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Abstract: The Probabilistic Evolution Theory (PREVTH) has been effectively developed in recent few years to
solve the explicit autonomous ODE(s) accompanied by certain initial conditions. The theory focuses on the cases
where right hand side functions are conical in unknowns at the right hand side. If it is not so certain space extension
technies are used to get conicality. [1-6]. Theory gives an analytical Kronecker power series solution almost for all
practically encountered systems. The squarification reduces the enormous sparsity and gets very high efficiency.
This work is designed for the application of PREVTH Squarification on Henon-Heiles systems as a case study.
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1 Introduction where M matrices n* x n*+1 dimensional rectangular
matrices and are called “Monocular Matrices”. My, is

This section focuses on the initial value problem of a explicitly given below

set of explicit first order autonomous ODE with right

hand side functions given by k-1

M=) I @FRIZF k=12, (5
%(t) = Fo 4+ F1x(t) + Fox(t)%? (1) =0

Tjs can be called “Telescope Matrices”since they

where ¢ represents the independent variable we can carry the matrices from n’ dimensional spaces to n
call “time”. Here, ® on the exponent means Kro- dimensional spaces. Telescope matrices which are ex-
necker power. x is a n element vector which is com- tremely sparse (having plenty of zero elements), can
posed of unknowns. After “Constancy Adding Space be put into a more concise structure by using Squarifi-
Extension (CASE)” which is detailed in [4-6], is ap- cation. Thus, the disadvantages coming from the spar-
plied and flexibilities are chosen appropriately, the so- sity of the telescopic expansion in Kronecker powers
lution of (1) is given below of initial vector, disappear. The most promising one is

the squarifictaion of the telescope matrices [5].

_Btz (1 —e /3t> Tja®j+1 (2)

=0 J! 2 Squarification of Telescope Matri-
where T';s are certain rectangular matrices that are the ces
type n X n’. This solution is written under the speci- In (2), if a is an n element vector, a®/t1 is a very
fications higher dimensional vector with type of n/*!. To get
Fo=0, F,=-41I, 3 conciseness in calculations for the product of the n x

n’ type telescope T, matrix and a®/ ™1 vector with

Here, (3 is arbitrarily inserted parameter whose value nit1 element, we can foresee that

can be determined in accordance with certain needs.

T s rectangular matrices in (2) can be written that T;a%* =S,(a)a, j=0,1,2,.. (6)
j where S;s are n x n type square matrices. These can
T, = H M, =012, .. (4) be called “Squarified Telescope Matrices”or briefly

“SquTelMats”.
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In (4), when j becomes 0, the product over M
matrices is assumed to be identity matrix. In that case,
it is obtained that

Toa=a=Sp(a)a = Sp(a)=1, ()

I,, is an identity matrix with the type n x n.
When taking j equal to 1 from (4), it is obtained

that
leal(g’2 = M1a®2 = Fa®?

where F is n x n? type generator matrix.
Let us now partition F which is of n x n? type to
n X n type square blocks as follows

®)

F=|FO F) | )
From this equation, we can write
F=> e oF0 (10)
i=1

Here e is an n element unit vector. Thus multiplying
F and a®?2, we can write that

Fa®? = 2”: (eiT ® F(i)) (a®a)

=1

1D

Using the distributive properties of Kronecker prod-
uct, from (11) we can conclude that

(ef @ F?) (awa) = (efa) @ (Fa) (12)

The Kronecker product of scalar and matrix or vector
equals to the product of scalar and matrix or vector. In
that case

(f @ FV) (a@a) = aFa, i=1,23, .
(13)
Therefore we can write

= <Z aiF(i)> a
i=1

Using the Kronecker product of two different vectors,
we can conclude that

F(a®b) (Z a;F >
The matrix F is squarified by the vector a as follows

Zaz

Here | symbol stands for taking the base from left
hand side and | symbol stands for pushing this base
from right hand side.

The joint work of Melike Ebru Kirkin and Cogar
Goziikirmizi describes reductive cases between its
third and fifth sections inclusive. [2].

14)

15)

|F,a] = (16)
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3 The Case Of Symmetric Commu-
tative Blocks

When all blocks of F are symmetric commutative and
eigenvectors sets of these are same, we conclude that

P, 3, } BB, — &, 8/ =0

®; =%, jk=12..n @17

In that case, the spectral composition of commutative
matrices dictates us that

T T
®j = pjamuy 4ot Pinlinlly,

i=12..,n (18)

Therefore, in (15), substituting ® for F(i), the image
of Kronecker product of two vectors under F' is con-
cluded that

F(a®b)= 19)

Za]{) b.

From (18), substituting > 7'_ ¢;, kukuk for ®;

n

F(a®b):Zaj

n
> @jkupupb  (20)
j=1 k=1

where a linear combination of the eigenvalues of each
®s appear. This equation can be rewritten

Z (Z a;p;, k) (uk )u/yc (21)

k=1
If we consider the vector ¢, whose ascending index
elements are ©1 k., Y2k, * -+ ©n k then

Flawb) =Y (aley) (ulb) u

k=1

F(a®b)=

(22)

where the orthogonality between a and ¢ is apparent
and b is orthogonal to all.

3.1 Squtelmats For Symmetric Commuta-
tive Blocks

Consider S4, where there are 24 additive expressions,
for squtelmats to symmetric block case which in-
volves the following expression. We can focus on this

FI,2F)I22F) (I 2 F)a®  (23)

This multiplication should be from right to left. From
(23), the first multiplication can be treated as follows

(I23 ® F)a® = a®® @ Fa®? = a®* @ F(a® a)
a® ® (Z (aTcpk) (u;‘ga) uk>] (24)
k=1
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If the identity matrix and the vector are in the same
type, then their Kronecker product is equal to itself of
the vector. Here, F (a ® a) can be written using (22).
When the result is inserted to its place in (22), we can
multiply out the next term

2% o (Z (a7er) (ula) uﬂ

k=1

=a®2@F <a ® (fj (a”¢) (ufa) uk>> (25)

k=1

I QF)

where, we have used the fact that a®? can be consid-
ered as the Kronecker product of a®? and a. Thus
by also using the Kronecker product of a®? with the
consistent identity matrix we can arrive at

2 (Z (a7 ) (uFa) uﬂ

k=1

I$*®F)

T

Using orthonormality we can get

aem o (32 (o) (ufa) w )

n

— a®2 & Z (aTgokz)

ko=1

[Zn: (a”¢w, ) (uf,a) uk]) ug, (26)

k1=1

k=1
=a®? 2”: (aTgokl)2 (u{@) uy, (27)
k1=1

Multiplying out the next term with this expression we
write

n

®2 g Z (aT¢k1>2 (u{la) ukl)

k1=1

(I, ® F) (a

—a®F (a@ zn: (aT¢k1)2 (ufla) ukl)

k1=1

—a® znj (a7¢n) (ufa) wy, 28)

k=1
and finally

F(I,  F)(I$* @ F)(I3° @ F)a®’
n 4
=2 (o) () e
ki1=1

where we have obtained one finite sum forming a lin-
ear combination of the eigenvectors.

(29)
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Consider the another term of Sy
FIL,oF)(IZ2oF)(IZ2eFI,)a% . (30)

This structure is more complicated. When the similar
operations are applied, we can obtain that

FI, 9 F)I22F)(I®? @ F ®1,)a%"
= Z Z (aTSOk2> (aTS%) (u£1a>

ko=1k1=1
T T
(ukl ('pk’Q) (uk‘g a) ukJQ

This squarification problem is important to simplify
to problem of the finding linear combination coef-
ficients. Moreover working with scalar with coeffi-
cients are simplier than working with scalar matrices.

3D

4 The Case Of Equal Blocks

Under consideration of equality blocks of F, we can
obtain the squarification results, as follows

n n
[F,a]=) a;®= ZeiTaq),
i=1 i=1

i9=1 4 i=1
=Y Y el (far)ae @
ig=1i1=1
|F, |F, |F,alalala] =
z": z": z": ez; (eg; (ega@) a<I>) ad (33)

These reductions are derived from commutativity and
symmetry together.

S The Case Of Equal Identity Matrix
Blocks

Under consideration of equality identity matrix blocks
of F, the squarifications can be concluded that

|F,a] = (Ze?a) I= Zail,
i=1 i=1

|F,a]’ = <zn: ai> I,
=1
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It is used since a squarification produces a square ma-
trix by definition.

5.1 Squtelmats For Equal Identity Matrix
Blocks

Therefore some squtelmats can be given as follows

So =1,

Sl = (Z ai) 17
=1

n 2
82:2<Zai> I,

=1
n 3
S3 =6 (Z m) I (36)
1=1

6 Recursion Of Squarification

F(a®b) = |F,alb (37)
FF®I)a® = F(Fa®’®a)
= F(|[F,ala®a)
= |F|F,alala (38)
FI®F)a®® = F(a® Fa®?)
= F(a®|[F,ala)
= |F,a]|F,ala (39)
S, = |F|F,alala+ |F,a]|F,ala
= |F,a]?+ |F|F,alala
= S;(a)’+ |F|F,alala (40)
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IeF)(IIF)a®
(I®F)(a®a®Fa®?)
FI®F)(a®a® F,ala)
(a®@F(a® |F,ala))
F(a® |F,al|F,ala)
|F,a]|F,al’a

|F,a]%a

FI®F)(I®F®I)a®

)
= FI®F)(a®Fa®? ®a)
)

FI®F)(a® |F,ala®a)
F(a® F(|F,ala®a))

F(a® [F|F,alala)
|F,al|F,|F,alala

FFoD)(IIoF)a®

= F(FeI)(a®a®Fa%?)

= F(

Ss3

Fol
= FF®I
Fol

F(F® I)(a ®a® |F,ala)
F(Fa®? @ |F,ala)

F([F,ala® |F,ala)

LF, [F,ala][F,ala

FFoD)IFeI)a®
FoI)(a® Fa®2 @a)

F(FeI)(a® |F,ala®a)

F(F(a® |F,ala) ® a)

F(|F,a]|F,ala®a)

FFRI)(FoIel)a®
)(Fa®2®a®a)

FF®I)(|F,alaka®a)

F(F(|F,ala®a)® a)

F(|F, |F,alala®a)

|F, |F, |F,alalala

FI®F)(FoIxI)a®
FI®F)(Fa®* ® a® a)
FI®F)(|F,alaR a®a)
F(|F,ala® |F,ala)

|F, |F,ala||F,ala

+ |F,al|F,|F,alala

(41)

(42)

(43)

(44)

(45)

(46)
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+ [F,[F,ala]|F,ala
+ [F, [F,a][F,ala]a
+ [F,[F,[F,aJalala
+ [F,[F,ala]|F,ala
= 381( )Sg(a) — 2Sl(a)
+ LFlsg(aﬂ (47)
Sy = \_F, a] S3 + 3\_F, Sga—‘ LF, a}
+ 3|F,|F,ala]Ss + |F,Ssa] (48)
J—1 j—1
S;=> < ) |F,SralS;_1_4,
k=0 k
7=1,2,.. 49)

7 Implementation For Henon Heiles
Systems

The Henon Heiles System is described with the four
equations which are given as follows

&= pa (50)
Pe = —x — 2\zy (51)
j = py (52)

y ==y = Az? =) (53)

We can write these four equations as second degree
multinomial ODE sets with right hand side.

& = 2 (54)
To = —x1 — 2T123 (55)
T3 =24 (56)
iy = —x3 — 7 + 23 (57)

We can construct algorithms by Mupad to easily find
the solution for Henon Heiles System. In this algo-
rithm, it is used the recursion of Squarification in (49).
The initial conditions are assumed that
x(0)=a=[0.1 02 03 047 (58
Using the truncuations of 2,3,4,5,6,15 and 30, we can
find the graphics of the functions in O to 1 time slot
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First function versus time plots for different truncation orders
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Second function versus time plots for different truncation orders
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Third function versus time plots for different truncation orders
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Fourth function versus time plots for different truncation orders
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According to the initial conditions which are given by
(58), the absoute error as follows
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Third function versus time plots for different iteration differences
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Fourth function versus time plots for different iteration differences
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Using the truncuations of 2,3,4,5,6,15 and 30, we can
find the graphics of the functions in O to 1 time slot
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First function versus time plots for different iteration differences

Second function versus time plots for different truncation orders
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According to the initial conditions which are given by

(59), the absoute error as follows
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Fourth function versus time plots for different iteration differences
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