into which you can translate high-

dimensional vectors. Embeddings make it easier

to do machine learning on large inputs like

sparse vectors representing words. Ideally, an

embedding captures some of the semantics of

the input by placing semantically similar inputs

close together in the embedding space [37]. In

the paper [24] it is shown how to use

embedding of program and embedding of

computer installation to predict the program

execution time on specific computer

installation. There was explored the

decomposition technique [38] to the matrix

«Programs-Computers» to calculate

embeddings.

Also, there was considered ensembles

from algorithms Ridge regression, grouping

computer installations based on Pearson

correlation, and matrix decomposition in MC2E

project. It was shown that the ensemble of

algorithms is more resistant to outliers than

other algorithms and gives the best results on

dense matrices. All proposed algorithms have

been deeply experimentally explored on MPI

benchmarks and OpenMP benchmarks [39],

[40] (see Table 1).

Experiments with testing data from

Table 1 showed that an ensemble of algorithms

with a small percentage of empty entries in

«Program-Computer» matrix – up to 52% –

makes a better prediction compared to all other

algorithms. Also, accordingly to the

experiments, the ensemble and ALS show good

results even in the presence of outliers in the

source testing data sets. In case that percentage

of empty entries is much more than 50%, ALS

algorithm demonstrated the best prediction.

Thus, for dense matrices, it is better to use an

ensemble of algorithms, for sparse ones-matrix

decomposition, in particular the ALS algorithm.

It is important to emphasize that the

proposed approach to predicting program

execution time requires a minimal set of data

about the program, which is usually available

on all modern computer installations. Another

important advantage of the proposed approach

is that a result of matrix decomposition is the

embeddings of Programs and computer

installations of dimension 1. This fact allows

one set up the total order as on a set computer

installations as on a set of programs what

significantly help to properly select the

computer installation with effective execution

time. For the more data about prediction

methods testing see [24].

Name Number of computer

installations

Number of programs Benchmark type

MPIL2007 163 12 MPI [Σφάλμα! Το αρχείο

προέλευσης της αναφοράς

δεν βρέθηκε.]

MPIM2007 396 13 MPI [Σφάλμα! Το αρχείο

R. Smeliansky
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 48 Volume 6, 2021

προέλευσης της αναφοράς

δεν βρέθηκε.]

ACCEL_OMP 25 15 OpenMP [Σφάλμα! Το

αρχείο προέλευσης της

αναφοράς δεν βρέθηκε.]

Table 1. Data for testing algorithms

5 Bandwidth on Demand service
As it was mentioned in the introduction

one of the problems was studied in MC2E

project was the ability of HPC-С environment

aggregates the resources of DCN. The

environment intended for interdisciplinary

scientific research projects has to have very

flexible and powerful network resource

allocation, scheduling and administration

mechanisms. Otherwise, the overhead for DCN

network resources should be very high and the

load on the DCN network resource will be very

volatile. At this point the key problem is

feasibility the Bandwidth-on-Demand (BoD)

service problem. This service should

develop/allocate, under request, the channels

between two or more DC with the appropriate

QoS parameters and total throughput to

transmitу a specified amount of data at

particular interval of time through TCP/IP

transport network. It should be emphasized that

such a service does not imply a dedicated

channel between the interacting parties.

Moreover, it should be dynamically created

through the aggregation of existing network

resources. It was implied that a request for BoD

service is possible under the contract between

the user and network carrier.

Two kinds of user flows were under

consideration in the project. The background

flows – the user flows that duration is

significantly greater than the duration of flows

resulting from BoD service request and occupy

all period of observation. The urgent flow – the

user flow for which BoD service request was

made.

In the paper [41] the problem BoD

service development is considered in details.

Here the reasoning layout of the approach

proposed in the cited paper is presented. The

implementation of BoD services can be divided

into two components: route aggregation and fair

distribution of user traffic flows among these

routes accordingly to the SLA of the contract.

Under the term “route aggregation” it

means a service that can use for a user data flow

transmission between a pair of DCs several

different routes in data communication network

(further just network) at the same time. The task

of route aggregation does not address the issue

of SLA quality of service that what BoD should

do. To implement route aggregation, several

problems have to be solved.

The first one is how many and what

routes should be aggregated to meet the BoD

service SLA. It should be clear that the

aggregated routes have to have the minimum

intersections. This constraint comes from the

specifics of the operation of congestion control

algorithms on network transport level. The

number of edge-disjoint paths between two

vertices in a graph is defined by the Menger

theorem [42]. This theorem states that the

largest number of edge-disjoint routes from

vertex u to vertex v in the graph is equal to the

smallest number of edges in the <u,v> cut of

that graph.

The absence of the route intersection is

not always a critical point. For example, if the

physical links on the intersections have a

sufficient available bandwidth, than there is no

bottleneck. However, it is possible that there are

no alternative disjoint routes between source

and destination in the network topology. In this

case, the problem can be reduced to the

previous one by transforming the graph of the

network topology in such a way that the edge

corresponding to the physical link with a high

bandwidth is replaced by several edges with a

lower bandwidth. An alternative solution could

also be to search for routes with the least

number of intersections, as MCMF [43] does.

R. Smeliansky
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 49 Volume 6, 2021

After find the value k – the number of

disjoint routes, the network topology graph can

be processed by the special algorithm to

identify k routes between the source and the

destination. It was found that not any algorithm

is suitable for this purpose. For example, the

greedy algorithm [44] will not be solution of the

problem. The proper choice is MCMF [45],

which reduces original problem to the

maximum flow in the network problem. Follow

this way the set of routes with sufficient

available resources to provide the BoD service

will be identified in a network topology.

The next problem is how to use

simultaneously the resources of these routes to

transmit user flow, i.e. to do the route

aggregation. There are a large number of

protocols and technologies that can help with

this problem. In [41] following the 5-tier

TCP/IP model, these protocols were considered

and the main requirements for them were

formulated. At any of these levels, you have to

deal with multipath protocols, which allow you

to divide a single application flow on the

several transport subflows each uses a single

path.

There are two basic approaches to

multipath routing: static and dynamic. The

MPTCP is a static approach [45] involving a

priori allocation of a certain number of transport

subflows among which data stream segments

are distributed. The dynamic approach e.g.

FDMP [46] involves the dynamic allocation of

a subflow at the request of a transport agent,

depending on the correspondence of the total

allocated subflows throughput to the application

demand.

At the network level, transport flow

balancing techniques such as ECMP [47],

MPLS-TE [48] together with the RSVP

resource reservation protocol [49] can be

applied. However, ECMP has one constraint:

the routes should have the same cost (e.g. have

the same lengths in case of hop count metric),

that is not true in general case for k disjoint

routes discussed above. Therefore, to balance

flows, it is more profitable to look towards

unequal-cost multipath (UCMP), where route

cost can be varied.

In the case of the link layer, the main

constraint for all link layer aggregation

protocols is to use only those routes that pass

through the same network devices. Most

network equipment for working with Ethernet

networks supports both static configuration of

link aggregation and dynamic control like the

LACP, PAgP protocols [50]. And again as at

network level the problem flows' distribution

problem arises. Similar to LACP channel

aggregation techniques can be found for other

types of networks, although they can have a

completely different physical nature.

After the route aggregation the problem

of Application Flow Load Distribution (AFLD

problem) among identified routes was

considered. The AFLD problem was divided on

resource estimation problem and resource

distribution problem. The solution of the first

one brings us the answer whether there is

enough available capacity on the identified

routs to meet the SLA BoD contract? If it is so

the second one comes – how application flow

load should be distributed between these

routes?

To solve this problem, a mathematical

model was developed for the simultaneous

transmission of data for a given set of contracts

over several routes. Based on this model, the

AFLD problem was formulated as discrete-time

integer linear programming problem (ILP) [12].

Solution AFLD problem in ILP form gave the

answers for the following questions: is there

enough available capacity on the identified

routes to accommodate all urgent flows? What

urgent flows can be accommodated? How

much of the available capacity on the identified

routes each accommodated urgent flow can

occupy?

On the basis of Juniper VMX routers, a

prototype of the above approaches to the

implementation of BoD service based on VPN

technology was built, which was successfully

tested between DC at Moscow State University

and DC of Peking University. In April 2021, a

pilot project for the implementation of BоD

service between data centers in Moscow and

Novosibirsk was successfully completed [55].

R. Smeliansky
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 50 Volume 6, 2021

6 Conclusion
The main results of MC2E international

project are presented. This project was targeting

on study of the development an environment for

academic interdisciplinary research. MC2E is

built as a federation of local computing units

called federates. Each federate can consist on an

HPC cluster, DC, a supercomputer, a scientific

installations covered by data communication

network. The advantages of MC2E include:

 High level of resource control and

flexible capabilities to define virtual

environments;

 High quality of resource scheduling and

utilization providing efficient scientific

services by PST criterion ;

 It relieves a user from tedious system

administration tasks and it also specifies

a unified way to describe a DC (or an

HPC cluster) service life cycle.

MC2E can be applied in different areas,

such as educational activities of research

institutes and universities, interdisciplinary

research, international research collaboration,

increasing resource utilization in DCs,

popularizing supercomputer usage in different

research areas, shared data usage by multiple

organizations.

Beside listed above this research

presents the experimental justification the

hypothesis that you can get acceleration of MPI

programs executions time when you run in the

cloud several MPI programs simultaneously.

The experiments demonstrated up to 20 percent

execution time acceleration.

The problem solution was developed

how to choose the proper computer installation

for MPI program execution in heterogeneous

environment like MC2E project based on PST

criterion. For that a new approach to predict the

MPI program execution time on a certain

computer installation was proposed, even it was

not executed on it. Two algorithms were

constructed and analyzed: an algorithm based

on computer installations grouping based on the

Pearson correlation (for dense Program-

Computer matrix) and an algorithm based on

matrix decomposition technique, which allows

to obtain vector representations (embeddings)

of the Program and computer installations (for

spare Program-Computer matrix).

It is important to emphasize that the

proposed approach to predicting program

execution time requires a minimal set of data

about the program, which is usually available.

Another important advantage of the proposed

approach is that a result of matrix

decomposition is the embeddings of MPI

programs and computer installations have

dimension 1. This fact allows one set up the

total order as on a set computer installations as

on a set of programs what significantly help to

properly select the computer installation with

effective execution time. As a hypothesis it was

proposed in the project that execution time

prediction techniques one can apply not only to

MPI programs.

The approach to the BoD service

development was proposed. This approach was

divided into the route aggregation problem and

the flow load distribution problem. Various

implementation options for the route

aggregation problem were analyzed according

to the network parameters, the desires of the

service provider and the capabilities of the

network equipment. The problem flow load

distribution among aggregated routes was

solved in the form as ILP problems.

It would be naive to believe that the

presented results fully cover the solutions to all

the problems that arise when creating such

environments. For example, the automation of

programs lunching for execution on different

computer installations in the environment

integrating HPC-C and HPC-S resources, the

coordinated management of data and network

resources in real time, analytics, management

and security in such environments [51], the

problems of accounting for consumed

resources, mutual settlements between

federation members, the use of edge

computation technology [52].

Acknowledgemen
The author would like to express his deep

appreciation to all members of MC2E project

joint force:

R. Smeliansky
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 51 Volume 6, 2021

Lomonosov Moscow State University
(Russia): Vitaly Antonenko - senior research

fellow; Anatoly Bahmurov – senior research

fellow, Ivan Petrov, Andrew Chupakhin,

Alexey Kolosov – Ph.D. students; Gleb Ishelev

– master student;

Peking University (China): Xiangqun Chen –

professor (Principal Investigator); Mei Hong –

Professor; Donggang Cao - research professor,

Junming Ma – Ph.D student;

Tsinghua University (China): Wenlai Zhao -

researcher;

Huazhong University of Science &

Technology (China): Min Chen - professor;

This work is supported by Russian

Ministry of Science and Higher Education,

grant #05.613.21.0088, unique ID

RFMEFI61318X0088 and the National Key

R&D Program of China (2017YFE0123600).

References

[1] Meuer, H., et al. "The Top500 project."

URL: http://www.top500.org/ (2019).

[2] Kranzlmüller, D., de Lucas, J. M., &

Öster, P. (2010). The european grid

initiative (EGI). In Remote

instrumentation and virtual laboratories

(pp. 61-66). Springer, Boston, MA.

[3] Hwang, T. (2017, March). NSF GENI

cloud enabled architecture for distributed

scientific computing. In 2017 IEEE

Aerospace Conference (pp. 1-8). IEEE.

[4] Baldin, Ilya and Nikolich, Anita and

Griffioen, James and Monga, Indermohan

and Wang, Kuang-Ching and Lehman,

Tom and Ruth, Paul. "FABRIC: A

National-Scale Programmable

Experimental Network Infrastructure,"

IEEE Internet Computing, Vol.23, 2020

[5] Dewar, R. G., MacKinnon, L. M., Pooley,

R. J., Smith, A. D., Smith, M. J., &

Wilcox, P. A. (2002). The OPHELIA

Project: Supporting Software

Development in a Distributed

Environment. In ICWI (pp. 568-571).

[6] Fed4Fire project:

https://www.fed4fire.eu/the-project/

(2019)

[7] Grossman, R. L., Gu, Y., Mambretti, J.,

Sabala, M., Szalay, A., & White, K. (2010,

June). An overview of the open science

data cloud. Proceedings of the 19th ACM

International Symposium on High

Performance Distributed Computing (pp.

377-384). ACM.

[8] Bal, H. E., Bhoedjang, R., Hofman, R.,

Jacobs, C., Langendoen, K., Rühl, T., &

Kaashoek, M. F. (1998). Performance

evaluation of the Orca shared-object

system. ACM Transactions on Computer

Systems (TOCS), 16(1), pp. 1-40.

[9] Brun, R., Urban, L., Carminati, F., Giani,

S., Maire, M., McPherson, A., ... &

Patrick, G. (1993). GEANT: detector

description and simulation tool (No.

CERN-W-5013). CERN.

[10] Donggang Cao, Bo An, Peichang Shi,

Huaimin Wang, Providing Virtual Cloud

for Special Purposes on Demand in

JointCloud Computing Environment,

JOURNAL OF COMPUTER SCIENCE

AND TECHNOLOGY, 32(2):211-218, Mar

2017

[11] Antonenko Vitaly, Smeliansky Ruslan,

Ermilov Alexander, Plakunov Artem,

Pinaeva Nadezhda, Romanov Andrey C2:

General Purpose Cloud Platform with

NFV Life-cycle Management// 2017 IEEE

9th International Conference on Cloud

Computing Technology and Science, pp.

353-356

[12] Antonenko Vitaly, Chupakhin Andrey,

Kolosov Alexey, Smeliansky Ruslan,

Stepanov Evgeniy On HPC & Cloud

Environments Integration. In G.Bocewicz,

J.Pemoera, V.Toporkov (eds) Performance

Evaluation Models for Distributed Service

Networks. Springer. 2020

[13] https://parallel.ru/cluster/lomonosov2.html

[14] http://hpc.cmc.msu.ru/polus

[15] http://hpc.cmc.msu.ru/

[16] http://www.jscc.ru/resources/hpc/

[17] https://iwork.pku.edu.cn/

[18] Netto, M. A., Calheiros, R. N., Rodrigues,

E. R., Cunha, R. L., & Buyya, R. (2018).

HPC cloud for scientific and business

applications: Taxonomy, vision, and

research challenges. ACM Computing

Surveys (CSUR), 51(1), 8.

[19] Gupta, A., Faraboschi, P., Gioachin, F.,

Kale, L. V., Kaufmann, R., Lee, B. S., ...

& Suen, C. H. (2016). Evaluating and

improving the performance and scheduling

of HPC applications in cloud. IEEE

Transactions on Cloud Computing, 4(3),

pp. 307-321.

R. Smeliansky
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 52 Volume 6, 2021

[20] Gupta, A., & Milojicic, D. (2011,

October). Evaluation of hpc applications

on cloud. In 2011 Sixth Open Cirrus

Summit (pp. 22-26). IEEE.

[21] Infiniband in supercomputer systems.

https://www.businesswire.com/news/home

/20181112005379/en/Mellanox-

InfiniBand-Ethernet-Solutions-Accelerate-

Majority-TOP500

[22] Gigabit Ethernet in supercomputer

systems.

https://www.mellanox.com/solutions/high-

performance-computing/top500.php

[23] NAS Parallel Benchmarks.

https://www.nas.nasa.gov/publications/npb

.html

[24] A. Chupakhin, A. Kolosov, A. Bahmurov,

V. Antonenko, G. Ishelev. "Application of

recommender systems approaches to the

MPI program execution time prediction".

Proc. of 3rd International Conference

"Modern Network Technologies-2020"

(MoNeTec-2020), Moscow, Oct. 27-29,

2020.

[25] Gibbons, R. A historical application

profiler for use by parallel schedulers. In:

Proceedings of the Job Scheduling

Strategies for Parallel Processing. Springer

(1997),

[26] Kapadia, N.H., Fortes, J.A., Brodley, C.E.:

Predictive application performance

modeling in a computational grid

environment. Proceedings of the Eighth

International Symposium on High

Performance Distributed Computing, pp.

47–54. IEEE (1999),

[27] Li, H., Groep, D., Templon, J., Wolters,

L.: Predicting job start times on clusters.

In: CCGRID ’04: Proceedings of the 2004

IEEE International Symposium on Cluster

Computing and the Grid, 2004, pp. 301–

308,

[28] Mohr, B., Wolf, F.: Kojak—a tool set for

automatic performance analysis of parallel

programs. In: Euro-Par 2003 Parallel

Processing, pp. 1301–1304. Springer

(2003)

[29] Iverson, M.A., Özgüner, F., Potter, L.:

Statistical prediction of task execution

times through analytic benchmarking for

scheduling in a heterogeneous

environment. IEEE Trans. Comput.

48(12), 1999, pp. 1374–1379

[30] Liu, X., Chen, J., Liu, K., Yang, Y.:

Forecasting duration intervals of scientific

workflow activities based on time-series

patterns. In: Proceedings of the IEEE

Fourth International Conference on

eScience, 2008, eScience ’08, pp. 23–30

(2008)

[31] Ridge Regression[Online] Available:

https://ncss-wpengine.netdna-ssl.com/wp-

content/themes/ncss/pdf/Procedures/NCSS

/Ridge_Regression.pdf [Accessed: 21-Jun-

2020]

[32] Random forest algorithm [Online]

Available:

https://www.stat.berkeley.edu/~breiman/R

andomForests/cc_home.htm [Accessed:

21-Jun-2020]

[33] Smeliansky R. L. Model of distributed

computing system operation with time doi:

10.1134/s0361768813050046 //

Programming and Computer Software. —

2013. — Vol. 39, no. 5. — pp. 223–241

[34] https://www.coursera.org/specializations/r

ecommender-systems

[35] https://en.wikipedia.org/wiki/Recommend

er_system#:~:text=A%20recommender%2

0system%2C%20or%20a,would%20give

%20to%20an%20item

[36] Pearson’s Correlation Coefficient [Online]

Available:

https://link.springer.com/referenceworkent

ry/10.1007%2F978-1-4020-5614-7_2569

[Accessed: 21-Jun-2020]

[37] https://developers.google.com/machine-

learning/crash-course/embeddings/video-

lecture

[38] Cheng CM., Jin XQ. (2018) Matrix

Decomposition. In: Alhajj R., Rokne J.

(eds) Encyclopedia of Social Network

Analysis and Mining. Springer, New

York, NY

[39] MPI2007 datasets [Online] Available:

https://spec.org/mpi2007/results/mpi2007.

html [Accessed: 24-Jun-2020],

[40] Accel OpenMP dataset [Online]

Available:

https://spec.org/accel/results/accel.html

[Accessed: 24-Jun-2020]

[41] Stepanov E. P., Smeliansky R. L. On

bandwidth on demand problem //

Proceedings of the 27th International

Symposium Nuclear Electronics and

Computing (NEC’2019). — Vol. 2507. —

CEUR-WS Budva, Montenegro, 2019. pp.

402–407.

R. Smeliansky
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 53 Volume 6, 2021

[42] Böhme, Thomas, Frank Göring, Jochen

Harant. "Menger's theorem." Journal of

Graph Theory 37.1 2001, pp. 35-36

[43] Stepanov, E., R. Smeliansky. "On

Analysis of Traffic Flow Demultiplexing

Effectiveness" 2018 International

Scientific and Technical Conference

Modern Computer Network Technologies

(MoNeTeC). IEEE, 2018

[44] Navin Kukreja, Guido Maier, Rodolfo

Alvizu, Achille Pattavina. SDN based

automated testbed for evaluating multipath

TCP. In IEEE International Conference on

Communication, ICC 2015, London,

United Kingdom, June 8-12, 2015,

Workshop Proceedings, pp. 718–723,

2016.

[45] Costin Raiciu, Christoph Paasch,

Sebastien Barre, Alan Ford, Michio

Honda, Fabien Duchene, Olivier

Bonaventure, Mark Handley. How hard

can it be? designing and implementing a

deployable multipath tcp. In Presented as

part of the 9th USENIX Symposium on

Networked Systems Design and

Implementation (NSDI 12), pp. 399–412,

San Jose, CA, 2012. USENIX.

[46] Evgeny Chemeritskiy, Evgeny Stepanov,

Ruslan Smeliansky. Managing network

resources with flow (de) multiplexing

protocol. Mathematical and

Computational Methods in Electrical

engineering, 53:35–43, 2015

[47] Chiesa, Marco, Guy Kindler, Michael

Schapira. "Traffic engineering with equal-

cost-multipath: An algorithmic

perspective." IEEE/ACM Transactions on

Networking (TON) 25.2 (2017): 779-792.

[48] D. Awduche, J. Malcolm, J. Agogbua, M.

O'Dell, J. McManus, Requirements for

Traffic Engineering Over MPLS, RFC

2702, Sep. 1999.

[49] Awduche, Daniel, et al. "RSVP-TE:

extensions to RSVP for LSP tunnels."

(2001) https://tools.ietf.org/html/rfc3209

[50] Irawati, Indrarini Diah, Sugondo

Hadiyoso, Yuli Sun Hariyani. "Link

Aggregation Control Protocol on Software

Defined Network." International Journal

of Electrical and Computer Engineering

7.5 (2017): 2706.

[51] Burke J. What is the role of machine

learning in networking?

https://searchnetworking.techtarget.com/a

nswer/What-is-the-role-of-machine-

learning-in-networking

[52] Smelyansky R. Hierarchical edge

computing // International conference

proceedings Modern Network

Technologies, MoNeTec-2018:. —

Москва, 2018. pp. 97–105.

[53] Bo An, Xudong Shan, Zhicheng Cui, Chun

Cao and Donggang Cao, Workspace as a

Service: an Online Working Environment

for Private Cloud, 2017 IEEE Symposium

on Service-Oriented System Engineering

(SOSE), San Francisco, 2017, pp. 19-27.

[54] Donggang Cao, Peidong Liu, Wei Cui,

Yehong Zhong, Bo An, Cluster as a

Service: a Resource Sharing Approach for

Private Cloud, Tsinghua Science and

Technology, 2016, 21(6): pp. 610-619

[55] Bandwidth on Demand Service Demo

based on SDN controller RunOS

https://youtu.be/XjggLW1LKKg

R. Smeliansky
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 54 Volume 6, 2021

https://youtu.be/XjggLW1LKKg

