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Abstract:- The aim of the present research was to study the thermosolutal instability of a compressible 
plasma due to the effects of the ion Larmor radius. Following the linearized stability theory, 
Boussinesq approximation and normal mode analysis, the dispersion relation is obtained. For 
stationary convection,  the compressibility, stable solute gradient and finite Larmor radius stabilize the 
system. The system is found to be stable for (𝐶𝑝 𝑔⁄ )𝛽 < 1. The finite Larmor radius and the 
compressibility introduce oscillatory modes in the system for  (𝐶𝑝 𝑔⁄ )𝛽 > 1. A condition for the 
system to be stable is obtained by using the Rayleigh-Ritz inequality. The sufficient conditions for the 
non-existence of overstability are also derived.  
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1 Introduction 

The theoretical and experimental results of the 
onset of thermal convection (Be’nard 
convection) in a fluid layer under varying 
assumptions of hydrodynamics and 
hydromagnetics has been summarized in the 
celebrated monograph by Chandrasekhar [1]. 
The properties of ionized space and laboratory 
magnetic fluids (plasmas) have been intensively 
investigated theoretically and experimentally in 
the past sixty years. One of the key aspects 
studied in this context is the stability of plasma 
structures. Usually, instabilities can be divided 
into two categories: macro- and micro-
instabilities. Macro-instabilities occur with low 
frequencies compared to the plasma and 
cyclotron frequency and they are studied within 
the framework of magnetohydrodynamics 
(MHD). Physicists have understood the 
behaviour of macro-instabilities and they showed 
how to avoid the most destructive of them, but 
small-scale gradient driven micro-instabilities are 
still a serious obstacle for having a stable plasma 
for a large range of parameters. Micro-
instabilities are described by models which 
include, e.g. finite Larmor radius (FLR) and 
collision less dissipative effects in plasmas. Time 
and length scales of micro-instabilities are 
comparable to the turbulent length scales and the 
length scales of transport coefficients. In general, 
the FLR effect is neglected. However, when the 

Larmor radius becomes comparable to the 
hydromagnetic length of the problem (e.g. 
wavelength) or the gyration frequency of ions in 
the magnetic field is of the same order as the 
wave frequency, finiteness of the Larmor radius 
must be taken into account. Strictly speaking, the 
space and time scale for the breakdown of 
hydromagnetics are on the respective scales of 
ion gyration about the field, and the ion Larmor 
frequency. Finite Larmor radius effect on plasma 
instabilities has been the subject of many 
investigations. In many astrophysical plasma 
situations such as in solar corona, interstellar and 
interplanetary plasmas the assumption of zero 
Larmor radius is not valid. The effects of 
finiteness of the ion Larmor radius, showing up 
in the form of a magnetic viscosity in the fluid 
equations, have been studied by Rosenbluth et al. 
[2], Roberts and Taylor [3], Vandakurov [4] and 
Jukes [5]. Melchior and Popowich [6] have 
considered the finite Larmor radius (FLR) effect 
on the Kelvin-Helmholtz instability of a fully 
ionized plasma, while the effect on the Rayleigh-
Taylor instability has been studied by Singh and 
Hans [7]. Sharma [8] has studied the effect of a 
finite Larmor radius on the thermal instability of 
a plasma. Hernegger [9] investigated the 
stabilizing effect of FLR on thermal instability 
and showed that thermal criterion is changed by 
FLR for wave propagation perpendicular to the 
magnetic field. Sharma [10] investigated the 
stabilizing effect of FLR on thermal instability of 
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rotating plasma. Ariel [11] discussed the 
stabilizing effect of FLR on thermal instability of 
conducting plasma layer of finite thickness 
surrounded by a non-conducting matter. Vaghela 
and Chhajlani [12] studied the stabilizing effect 
of FLR on magneto-thermal stability of resistive 
plasma through a porous medium with thermal 
conduction. Bhatia and Chhonkar [13] 
investigated the stabilizing effect of FLR on the 
instability of a rotating layer of self-gravitating 
plasma incorporating the effects of viscosity and 
Hall current. Vyas and Chhajlani [14] pointed 
out the stabilizing effect of FLR on the thermal 
instability of magnetized rotating plasma 
incorporating the effects of viscosity, finite 
electrical conductivity, porosity and thermal 
conductivity. Kaothekar and Chhajlani [15] 
investigated the problem of Jeans instability of 
self-gravitating rotating radiative plasma with 
finite Larmor radius corrections. The frictional 
effect of collisions of ionized with neutral atoms 
on Rayleigh-Taylor instability of a composite 
plasma in porous medium has been considered 
by Kumar and Mohan [16]. Thus FLR effect is 
an important factor in the discussion of thermal 
convection and other hydromagnetic instabilities.  

The investigation of double-diffusive convection 
is motivated by its interesting complexities as a 
double-diffusion phenomena as well as its direct 
relevance to geophysics and astrophysics. The 
conditions under which convective motion in 
double-diffusive convection are important (e.g. 
in lower parts of the Earth’s atmosphere, 
astrophysics, and several geophysical situations) 
are usually far removed from the consideration of 
a single component fluid and rigid boundaries 
and therefore it is desirable to consider  a fluid 
acted on by a solute gradient and free boundaries. 
The problem of thermohaline convection in a 
layer of fluid heated from below and subjected to 
a stable salinity gradient has been considered by 
Veronis [17]. The physics is quite similar in the 
stellar case in that helium acts like salt in raising 
the density and in diffusing more slowly than 
heat. The problem is of great importance because 
of its application to atmospheric physics and 
astrophysics, especially in the case of the 
ionosphere and the outer layer of the atmosphere. 
The thermosolutal convection problems also 
arise in oceanography, limnology and 
engineering. For thermal and thermohaline 
convection problems, the Boussinesq 
approximation has been used, which is well 
justified in the case of incompressible fluids.  

When the fluids are compressible, the equations 
governing the system become quite complicated. 
Spiegel and Venonis [18] have simplified the set 
of equations governing the flow of compressible 
fluids under the assumptions that (a) the depth of 
the fluid layer is much less than the scale height, 
as defined by them, and (b) the fluctuations in 
temperature, density, and pressure, introduced 
due to motion; do not exceed their total static 
variations. 

Under the above approximations, the flow 
equations are the same as those for 
incompressible fluids, except that the static 
temperature gradient is replaced by its excess 
over the adiabatic one and 𝐶𝑣 is replaced by 𝐶𝑝. 
Using these approximations, Sharma [19] has 
studied the thermal instability in compressible 
fluids in the presence of rotation and a magnetic 
field. In another study, Sharma and Sharma [20] 
have considered the thermosolutal instability of a 
plasma including the finite Larmor radius effect. 

In the stellar case, the physics is quite similar to 
Veronis [17] thermohaline configuration, in that 
helium acts like salt in raising the density and in 
diffusing more slowly than heat. The problem of 
the onset of thermal instability in the presence of 
a solute gradient is of great importance because 
of its application to atmospheric physics and 
astrophysics, especially in the case of the 
ionosphere and the outer layer of the solar 
atmosphere (Spiegel [21]). The finite Larmor 
radius and compressibility effects are likely to be 
important in these regions.  

Keeping in mind the importance of various 
parameters like compressibility, finite Larmor 
radius; in geophysics (e.g. Earth’s molten core), 
soil sciences, atmospheric physics, astrophysics, 
and various applications mentioned above, our 
interest, in the present paper, is to bring out the 
effects of compressibility and finite Larmor 
radius on the thermosolutal instability of a 
plasma. 

 

       

2 Description of the Problem and 
Perturbation Equations 

Consider an infinite, horizontal, compressible, 
viscous, and conducting plasma layer of depth 𝑑, 
heated and soluted from below so that the 
temperature, density and solute concentrations at 
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the bottom surface 𝑧 = 0 are 𝑇0, 𝜌0 , and 𝐶0 and 
at the upper surface 𝑧 = 𝑑 are 𝑇𝑑  , 𝜌𝑑 and 𝐶𝑑 , 
respectively, and that a uniform temperature 
gradient 𝛽(= |𝑑𝑇 𝑑𝑧⁄ |) and uniform solute 
gradient 𝛽′(= |𝑑𝐶 𝑑𝑧⁄ |) are maintained. The 
gravity force 𝑔⃗(0,0, −𝑔) and uniform magnetic 
field 𝐻⃗⃗⃗(0,0, 𝐻) pervade the system. 

Speigel and Veronis’ [18] defined 𝑓 as any of the 
state variables (pressure (𝑝), density (𝜌) or 
temperature (𝑇)) and expressed these in the form 

𝑓(𝑥, 𝑦, 𝑧, 𝑡)
= 𝑓𝑚 + 𝑓0(𝑧) + 𝑓′(𝑥, 𝑦, 𝑦, 𝑡) ,                            (1) 

where 𝑓𝑚 is the constant space average of 𝑓, 𝑓0 is 
the variation in the absence of motion and 𝑓′ is 
the fluctuation from motion. 

The initial state is therefore a state in which the 
density, pressure, temperature, solute 
concentration and velocity at any point in the 
plasma are given by 

𝜌 = 𝜌(𝑧), 𝑝 = 𝑝(𝑧), 𝑇 = 𝑇(𝑧), 𝐶 = 𝐶(𝑧), 𝑣
= 0 ,                                                                    (2) 

respectively, where 

𝑇(𝑧) = 𝑇0 − 𝛽𝑧 ,             𝐶(𝑧) = 𝐶0 − 𝛽′𝑧  , 

𝑝(𝑧) = 𝑝𝑚 − 𝑔 ∫(𝜌𝑚 + 𝜌0) 𝑑𝑧,   

𝑧

0

 

𝜌(𝑧) = 𝜌𝑚[1 − 𝛼𝑚(𝑇 − 𝑇𝑚) + 𝛼𝑚
′ (𝐶 − 𝐶𝑚)

+ 𝐾𝑚(𝑝 − 𝑝𝑚)] , 

𝛼𝑚 = − (
1

𝜌

𝜕𝜌

𝜕𝑇
)

𝑚

 ,        𝛼𝑚
′ = − (

1

𝜌

𝜕𝜌

𝜕𝐶
)

𝑚

 ,   𝐾𝑚

= (
1

𝜌

𝜕𝜌

𝜕𝑝
)

𝑚

.                            (3) 

The linearized hydromagnetic perturbation 
equations appropriate to the problem are 

𝜕𝑣⃗

𝜕𝑡
= − (

1

𝜌𝑚
) ∇𝛿𝑝 − (

1

𝜌𝑚
) ∇𝑃 + 𝜈∇2𝑣⃗

+
𝜇𝑒

4𝜋𝜌𝑚
(∇ × ℎ⃗⃗) × 𝐻⃗⃗⃗

+ 𝑔⃗ (
𝛿𝜌

𝜌𝑚
) ,                          (4) 

∇. 𝑣⃗ = 0 ,                                                           (5) 

𝜕𝜃

𝜕𝑡
= (𝛽 −

𝑔

𝐶𝑝
) 𝜔 + 𝜅∇2𝜃 ,                               (6) 

𝜕𝛾

𝜕𝑡
= 𝛽′𝑤 + 𝜅′∇2𝛾 ,                                              (7) 

𝜕ℎ⃗⃗

𝜕𝑡
= (𝐻⃗⃗⃗. ∇)𝑣⃗ + 𝜂∇2ℎ⃗⃗  ,                                       (8) 

∇. ℎ⃗⃗ = 0 ,                                                                  (9) 

where 𝛿𝜌, 𝛿𝑝 , 𝑣⃗(𝑢 , 𝑣, 𝑤) , ℎ⃗⃗(ℎ𝑥 , ℎ𝑦, ℎ𝑧), 𝜃   and 
𝛾denote, respectively, the perturbations in 𝜌 and 
𝑝 , the velocity, and the perturbations in the 
magnetic field 𝐻⃗⃗⃗ , 𝑇 and 𝐶 , 𝜇 , 𝜈(= 𝜇 𝜌𝑚⁄ ) , 𝜇𝑒 ,

𝜅 , 𝜅′ , 𝑔 𝐶𝑝,   𝜂⁄  and 𝑃 stand for viscosity, 
kinematic viscosity, magnetic permeability, 
thermal diffusivity, solute diffusivity, adiabatic 
gradient, resistivity and stress tensor taking into 
account the finite Larmor radius effects, 
respectively. 

The equation of state 

𝜌 = 𝜌𝑚[1 − 𝛼(𝑇 − 𝑇𝑚) + 𝛼′(𝐶 − 𝐶𝑚)] ,   (10) 

contains the thermal coefficient of expansion 𝛼 
and an analogous solute coefficient 𝛼′. The 
change in density is caused mainly by the 
temperature and solute concentration, and the 
suffix 𝑚 refers to values at the reference level 
𝑧 = 0. The change in density 𝛿𝜌, caused by the 
perturbations 𝜃 and 𝛾 is given by 

𝛿𝜌 = −𝜌𝑚(𝛼𝜃 − 𝛼′𝛾) .                                   (11) 

For the magnetic field along the z-axis the stress 
tensor 𝑃, taking into account the finite ion 
gyration radius (Vandakurov [4]), has the 
components 

𝑃𝑥𝑥 = −𝜌𝑚𝜈0 (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) , 

𝑃𝑥𝑦 = 𝑃𝑦𝑥 = 𝜌𝑚𝜈0 (
𝜕𝑢

𝜕𝑥
−

𝜕𝑣

𝜕𝑦
) , 

𝑃𝑥𝑧 = 𝑃𝑧𝑥 = −2𝜌𝑚𝜈0 (
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
) , 

𝑃𝑦𝑦 = 𝜌𝑚𝜈0 (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) , 

𝑃𝑦𝑧 = 𝑃𝑧𝑦 = 2𝜌𝑚𝜈0 (
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
) ,     𝑃𝑧𝑧

= 0  ,                                         (12) 

where  𝜌𝑚𝜈0 = 𝑁𝑇 4𝜔𝐻 , 𝜔𝐻⁄  being the ion 
gyration frequency, while N and T are the 
number density and temperature of the ions, 
respectively. 
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3 The Dispersion Relation 
Analyzing the disturbances into normal modes, 
we assume that the perturbation quantities are of 
the form 

[𝑤, ℎ𝑧, 𝜁, 𝜉, 𝜃, 𝛾]

= [𝑊(𝑧), 𝐾(𝑧), 𝑍(𝑧), 𝑋(𝑧), Θ(𝑧), Γ(𝑧)]𝑒𝑥𝑝(𝑖𝑘𝑥𝑥

+ 𝑖𝑘𝑦𝑦 + 𝑛𝑡),                                                      (13) 

where 𝑘𝑥 and 𝑘𝑦 are the wave numbers in the 𝑥 

and 𝑦 directions, respectively, 𝑘 = (𝑘𝑥
2 + 𝑘𝑦

2)
1 2⁄

 
is the resultant wave number, and 𝑛 is the growth 
rate, which is, in general, a complex constant. 

𝜁 =
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
 𝑎𝑛𝑑 𝜉 =

𝜕ℎ𝑦

𝜕𝑥
−

𝜕ℎ𝑥

𝜕𝑦
 , 

stand for the 𝑧 −components of vorticity and 
current density, respectively. 

Expressing the coordinates 𝑥, 𝑦, 𝑧 in the new unit 
of length 𝑑 and letting 𝑎 = 𝑘𝑑, 𝜎 = 𝑛𝑑2 𝜈⁄ , 𝑝1 =
𝜈 𝜅⁄ , 𝑝2 = 𝜈 𝜂⁄ , 𝑞 =
𝜈 𝜅′, 𝐺 = 𝐶𝑝𝛽 𝑔⁄  𝑎𝑛𝑑 𝐷 = 𝑑 𝑑𝑧⁄  ,⁄ equations 
(4)-(9), with the help of equations (11)-(13) in 
non-dimensional form, become 

(𝐷2 − 𝑎2)(𝐷2 − 𝑎2 − 𝜎)𝑊

− (
𝑔𝑑2

𝜈
) 𝑎2(𝛼Θ − 𝛼′Γ)

+
𝜇𝑒𝐻𝑑

4𝜋𝜌𝑚𝜈
(𝐷2 − 𝑎2)𝐷𝐾

− (
𝜈0𝑑

𝜈
) (2𝐷2 + 𝑎2)𝐷𝑍

= 0 ,                                        (14) 

(𝐷2 − 𝑎2 − 𝜎)𝑍

= −
𝜇𝑒𝐻𝑑

4𝜋𝜌𝑚𝜈
𝐷𝑋

− (
𝜈0

𝜈𝑑
) (2𝐷2 + 𝑎2)𝐷𝑊 ,                                  (15) 

(𝐷2 − 𝑎2 − 𝑝1𝜎)Θ

= −
𝑑2

𝜅
(𝛽 −

𝑔

𝐶𝑝
) 𝑊 ,           (16) 

(𝐷2 − 𝑎2 − 𝑞𝜎)Γ = −
𝛽′𝑑2

𝜅′
𝑊 ,                     (17) 

(𝐷2 − 𝑎2 − 𝑝2𝜎)𝐾 = − (
𝐻𝑑

𝜂
) 𝐷𝑊 ,               (18) 

(𝐷2 − 𝑎2 − 𝑝2𝜎)𝑋 = − (
𝐻𝑑

𝜂
) 𝐷𝑍 .                 (19) 

Consider the case where both boundaries are free 
as well as perfect conductors of both heat and 
solute, while the adjoining medium is electrically 
nonconducting. The boundary conditions for this 
case, using (13), are 

𝑊 = 𝐷2𝑊 = 0, 𝐷𝑍 = 𝑋 = Θ = Γ = 0 and ℎ⃗⃗ are 
continuous at 𝑧 = 0 and 1.                          (20)                              
Eliminating 𝑍, 𝐾, 𝑋 , Θ and Γ between equations 
(14)-(19) and substituting the proper solution 
𝑊 = 𝑊0 sin 𝜋𝑧 , 𝑊0 being a constant, in the 
resultant equation, we obtain the dispersion 
relation 

𝑅1𝑥

= (
𝐺

𝐺 − 1
) [(1 + 𝑥)(1 + 𝑥 + 𝑖𝜎1)(1 + 𝑥

+ 𝑖𝑝1𝜎1) + 𝑆1𝑥
(1 + 𝑥 + 𝑖𝑝1𝜎1)

(1 + 𝑥 + 𝑖𝑞𝜎1)

+
𝑄1(1 + 𝑥)(1 + 𝑥 + 𝑖𝑝1𝜎1)

(1 + 𝑥 + 𝑖𝑝2𝜎1)

+
𝑈(2 − 𝑥)2(1 + 𝑥 + 𝑖𝑝1𝜎1)(1 + 𝑥 + 𝑖𝑝2𝜎1)

(1 + 𝑥 + 𝑖𝜎1)(1 + 𝑥 + 𝑖𝑝2𝜎1) + 𝑄1
],   (21) 

where 

𝑅1 =
𝑔𝛼𝛽𝑑4

𝜈𝜅𝜋4
 , 𝑆1 =

𝑔𝛼′𝛽′𝑑4

𝜈𝜅′𝜋4
 , 𝑄1

=
𝜇𝑒𝐻2𝑑2

4𝜋𝜌𝑚𝜈𝜂𝜋2
 𝑎𝑛𝑑 𝑈 =

𝜈0
2

𝜈2
 . 

 

 

4 The Stationary Convection 
For the stationary convection one has 𝜎 = 0 and 
equation (21) reduces to 

𝑅1 = (
𝐺

𝐺 − 1
) [(

1 + 𝑥

𝑥
) {(1 + 𝑥)2 + 𝑄1}

+
𝑈(2 − 𝑥)2(1 + 𝑥)2

𝑥{(1 + 𝑥)2 + 𝑄1}

+ 𝑆1] ,                                      (22) 

which expresses the modified Rayleigh number 
𝑅1as a function of the dimensionless wave 
number 𝑥 and the parameters 𝑆1 , 𝑄1 , 𝑈 and 𝐺. 
For fixed values of 𝑄1 , 𝑆1and 𝑈, let the non-
dimensional number 𝐺 accounting for the 
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compressibility effects be also kept as fixed. 
Then we find that 

𝑅̅𝑐 = (
𝐺

𝐺 − 1
) 𝑅𝑐  ,                                               (23) 

where 𝑅𝑐 and 𝑅̅𝑐 denote the critical Rayleigh 
numbers in the absence and presence of 
compressibility. The effect of compressibility is, 
thus, to postpone the onset of thermal instability. 
The case 𝐺 > 1 is relevant here as 𝐺 = 1 and 
𝐺 < 1 corresponds to infinite and negative 
Rayleigh numbers. Hence we obtain a stabilizing 
effect of compressibility. It is evident from 
equation (22) that 

𝑑𝑅1

𝑑𝑈

= (
𝐺

𝐺 − 1
)

(2 − 𝑥)2(1 + 𝑥)2

𝑥[(1 + 𝑥)2 + 𝑄1]
 ,                       (24) 

and 

𝑑𝑅1

𝑑𝑆1
= (

𝐺

𝐺 − 1
) ,                                                (25) 

which are positive. The stable solute gradient and 
finite Larmor radius, therefore, stabilize 
thermosolutal instability of a plasma. 

 

5 Some Important Theorems 
Theorem 1: The system is stable for 𝐺 < 1. 

Proof: Multiplying equation (14) by 𝑊∗, the 
complex conjugate of 𝑊, and using equations 
(15)-(19)  together with the boundary conditions 
(20), we obtain 

(𝐼1 + 𝜎𝐼2) +
𝑔𝛼′𝜅′𝑎2

𝜈𝛽′
(𝐼5 + 𝑞𝜎∗𝐼6)

+ 𝑑2(𝐼7 + 𝜎∗𝐼8) +
𝜇𝑒𝜂𝑑2

4𝜋𝜌𝑚𝜈
(𝐼9 + 𝑝2𝜎𝐼10)

+
𝜇𝑒𝜂

4𝜋𝜌𝑚𝜈
(𝐼11 + 𝑝2𝜎∗𝐼12)

=
𝐶𝑝𝛼𝜅𝑎2

𝜈(𝐺 − 1)
(𝐼3

+ 𝑝1𝜎∗𝐼4) ,                                  (26) 

where 

 𝐼1 = ∫(|𝐷2𝑊|2 + 2𝑎2|𝐷𝑊|2 + 𝑎4|𝑊|2)𝑑𝑧,

1

0

𝐼2 = ∫(|𝐷𝑊|2 + 𝑎2|𝑊|2)𝑑𝑧,

1

0

 

𝐼3 = ∫(|𝐷Θ|2 + 𝑎2|Θ|2)𝑑𝑧,   𝐼4 = ∫|Θ|2𝑑𝑧   ,

1

0

1

0

 

𝐼5 = ∫(|𝐷Γ|2 + 𝑎2|Γ|2)𝑑𝑧 ,     𝐼6 = ∫|Γ|2 𝑑𝑧  ,

1

0

1

0

 

 𝐼7 = ∫(|𝐷𝑍|2 + 𝑎2|𝑍|2)𝑑𝑧 ,     𝐼8 = ∫|𝑍|2 𝑑𝑧   ,

1

0

1

0

 

𝐼9 = ∫(|𝐷𝑋|2 + 𝑎2|𝑋|2)𝑑𝑧 ,    𝐼10 = ∫|𝑋|2 𝑑𝑧  ,

1

0

1

0

 

𝐼11 = ∫(|𝐷2𝐾|2 + 2𝑎2|𝐷𝐾|2 + 𝑎4|𝐾|2)𝑑𝑧  ,

1

0

 

𝐼12 = ∫(|𝐷𝐾|2 + 𝑎2|𝐾|2)𝑑𝑧  .                         (27)

1

0

 

The integrals 𝐼1 −  𝐼12 are all positive definite. 
Putting 𝜎 = 𝜎𝑟 + 𝑖𝜎𝑖 and equating the real and 
imaginary parts of equation (26), we obtain 

[𝐼2 +
𝑔𝛼′𝜅′𝑎2

𝜈𝛽′
𝑞𝐼6 +

𝜇𝑒𝜂

4𝜋𝜌𝑚𝜈
𝑝2𝐼12

+
𝜇𝑒𝜂𝑑2

4𝜋𝜌𝑚𝜈
𝑝2𝐼10 + 𝑑2𝐼8

+
𝐶𝑝𝛼𝜅𝑎2

𝜈(1 − 𝐺)
𝑝1𝐼4] 𝜎𝑟

= − [𝐼1 +
𝑔𝛼′𝜅′𝑎2

𝜈𝛽′
𝐼5

+
𝜇𝑒𝜂

4𝜋𝜌𝑚𝜈
𝐼11 +

𝜇𝑒𝜂𝑑2

4𝜋𝜌𝑚𝜈
𝐼9

+ 𝑑2𝐼7 +
𝐶𝑝𝛼𝜅𝑎2

𝜈(1 − 𝐺)
𝐼3],        (28) 

and 
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[𝐼2 −
𝑔𝛼′𝜅′𝑎2

𝜈𝛽′
𝑞𝐼6 −

𝜇𝑒𝜂

4𝜋𝜌𝑚𝜈
𝑝2𝐼12

+
𝜇𝑒𝜂𝑑2

4𝜋𝜌𝑚𝜈
𝑝2𝐼10 − 𝑑2𝐼8

+
𝐶𝑝𝛼𝜅𝑎2

𝜈(𝐺 − 1)
𝑝1𝐼4] 𝜎𝑖 = 0 .   (29) 

It is evident from equation (28) that 𝜎𝑟 is 
negative if 𝐺 < 1. The system is therefore stable 
for 𝐺 < 1.  

Theorem 2: The modes may be oscillatory or 
non-oscillatory in contrast to the case of no 
magnetic field and in the absence of finite 
Larmor radius and stable solute gradient where 
modes are non-oscillatory, for 𝐺 > 1.  

Proof: It is clear from equation (29) that, for 𝐺 >
1, 𝜎𝑖 may be zero or nonzero, meaning that the 
modes may be non-oscillatory or oscillatory. The 
oscillatory modes are introduced due to the 
presence of a magnetic field, a finite Larmor 
radius and a solute gradient.  

In the absence of a magnetic field and solute 
gradient, equation (29) gives 

[𝐼2 +
𝐶𝑝𝛼𝜅𝑎2

𝜈(𝐺 − 1)
𝑝1𝐼4] 𝜎𝑖 = 0,                             (30) 

and the terms in brackets are positive when 𝐺 >
1. Thus 𝜎𝑖 = 0, which means that oscillatory 
modes are not allowed and the principle of 
exchange of stabilities is satisfied, but in the 
presence of solute gradient, magnetic field and 
finite Larmor radius effects, the oscillatory 
modes come into play. 

Theorem 3: The system is stable for 1

𝐺−1

𝐶𝑝𝛼𝜅

𝜈
≤

27𝜋4

4
 and under the condition 1

𝐺−1

𝐶𝑝𝛼𝜅

𝜈
>

27𝜋4

4
, the 

system becomes unstable. 

Proof: From equation (29) it is clear that 𝜎𝑖 is 
zero when the quantity multiplying it is not zero 
and arbitrary when this quantity is zero. 

If 𝜎𝑖 ≠ 0, equation (28) upon utilizing (29) and 
the Rayleigh-Ritz inequality gives 

[
27𝜋4

4
−

1

𝐺 − 1

𝐶𝑝𝛼𝜅

𝜈
] ∫ |𝑊|2𝑑𝑧

1

0

+
𝜋2 + 𝑎2

𝑎2 {
𝜇𝑒𝜂

4𝜋𝜌𝑚𝜈
𝐼11

+
𝜇𝑒𝜂𝑑2

2𝜋𝜌𝑚𝜈
𝑝2𝐼10𝜎𝑟 +

𝜇𝑒𝜂𝑑2

4𝜋𝜌𝑚𝜈
𝐼9

+ 𝑑2𝐼7 +
𝑔𝛼′𝜅′𝑎2

𝜈𝛽′
𝐼5}

≤ 0,                                           (31) 

since the minimum value of  (𝜋2+𝑎2)
3

𝑎2  with 

respect to 𝑎2 is 27𝜋4

4
. 

Now, let 𝜎𝑟 ≥ 0, we necessarily have from 
inequality (31) that  

                              
1

𝐺 − 1

𝐶𝑝𝛼𝜅

𝜈
>

27𝜋4

4
.           (32) 

 Hence, if  

                                    
1

𝐺 − 1

𝐶𝑝𝛼𝜅

𝜈
≤

27𝜋4

4
,     (33) 

then 𝜎𝑟 < 0. Therefore, the system is stable. 

Thus, under the condition (33), the system is 
stable and under condition (32) the system 
becomes unstable. 

Theorem 4:  𝜅 < 𝜂, 𝜅 < 𝜅′ and 𝜅 < 𝜈 are 
sufficient conditions for the non-existence of 
overstability. 

Proof: For overstability, we wish to determine 
the critical Rayleigh number for the onset of 
instability via a state of pure oscillations, it is 
suffice to find conditions for which equation (21) 
will admit of solutions with 𝜎1 real. Equating the 
real and imaginary parts of equation (21) and 
eliminating 𝑅1 between them, we obtain 

𝐴4𝑐4 + 𝐴3𝑐3 + 𝐴2𝑐2 + 𝐴1𝑐 + 𝐴0 = 0 ,        (34) 

where we have written 𝑐 = 𝜎1
2, 𝑏 = 1 + 𝑥 and 

𝐴4 = 𝑝2
4𝑞2(1 + 𝑝1)𝑏 ,                                       (35) 

𝐴0 = 𝑏2(𝑏2 + 𝑄1)2[(1 + 𝑝1)𝑏3

+ 𝑆1(𝑝1 − 𝑞)(𝑏 − 1)
+ 𝑄1(𝑝1 − 𝑝2)𝑏]
+ 𝑈𝑏4(3 − 𝑏)2[(𝑝1 − 1)𝑏2

+ 𝑄1(𝑝1 + 𝑝2)] .                    (36) 

The four values of 𝑐, 𝜎1 being real, are positive. 
The product of the roots is 𝐴0 𝐴4⁄ , which is 
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positive if 𝐴0 > 0 (since from equation (35), 
𝐴4 > 0). It is clear from equation (36) that 𝐴0 is 
always positive if 

𝑝1 > 𝑝2 , 𝑝1 > 𝑞 , 𝑝1 > 1 .                                 (37) 

This means that 

𝜅 < 𝜂 , 𝜅 < 𝜅′ ,
𝑎𝑛𝑑     𝜅 < 𝜈 .                      (38) 

Thus 𝜅 < 𝜂, 𝜅 < 𝜅′ and 𝜅 < 𝜈 are the sufficient 
conditions for the non-existence of overstability, 
the violation of which does not necessarily imply 
the occurrence of overstability. 

 

 

6 Conclusions 
Formation of stars in the interstellar medium is 
one of the most fascinating and important 
process in plasma astrophysics. The birth of stars 
is a vast field of research in modern astrophysics 
and cosmology. The thermosolutal instability of 
a compressible plasma due to the effects of the 
ion Larmor radius  is considered in the present 
paper. The investigation is motivated by its 
interesting complexities as a double diffusion 
phenomena as well as its direct relevance to 
astrophysics and geophysics. Thermosolutal 
convection problems arise in oceanography, 
limnology and engineering. Ponds built to trap 
solar heat and some Antarctic lakes provide 
examples of particular interest. The main 
conclusions from the analysis of this paper are as 
follows: 

 For the case of stationary convection, the 
stable solute gradient and finite Larmor 
radius are found to have stabilizing 
effects on the system. 

 The system is found to be stable for 
(𝐶𝑝 𝑔⁄ )𝛽 < 1. 

 The finite Larmor radius and the 
compressibility introduce oscillatory 
modes in the system for  (𝐶𝑝 𝑔⁄ )𝛽 > 1. 

 It is observed that the system is stable for 
1

𝐺−1

𝐶𝑝𝛼𝜅

𝜈
≤

27𝜋4

4
 and under the condition 

1

𝐺−1

𝐶𝑝𝛼𝜅

𝜈
>

27𝜋4

4
, the system becomes 

unstable. 
 The case of overstability is also 

considered. The conditions  𝜅 < 𝜂, 𝜅 <
𝜅′ and 𝜅 < 𝜈 are the sufficient 

conditions for the non-existence of 
overstability, the violation of which does 
not necessarily imply the occurrence of 
overstability. 
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