Empirical Formulae for Parameterization of Unavailable Solar Radiation in Nigeria

EYUBE EDWIN SAMSON Department of Physics School of Physical Sciences Modibbo Adama University of Technology P.M.B. 2076, Yola, Adamawa State NIGERIA edwineyubes@mautech.edu.ng

> SANDA AMASUWA Department of Natural Sciences School of Sciences College of Education P.M.B. 011, Billiri, Gombe State NIGERIA samasuwa30@gmail.com

WADATA UMAR

Department of Physics School of Sciences Aminu Saleh College of Education P.M.B. 044, AZARE, Bauchi State NIGERIA <u>umarwadata72@gmail.com</u>

Abstract: - The usefulness of empirical formulae for parameterization of unavailable solar radiation in Nigeria cannot be over emphasized owing to the availability of the solar radiation as well as the need for its conversion to other usable solar systems. In this paper we have obtained empirical formulae for parameterization of unavailable solar radiation for fourteen meteorological stations in Nigeria: Bauchi, Bida, Enugu, Gusau, Ikom, Jos, Kano, Maiduguri, Minna, Nguru, Potiskum, Yelwa, Yola and Zaria. Most of the stations studied showed high correlation for seasonal fits ($R_a^2 \ge 0.97$). For yearly fits, relative humidity appears to be an important climatological parameter for Enugu, Jos and Potiskum, while this is not a determining factor for Ikom and Nguru

Key words: parameterization, relative humidity, best fit, regression

1 Introduction

In the design of solar systems, accurate knowledge of solar radiation data gained over a considerable time period is indispensable. However, because of uncertainty in the past of solar radiation equipment, and due to their high cost and unavailability of truly time insolation data, scientist have developed mathematical model equations to be used to estimate total solar radiation on a horizontal surface, H, clearness index, H/H_0 (H_0 is the total extraterrestrial solar radiation on a horizontal surface) or unavailable solar radiation, $H_0 - H$ in terms of climatological independent variables such as cloud cover, C, relative humidity, R, maximum air temperature, T_m or relative sunshine duration, S/S_0 (S is the bright sunshine duration and S_0 daylength both in hours) [1] – [8]. In their work, Aidan *et al.* [1] showed that there is high correlation between unavailable solar radiation and any one of

relative sunshine duration, relative humidity or cloud cover, a five parameter model equations which correlates H/H_0 or $H_0 - H$ in terms of S/S_0 , R and C was proposed, the equations were applied to seven meteorological stations in Nigeria: Bauchi, Jos, Kano, Maiduguri, Nguru, Potiskum and Yola, the result showed highest correlation for most of the stations when $H_0 - H$ was used as the dependent variable, except for Kano, Nguru and Yola where H/H_0 gives the highest correlation for seasonal fits, also, the result does not specify which of the independent variables S/S₀, R or C is more relevant in contributing to the higher correlation in the five parameter model equations. In this paper, we have proposed a five and a seven parameter model equations which models $H_0 - H$ in terms of only two independent variables S/S0 and C as a means of solving these problems, the equations were applied to fourteen meteorological stations in Nigeria: Bauchi, Bida, Enugu, Gusau, Ikom, Jos, Kano, Maiduguri, Minna, Nguru, Potiskum, Yelwa, Yola and Zaria.

2 Model Equations

Aidan *et al.* proposed model equation for modelling unavailable solar radiation of the form [1]

$$H' = \alpha_0 + \alpha_1 (S / S_0) + \alpha_2 R + \alpha_3 C + \alpha_{23} R C$$
(1)

where $H' = H_0 - H$ is the unavailable solar radiation and the α_i s are constant coefficients, the equation has been used on seven Nigerian meteorological stations, viz: Bauchi, Jos, Kano, Maiduguri, Nguru, Potiskum and Yola [1].

In this paper, we have proposed two model equations given by:

$$H' = \alpha_0 + \alpha_3 (1/C) + \alpha_{33} (1/C^2) + \alpha_{133} (S/S_0) (1/C^2) + \alpha_{11} (S/S_0)^2$$
(2)

and

$$H' = \alpha_{00} + \alpha_{01} (1/C) + \alpha_{02} (1/C^{2}) + \alpha_{11} (S/S_{0}) (1/C) + \alpha_{12} (S/S_{0}) (1/C^{2}) + \alpha_{20} (S/S_{0})^{2} + \alpha_{21} (S/S_{0}) (1/C) (3)$$

Equations (2) and (3) are derivable from the general form $H' = \sum_{i,j=0}^{2} \alpha_{ij} (S/S_0)^i (1/C^j)$, proposed by J.C.

Ododo

3 Data and Analysis

The data for the fourteen (14) stations (Bauchi, Bida, Enugu, Gusau, Ikom, Jos, Kano, Maiduguri, Minna, Nguru, Potiskum, Yelwa, Yola and Zaria) have been tabulated elsewhere [1], [6] - [8]. Multiple linear regression were carried out on equations (1), (2) and (3) for both yearly and seasonal variations, seasonal variations the considered were the dry (November - April) and wet (May - October) seasons. For reasons explained by [6] - [8], seasonal variation were carried out on equations (1) and (2) only. The goodness-of-fit indices used are: the adjusted coefficient of determination (R_a^2) , standard error (SeH'), largest percentage error (LPE), Absolute Average Percentage Error (AAPE) and the residual sum of squares (Δ) , the seasonal variation and the goodness-of-fit indices are defined elsewhere [6-8].

4 Results and Discussion

4.1 Bauchi (10.6371[°]N, 10.0807[°]E)

Table 1 shows the regression parameters for both yearly and seasonal variation, equation (1) with R_a^2 = 0.9925, LPE = 2.7% gives the best fit for the data, however, SeH' = 0.2391 is relatively high. On the other hand if we consider seasonal fits, equation (2), with $R_a^2 > 0.999$ gives best fit for both dry and wet seasons, SeH' = 0.0394 for the dry season and 0.0082 for the wet season. The applicability of equation (2) to seasonal fits also confirms that relative humidity is not a useful climatological variable for estimating unavailable solar radiation for seasonal data this is because this equation is independent of relative humidity. We have also shown a plot of observed and best fit unavailable solar radiation versus months (Fig. 1), where it can be seen that yearly variation ($\Delta = 0.51$) shows tight fit between observed and best fit equation. The result for seasonal variation where $\Delta \approx 0$ indicates a near perfect fit between the observed and best fit

equation, this means that seasonal fit is quite satisfactory.

Table 1. Regression parameters for fits using relative sunshine duration, relative humidity and	ł
cloud cover	

Bauchi	Yearly var	riation Seasonal variation					
				Dry season			l
	Eqn (1)	Eqn (2)	Eqn (3)	Eqn (1)	Eqn (2)	Eqn (1)	Eqn (2)
$lpha_{_0}$	24.0364	39.8729	99.6224	0.4884	43.5709	33.7065	-1131.3292
α_1	-15.5182			-1.5303		-23.7924	
$lpha_2$	-2.4357			14.0669		-1.2337	
α_{3}	0.0821	-78.0368	-926.1143	3.6878	-411.6194	-0.6986	20598.2334
$\alpha_{_{11}}$		-28.4843	-21.6088		44.1663		-1540.0885
$\alpha_{_{13}}$			-608.1706				
$\alpha_{_{23}}$	1.1770	-348.3967		-4.8506	1740.3520	0.9486	- 102177.3660
$\alpha_{_{33}}$			5479.8820				
$\alpha_{_{113}}$			1414.1836		- 1306.4823		66534.3771
$\alpha_{_{133}}$		653.3929	- 5767.2659				
Se H'	0.2391	0.5429	0.3999	0.1888	0.0394	0.1823	0.0082
R_a^2	0.9925	0.9611	0.9789	0.9857	0.9994	0.9909	1.0000
Δ	0.40	2.06	0.80	0.04	0.00	0.03	0.00
LPE(%)	2.7	5.7	3.3	1.0	0.3	0.8	0.0
AAPE(%)	0.9	2.0	1.1	0.4	0.1	0.3	0.0

Fig. 1 plots of observed and fitted unavailable solar radiation

4.2 Bida (9.0797⁰N, 6.0097⁰E)

Table 2 list the regression parameters for both yearly and seasonal variation, also shown in Fig. 2 is the corresponding plots of observed and best fit equation against months. From the Table, equation (1) with $R_a^2 = 0.9201$ for yearly variation gives the best fit equation with relatively larges values of LPE

and Se H', from the plot it can be seen that the curves of observed and best fit equation shows significant deviations ($\Delta = 6.4$) between the months of February – May as well as between June – September, this shows that yearly fit is not quite satisfactory. For seasonal fits, like for yearly variation, equation (1) is the best fit equation and also re-affirms the usefulness of relative humidity for estimating unavailable solar radiation for the

data. However, from the plot in Fig. 2 dry season ($\Delta = 0.12$) gives an excellent fit as opposed to wet season ($\Delta = 2.69$), where the deviation between the two curves between June – September is significant.

The values of SeH' for wet season is relatively large.

Table 2. Regression parameters for fits using relative sunshine duration, relative humidity an	nd
cloud cover	

Bida	Yearly va	riation		Seasonal	variation		
				Dry seaso	n	Wet seaso	n
	Eqn (1)	Eqn (2)	Eqn (3)	Eqn (1)	Eqn (2)	Eqn (1)	Eqn (2)
$lpha_{_0}$	21.9494	34.3521	45.5791	39.7517	30.5466	406.7277	462.2388
$\alpha_{_1}$	-23.0941			-11.1185		-47.0911	
α_2	12.0052			-50.9109		- 487.7324	
α_3	0.8887	-71.9830	-190.1693	-4.7496	-103.8700	-54.7613	-6879.5031
$\alpha_{_{11}}$	•••	-23.6008	-50.7918		0.4340	•••	439.0228
α_{13}			4.6599				
$\alpha_{_{23}}$	-1.1519	46.9328		12.7576	274.3715	72.9938	30372.0116
$\alpha_{_{33}}$			514.6172				
$\alpha_{_{113}}$			287.9381		-197.9227		-18001.9458
α_{133}	•••	101.2820	-646.4362				
Se H'	0.9564	1.0301	1.0945	0.3514	1.1985	1.6394	1.8310
R_a^2	0.9201	0.9073	0.8954	0.9562	0.4905	0.5527	0.4420
Δ	6.40	7.43	5.99	0.12	1.44	2.69	3.35
LPE(%)	7.3	9.9	6.4	1.5	5.0	5.4	6.0
AAPE(%)	3.3	3.2	2.9	0.9	2.6	2.0	2.7

Fig. 2 plots of observed and fitted unavailable solar radiation

4.3 Enugu (6.458⁰N, 7.546⁰E)

Listed in Table 3 is the result of regression analysis for both yearly and seasonal fits. $R_a^2 = 0.9783$, LPE = 2.4% and AAPE = 1.2% for yearly fits where equation (1) gives the best fit for the data, also, the plots in Fig. 3 shows that for yearly fit ($\Delta = 0.93$) the two curves fits excellently except for some few points, clearly, yearly fit is satisfactory, the result also shows that relative humidity is a useful parameter for yearly fits. For seasonal variation, equations (1) and (2) gives best fit for dry and wet seasons respectively, with $R_a^2 > 0.97$ and LPE < 1%, the result shows that seasonal fits are satisfactory

(also see plots, for dry season, $\Delta=0.01$ and wet season $\Delta=0.08)$ and that relative humidity is an

important parameter for the data of wet season.

Enugu	Yearly va	riation		Seasonal	variation		
				Dry seaso	n	Wet seaso	n
	Eqn (1)	Eqn (2)	Eqn (3)	Eqn (1)	Eqn (2)	Eqn (1)	Eqn (2)
$lpha_{_0}$	34.4031	24.6457	-48.3077	40.4205	31.9208	150.9741	124.8895
α_1	-16.8987			-21.8692		-20.2197	
α_{2}	-23.1812			-26.0933		- 164.2833	
α_{3}	0.5273	-0.5988	1005.3039	-1.4263	-28.9594	-17.2264	-1831.6627
$\alpha_{_{11}}$		-21.3752	272.2247		-32.8956		343.4064
α_{13}			- 1468.5986				
$lpha_{_{23}}$	1.7114	16.9447		4.2092	-41.6057	23.3789	9397.3544
$\alpha_{_{33}}$			- 2666.8993				
$lpha_{_{113}}$			1074.0213		150.0023		-10392.5127
α_{133}		-49.8346	5274.5316				
Se H'	0.3649	0.5072	0.4691	0.1190	0.3342	0.5343	0.2842
R_a^2	0.9783	0.9580	0.9641	0.9958	0.9669	0.8967	0.9708
Δ	0.93	1.80	1.10	0.01	0.11	0.29	0.08
LPE(%)	2.4	4.3	3.4	0.5	1.1	1.6	1.0
AAPE(%)	1.2	1.3	1.1	0.2	0.6	0.9	0.5

Fig. 3 plots of observed and fitted unavailable solar radiation

4.4 Gusau (12.1628⁰N, 6.6745⁰E)

The corresponding parameters for yearly and seasonal fits are listed in Table 4. For yearly fit equation (1) with $R_a^2 = 0.9523$ gives best fit for the data with relatively large values of Se H' and LPE (11.4%), the curves of observed and best fit equation (shown in Fig. 4) indicates significant deviations between the months of February – June and also between July – August due to large value of $\Delta = 4.75$, therefore, yearly fit is not satisfactory. The result of seasonal fits shows that equation (2)

gives the best model equation for both seasons – an indication that relative humidity is not a necessary climatological variable for predicting unavailable solar radiation for seasonal data. The plots in Fig. 4 shows excellent fit between observed and best fit equation for wet season ($\Delta = 0.05$). Unlike for wet season, dry season with $\Delta = 0.81$, shows significant deviations between November – January and also between January – March.

Gusau	Yearly var	iation		Seasonal va	ariation		
				Dry season	L	Wet seasor	1
	Eqn (1)	Eqn (2)	Eqn (3)	Eqn (1)	Eqn (2)	Eqn (1)	Eqn (2)
$lpha_{_0}$	21.1664	119.8713	418.8304	30.3703	44.3170	117.3223	439.5881
α_1	-7.7936			-18.0277		-11.3074	
$lpha_{2}$	-33.1561			-31.8330		-156.3735	
α_{3}	-1.0923	- 1023.4297	-5761.6716	-1.7853	243.7968	-17.2610	-5123.8523
$\alpha_{_{11}}$		1.5190	-867.0294		-179.6945		65.2438
α_{13}			4839.3157				
$\alpha_{_{23}}$	6.9727	2471.1444		6.9415	-2932.4362	28.0288	16324.8036
$\alpha_{_{33}}$			20541.4167				
$lpha_{_{113}}$			5451.5239		4125.8384		-2893.7344
$\alpha_{_{133}}$		-147.5561	- 30754.0197				
SeH'	0.8238	1.1215	0.8537	1.2991	0.9027	0.2312	0.2136
R_a^2	0.9523	0.9115	0.9487	0.3332	0.6781	0.9940	0.9949
Δ	4.75	8.80	3.64	1.69	0.81	0.05	0.05
LPE(%)	11.4	9.7	8.8	11.0	6.7	0.9	0.7
AAPE(%)	4.1	5.4	3.5	3.5	2.6	0.4	0.4

Table 4. Regression parameters for fits using relative sunshine duration, relative humidity and cloud cover

Fig. 4 plots of observed and fitted unavailable solar radiation

4.5 Ikom (5.9617[°]N, 8.7206[°]E)

The parameters of regression analysis for yearly and seasonal fits are listed in Table 5. Equation (3) with $R_a^2 = 0.9847$, LPE = 2.2% and AAPE = 0.8% gives best fit for the data, as revealed by the plot in Fig. 5, the curves of observed and best fit equation shows tight fit ($\Delta = 0.51$), this shows that yearly variation is quite satisfactory and therefore, relative humidity is not an important factor for estimating unavailable

solar radiation for yearly data. Equation (2) and (1) with $R_a^2 > 0.994$, LPE $\leq 0.5\%$ gives best fit for seasonal data. Se H' for dry season is better than for wet season, equation (2) being the best fit for dry season further confirms that relative humidity is not a necessary parameter to be considered for estimating unavailable solar radiation for yearly data.

Table 5. Regression	parameters for fi	its using relativ	e sunshine dur	ration, relative	humidity and
cloud cover					

Ikom	Yearly va	riation		Seasonal	variation		
				Dry seaso	on	Wet seaso	n
	Eqn (1)	Eqn (2)	Eqn (3)	Eqn (1)	Eqn (2)	Eqn (1)	Eqn (2)
$lpha_{_0}$	31.2050	19.0846	154.9496	9.9633	127.8956	-22.6917	542.3160
α_1	23.6788			21.3467		-28.7484	
α_{2}	- 15.0941			13.3271		81.9180	
α_{3}	0.3550	-69.3571	-1746.6053	3.7680	1190.3779	8.4615	-7111.0279
$\alpha_{_{11}}$		64.0167	-370.8732		-35.0366		41.0930
α_{13}			1066.1316				
$lpha_{_{23}}$	1.4491	1278.6389		-3.3805	2590.3888	-12.6888	24808.7808
$\alpha_{_{33}}$			6247.2688				
$\alpha_{_{113}}$			2907.4900		1853.6485		-2272.7499
α_{133}		- 3059.7543	-9812.4236				
Se H'	0.4203	0.4570	0.3181	0.6649	0.0737	0.1517	0.2199
R_a^2	0.9733	0.9684	0.9847	0.5479	0.9944	0.9958	0.9912
Δ	1.24	1.46	0.51	0.44	0.01	0.02	0.05
LPE(%)	3.3	4.0	2.2	2.1	0.3	0.5	0.7
AAPE(%)	1.4	1.5	0.8	1.5	0.1	0.2	0.4

Fig. 5 plots of observed and fitted unavailable solar radiation

4.6 Jos (9.8965[°]N, 8.8583[°]E)

Yearly and seasonal regression parameters are shown in Table 6. Equation (1) for yearly fits with $R_a^2 = 0.9962$, Se H' = 0.2762 and LPE = 2.4% gives the best fit, as can be seen from the plot in Fig. 6, the curves of observed and best fit equation gives excellent fit (Δ = 0.53), therefore, yearly variation is quite satisfactory. From the Table it can be seen that the applicability of equation (1) to yearly fit also holds for seasonal fits, thus confirming the usefulness of relative humidity for predicting unavailable solar radiation for the data of Jos, this is further revealed by the excellently fitted curves of observed and best fit equations for dry and wet seasons (Fig. 6).

Table 6. Regression parameters for fits using relative sunshine duration, relative humidity and cloud cover

Jos	Yearly va	ariation		Seasonal	variation		
				Dry sease	on	Wet seaso	n
	Eqn (1)	Eqn (2)	Eqn (3)	Eqn (1)	Eqn (2)	Eqn (1)	Eqn (2)
$lpha_{_0}$	26.2674	25.2191	51.8972	32.3501	25.9439	34.1775	254.0187
α_1	- 18.0583			- 23.5821		-24.5975	
α_2	- 14.8072			-8.5981		-40.5646	
α_{3}	0.4252	53.1517	-330.3686	-0.1837	-15.6889	1.0381	-4608.0925
$\alpha_{_{11}}$		-32.7292	-38.2189		-18.3240		437.2420
$\alpha_{_{13}}$			13.2774				
$\alpha_{_{23}}$	2.3234	-403.7950		1.4608	-11.3144	4.3098	25051.5097
$\alpha_{_{33}}$			1367.4106				
$\alpha_{_{113}}$			321.5403		52.6582		- 19208.1697
$\alpha_{_{133}}$		392.4884	-1443.5372				
Se H'	0.2762	0.4566	0.3171	0.0847	0.2276	0.2248	0.3250
R_a^2	0.9962	0.9895	0.9949	0.9992	0.9941	0.9926	0.9846
Δ	0.53	1.46	0.50	0.01	0.05	0.05	0.11
LPE(%)	2.4	3.4	2.5	0.6	1.0	0.9	1.3
AAPE(%)	1.1	1.9	1.0	0.2	0.6	0.4	0.5

Fig. 6 plots of observed and fitted unavailable solar radiation

4.7 Kano (12.0022⁰N, 8.5920⁰E)

Shown in Table 7 are regression parameters for both yearly and seasonal fits. From the Table it can be seen that equation (2) gives the best fit for the yearly data, however, $Se H', \Delta$, LPE and AAPE are relatively large, thus yearly fit is not satisfactory, plots of curves of observed and best fit equation (see Fig. 7) shows small deviations between the two curves in the months of April – August. If seasonal variation is considered, equations (2) and (1) with

 $R_a^2 > 0.997$, LPE = 0.4% gives best fit for dry and wet season, Se H' = 0.0428 for dry season and 0.0973 for wet season, the plots of the curves of observed and best fit equations are excellently fitted ($\Delta \approx 0$ for dry season and 0.01 for wet season), thus, seasonal fits are satisfactory. Relative humidity as a climatological variable is only useful for wet season data since equation (1) requires relative humidity.

Table 7. Regression	parameters for fits	using relative sur	nshine duration, 1	elative humidity	and
cloud cover					

Kano	Yearly va	ariation		Seasonal	variation		
				Dry sease	n	Wet seaso	n
	Eqn (1)	Eqn (2)	Eqn (3)	Eqn (1)	Eqn (2)	Eqn (1)	Eqn (2)
$lpha_{_0}$	15.2105	32.0601	27.6939	14.7743	22.3389	16.8906	0.3008
α_1	-9.8210	•••		-6.4688		-42.8075	
$\alpha_{_2}$	-1.4830			- 11.0808		57.9475	
α_{3}	0.8591	-65.8502	126.6020	0.1499	-65.4702	4.9731	83.8034
$\alpha_{_{11}}$		-16.3126	-2.2526		5.3144		6.6221
$\alpha_{_{13}}$			-583.9205				
$\alpha_{_{23}}$	0.8669	-31.5368		4.3861	121.1098	-10.9639	864.5796
$\alpha_{_{33}}$			77.0373				
$\alpha_{_{113}}$			409.1731		-68.9169		-1491.0258
α_{133}		155.5603	32.4244				
Se H'	0.4330	0.4111	0.4565	0.1478	0.0428	0.0973	0.4289
R_a^2	0.9731	0.9758	0.9701	0.9868	0.9989	0.9978	0.9564
Δ	1.31	1.18	1.04	0.02	0.00	0.01	0.18
LPE(%)	4.3	3.5	3.9	1.2	0.3	0.4	2.3
AAPE(%)	1.9	2.0	1.5	0.4	0.1	0.2	0.8

Fig. 7 plots of observed and fitted unavailable solar radiation

4.8 Maiduguri (11.8311⁰N, 13.1510⁰E)

Corresponding regression parameters for yearly and seasonal variations are listed in Table 8. Equation (2) with $R_a^2 = 0.9437$ for yearly variation gives best fit for the data but with relatively large values of SeH', Δ , LPE and AAPE, the plots in Fig. 8 shows the deviations between the curves of observed and best fit equation which occur in the months of May – June as well as September – November, clearly, yearly fit is not satisfactory.

From the Table, result for seasonal fit shows $R_a^2 > 0.948$, LPE < 0.4%, AAPE < 2% for the two seasons, *Se H'* = 0.1773 for dry season and 0.5945 for wet season. It is obvious that seasonal fit is quite satisfactory, this is further corroborated by the excellent fits of the two curves of observed and best fit equations for dry season (with $\Delta = 0.03$) and wet season ($\Delta = 0.35$).

Table 8. Regression parameters for fits using relativ	e sunshine duration, relativ	e humidity and
cloud cover		

Maiduguri	Yearly variation Seasonal variation						
				Dry season	n	Wet season	1
	Eqn (1)	Eqn (2)	Eqn (3)	Eqn (1)	Eqn (2)	Eqn (1)	Eqn (2)
$lpha_{_0}$	21.2899	50.7926	136.8641	38.6266	59.7340	2.2108	393.2207
$lpha_1$	-13.3746			-23.9247		-34.8287	
α_{2}	-33.0519			-47.4076		48.5065	
α_{3}	-0.0080	-390.6491	-1702.7887	-2.3193	-817.3954	6.3680	-5835.5035
$\alpha_{_{11}}$		-1.8061	-230.8428		74.8586		332.6517
α_{13}			1933.3171				
$\alpha_{_{23}}$	5.3935	1346.0522		9.6735	3792.3477	-9.8337	25611.4278
$\alpha_{_{33}}$			3982.9373				
$\alpha_{_{113}}$			452.2829		-2638.6102		-14317.0850
$lpha_{_{133}}$		-550.5451	-5257.5137				
Se H'	0.6685	0.6477	0.7253	0.1773	0.3031	0.6219	0.5945
R_a^2	0.9401	0.9437	0.9294	0.9873	0.9629	0.9439	0.9487
Δ	3.13	2.94	2.63	0.03	0.09	0.39	0.35
LPE(%)	14.1	14.0	11.2	1.6	2.7	3.1	2.7
AAPE(%)	3.9	4.1	4.0	0.7	1.0	1.5	1.7

Fig. 8 plots of observed and fitted unavailable solar radiation

4.9 Minna (9.5836[°]N, 6.5463[°]E)

The yearly and seasonal regression parameters are shown in Table 9. Equation (1) gives best fit for the data with relatively large value of SeH', Δ , LPE and AAPE, with $\Delta = 5.4$, the plots of observed and best fit equation (see Fig. 9) shows small deviations between May – June and also between September – November, thus yearly fits are not quite satisfactory.

For seasonal variation, model equations (1) and (2) gives best fit for dry and wet seasons, also as can be seen from the figure, the curves of observed and best fit equation for dry season gives a tight fit, however, that of wet season shows small deviations between May – June and between July – September, therefore, seasonal variation gives satisfactory fits

Table 9. Regression parameters for fits using relative sunshine duration, relative humidity and
cloud cover

Minna	Yearly va	ariation		Seasonal variation				
				Dry sease	on	Wet seaso	n	
	Eqn (1)	Eqn (2)	Eqn (3)	Eqn (1)	Eqn (2)	Eqn (1)	Eqn (2)	
$lpha_{_0}$	25.4302	27.8771	-164.6091	27.0269	32.5445	625.2750	-201.3915	
α_1	- 21.5756			- 24.1187		-48.1615		
α_{2}	-6.8887			-4.8170		886.8523		
α_3	1.5308	-22.0831	2933.5723	1.5730	101.4080	105.9435	2394.2973	
$\alpha_{_{11}}$		-20.8915	417.2729		-65.2030		100.7879	
α_{13}			-2756.3372					
$\alpha_{_{23}}$	0.1145	57.2114		-0.3719	-866.0798	- 139.6802	-4469.0084	
$\alpha_{_{33}}$			- 10383.6963					
$\alpha_{_{113}}$			-2525.4324		964.9271		-5563.4239	
α_{133}		-36.3586	15557.6837					
Se H'	0.8782	0.9894	0.8934	0.6043	0.7083	1.7560	1.6231	
R_a^2	0.9509	0.9377	0.9492	0.9184	0.8879	0.6961	0.7404	
Δ	5.40	6.85	3.99	0.37	0.50	3.08	2.63	
LPE(%)	7.5	8.8	5.8	3.6	3.4	5.4	4.9	
AAPE(%)	2.8	3.0	2.4	1.5	1.9	2.5	2.8	

Fig. 9 plots of observed and fitted unavailable solar radiation

4.10 Nguru (12.878[°]N, 10.457[°]E)

The parameters of regression analysis for yearly and seasonal fits are listed in Table 10. Equation (3) with $R_a^2 = 0.9457$, LPE = 5% and AAPE = 2.2% gives best fit for the data, as can be seen from the plot shown in Fig. 10, the curves of observed and best fit equation are slightly deviated from each other (Δ = 1.32) between January – March and between May – July. The result for yearly variation is satisfactory and clearly shows that relative

humidity is not an important factor for estimating unavailable solar radiation. Equation (2) and (1) gives best fit for dry and wet seasons, application of equation (2) for dry season, is a re-affirmation that relative humidity is not an important factor in estimating unavailable solar radiation for the data of Nguru. Plots of observed and best fit equation for seasonal fits are also shown in Fig. 10.

Table 10.	Regression	parameters f	or fits using	g relative s	sunshine	duration,	relative	humidity	and
cloud cov	ver								

Nguru	Yearly va	ariation		Seasonal variation				
				Dry sease	on	Wet seaso	n	
	Eqn (1)	Eqn (2)	Eqn (3)	Eqn (1)	Eqn (2)	Eqn (1)	Eqn (2)	
$lpha_{_0}$	18.4572	71.4663	197.3557	25.4950	64.4740	5.6379	-0.5173	
α_1	- 13.2209			- 14.1507		-13.0134		
$\alpha_{_2}$	5.5434			- 19.9306		1.0297		
α_{3}	0.4299	-558.8003	-2843.7371	-1.0164	-483.8935	3.5640	526.2281	
$\alpha_{_{11}}$		6.9219	-454.7516		0.2211		-60.0467	
$\alpha_{_{13}}$			4758.1611					
$\alpha_{_{23}}$	0.0402	1472.4356		5.8855	1240.8157	-0.9001	-2908.4980	
$\alpha_{_{33}}$			3680.3403					
$\alpha_{_{113}}$			-22.6952		-196.9295		1933.8765	
$\alpha_{_{133}}$		-344.3573	-7272.3573					
Se H'	0.5908	0.6486	0.5147	0.3754	0.1928	0.8799	0.9175	
R_a^2	0.9285	0.9138	0.9457	0.8699	0.9657	0.7758	0.7563	
Δ	2.44	2.95	1.32	0.14	0.04	0.77	0.84	
LPE(%)	6.2	7.0	5.0	2.2	1.4	4.4	4.9	
AAPE(%)	2.7	2.9	2.2	1.2	0.5	1.9	2.1	

Fig. 10 plots of observed and fitted unavailable solar radiation

4.11 Potiskum (11.7072⁰N, 11.0825⁰E)

The data in Table 11 list the parameters of regression analysis for both yearly and seasonal fits. Equation (1) for yearly fits with $R_a^2 = 0.9837$, Se H' = 0.3657 and LPE = 3% gives the best fit, as can be seen from the plot in Fig. 11, the curves of observed and best fit equation gives excellent fit (Δ

= 0.94), therefore, yearly variation is quite satisfactory. From the Table it can be seen that the applicability of equation (1) to yearly fit also applies for seasonal fits, thus confirming the usefulness of relative humidity for predicting unavailable solar radiation for the data of Jos, this is further revealed by the tightly fitted curves of observed and best fit equations for dry and wet seasons in Fig. 11.

Table 11. Regression parameters for fits using relative sunshine duration, relative humidity and cloud cover

Potiskum	Yearly variation			Seasonal variation				
				Dry sease	on	Wet seaso	n	
	Eqn (1)	Eqn (2)	Eqn (3)	Eqn (1)	Eqn (2)	Eqn (1)	Eqn (2)	
$lpha_{_0}$	7.2438	57.3982	124.5996	11.5662	93.5690	6.4575	86.2839	
α_1	-5.0909			-1.1966		-17.9980		
α_{2}	24.1278			- 72.1641		4.5129		
$\alpha_{_3}$	1.9142	-294.7293	-1353.8563	0.5562	1209.2239	3.7282	-933.1313	
$\alpha_{_{11}}$		-19.7504	14.5033		98.0241		37.1118	
$\alpha_{_{13}}$			-690.2743					
$\alpha_{_{23}}$	3.9938	237.8229		13.0569	5223.7923	-1.2577	3947.4910	
$\alpha_{_{33}}$			7791.5460					
$\alpha_{_{113}}$			1359.5100		- 3428.9433		-2243.7085	
α_{133}		495.3730	-7044.9052					
Se H'	0.3657	0.4201	0.4233	0.1574	0.5975	0.2132	0.5588	
R_a^2	0.9837	0.9785	0.9782	0.9906	0.8646	0.9908	0.9366	
Δ	0.94	1.24	0.90	0.02	0.36	0.05	0.31	
LPE(%)	3.0	5.9	5.0	1.3	4.5	0.9	3.1	
AAPE(%)	1.8	2.3	1.8	0.4	1.7	0.5	1.1	

Fig. 11 plots of observed and fitted unavailable solar radiation

4.12 Yelwa (10.8370⁰N, 4.7403⁰E)

Regression parameters for the two variations are shown by the entries in Table 12, where it can be seen that equation (3) gives the best fit for the data, however, values of Δ , LPE and AAPE are relatively high, thus yearly fit is not satisfactory. On the other hand if we consider seasonal variation, equations (1) and (2) with $R_a^2 > 0.925$, LPE $\leq 2.6\%$ gives best fit for dry and wet seasons, plots of observed and best fit equation shows excellent fit (see Fig. 12) for seasonal variation. The result also shows that relative humidity is a useful parameter for estimating solar radiation in the dry season.

Table 12. Regression parameters for fits using relative sunshine duration, relative humidity and
cloud cover

Yelwa	Yearly va	ariation		Seasonal variation				
				Dry sease	on	Wet seaso	n	
	Eqn (1)	Eqn (2)	Eqn (3)	Eqn (1)	Eqn (2)	Eqn (1)	Eqn (2)	
$lpha_{_0}$	26.2400	36.1721	30.2213	34.5885	45.3773	151.2554	184.7549	
α_1	17.3830			- 13.9857		-31.6012		
α_{2}	-7.2096			- 39.6498		- 183.5730		
α_{3}	-0.4024	-59.1411	315.0578	-3.2051	-446.0412	-16.8181	-6109.2851	
$\alpha_{_{11}}$		-28.1662	117.3808		56.1309		820.8786	
$\alpha_{_{13}}$			-3066.2651					
$lpha_{_{23}}$	2.0783	-267.7014		10.1737	1474.0249	26.8756	45284.0876	
$\alpha_{_{33}}$			4748.4907					
$\alpha_{_{113}}$			2458.2343		-973.1462		41907.7392	
α_{133}		484.0309	-4917.3922					
SeH'	0.9173	0.9113	0.6646	0.0657	0.1747	1.6491	0.6991	
R_a^2	0.9274	0.9283	0.9619	0.9988	0.9914	0.5841	0.9253	
Δ	5.89	5.81	2.21	0.00	0.03	2.72	0.49	
LPE(%)	9.7	8.6	5.7	0.4	1.2	6.5	2.6	
AAPE(%)	3.5	3.0	2.3	0.2	0.4	2.9	0.9	

Fig. 12 plots of observed and fitted unavailable solar radiation

4.13 Yola (9.2035[°]N, 12.4954[°]E)

The corresponding regression parameters for both yearly and seasonal variation are shown in Table 13, yearly fit with $R_a^2 = 0.7909$ given by equation (1) is not satisfactory due to relatively high values of $Se H', \Delta$, LPE and AAPE, also see plots of observed and best fit equation in Fig. 13. From the data of seasonal fits, equation (2) gives best fit equation for the two seasons, also, $R_a^2 = 0.4191$ and

0.0777 for dry and wet seasons respectively, however, the wet season values of SeH', Δ , LPE and AAPE are relatively large, thus, fit for wet season is not satisfactory, also shown in Fig. 13 are the plots of observed and best fit equations for seasonal fit, the result shows a moderately better fit for dry season.

Table 13. Regression parameters for fits using relative sunshine duration, relative humidity and	d
cloud cover	

Yola	Yearly variation Seasonal variation						
				Dry sease	on	Wet seaso	n
	Eqn (1)	Eqn (2)	Eqn (3)	Eqn (1)	Eqn (2)	Eqn (1)	Eqn (2)
$lpha_{_0}$	45.0945	132.3985	1075.3378	27.4095	-80.1194	827.3135	-1089.6169
α_1	-11.4321			-6.3727		-85.9112	
α_{2}	- 101.3672			- 57.4880		- 964.8591	
α_{3}	-4.1001	-492.9089	- 17762.1639	-1.7231	1950.2585	- 113.1821	9113.2119
$\alpha_{_{11}}$		-140.6913	-1320.6565		-164.4860		928.3240
$\alpha_{_{13}}$			10650.4417				
$\alpha_{_{23}}$	16.8636	- 3442.0147		9.6747	- 10360.9878	143.6787	5362.0430
$\alpha_{_{33}}$			77791.9857				
$\alpha_{_{113}}$			11298.8155		6982.0883		- 52939.7426
α_{133}		6508.1946	- 91662.7170				
SeH'	1.8543	2.1411	1.8802	1.2184	1.1530	3.6479	3.4966
R_a^2	0.7909	0.7212	0.7850	0.3513	0.4191	-0.0038	0.0777
Δ	24.07	32.09	17.68	1.48	1.33	13.31	12.23
LPE(%)	15.0	17.3	12.7	5.4	4.4	13.2	12.7
AAPE(%)	5.6	7.5	4.3	3.3	3.2	5.4	4.8

Fig. 13 plots of observed and fitted unavailable solar radiation

4.14 Zaria (11.0855[°]N, 7.7199[°]E)

Table 14 list the regression parameters for yearly and seasonal fits. From the Table it can be seen that equation (2) with $R_a^2 = 0.827$ is the best fit for the data, but the values of Se H', Δ , LPE and AAPE are relatively high. The result of seasonal fit also shows that equation (2) is the best-fit-equation for the data with: $R_a^2 > 0.986$, $\Delta < 0.1$, LPE $\leq 1\%$ and AAPE $\leq 0.4\%$ for the two seasons. Plots of observed and best fit equation is shown in Fig. 14 where it can be seen that seasonal variation fits almost perfectly, the result clearly reveals that relative humidity is not a required climatological parameter for modelling unavailable solar radiation for Zaria.

Table 14. Regression parameters for fits using relative sunshine duration, relative humidity a	and
cloud cover	

Zaria	Yearly variation			Seasonal variation				
				Dry seaso	n	Wet seaso	n	
	Eqn (1)	Eqn (2)	Eqn (3)	Eqn (1)	Eqn (2)	Eqn (1)	Eqn (2)	
α_{0}						-		
Ū	-33.2995	1322.8786	-3149.7862	-38.4882	466.3396	167.8404	-581.0466	
$lpha_1$	-19.7613			-9.0982		-15.0819		
$lpha_{2}$	36.2869			291.9392		24.6388		
α_{3}	0 (110	-		0.0421	5225 0021	00 00 10		
	8.6412	17637.2195	69735.5867	8.8631	-5237.0931	27.7740	9706.7047	
$\alpha_{_{11}}$		84.3768	7790.4995		-109.0635		-135.8550	
α_{13}			-73636.9439					
$\alpha_{_{23}}$	-4 8017	61271 5249		-46 0718	12923 1697	-3 3334	- 40190 3815	
0	4.0017	01271.524)		40.0710	12923.1097	5.5554	40170.3013	
a_{33}			331839.2525					
$\alpha_{_{113}}$			-54330.9046		5907.4381		6660.0340	
α_{133}		-5475.4206	512721.8243					
Se H'	1.4602	1.3268	1.4226	0.1945	0.0816	0.9366	0.2703	
R_a^2	0.7904	0.8270	0.8011	0.9883	0.9979	0.8305	0.9859	
Δ	14.93	12.32	10.12	0.04	0.01	0.88	0.07	
LPE(%)	13.7	13.6	15.3	1.2	0.5	4.0	1.0	
AAPE(%)	6.2	4.9	4.0	0.5	0.2	1.9	0.4	

Fig. 14 plots of observed and fitted unavailable solar radiation

5 Conclusion

In this paper we have obtained empirical formulae for estimating unavailable solar radiation in terms of cloud cover, relative sunshine duration and relative humidity for fourteen (14) meteorological stations. For yearly fits, equation (1) gives the best fit Enugu, Jos and Potiskum, meaning that relative humidity is an important climatological independent variable for estimating unavailable solar radiation for these stations, equation (3) gives best fit for the data of Ikom and Nguru, these stations do not require relative humidity for correlating unavailable solar radiation.

References:

- [1] Aidan J., Yadima A., Ododo J.C. (2005). Modelling Unavailable Solar Radiation Using Some Climatological Parameters. *Nigerian Journal of Solar energy*, *15*, 118-126.
- [2] Ododo J.C., Agbakwuru. J.A. & Ogbu F.A. (1995). Correlation of Solar Radiation with Cloud Cover and Relative Sunshine Duration. *Energy Convers. Mgmt*, .37(10), 1555-1559
- [3] Ojosu J.O. (1990). A Correlation of Global Solar Radiation with Cloud Cover and Sunshine Hours. *Nigerian Journal of Solar Energy*, 9, 133-142
- [4] Fagbenle R.O. (1990). Estimation of Total Radiation in Nigeria Using Meteorological data. *Nigerian Journal of Renewable Energy*, 1, 1 – 10
- [5] Ododo J.C., Sulaiman A.T., Aidan J., Yuguda M.M. & Ogbu F. A. (1995). The Importance of Maximum Air Temperature in the Parameterization of Solar Radiation in Nigeria. *Journal of Renewable Energy* 6(7), 751-763
- [6] Ododo J.C. & Sulaiman A.T. (1994, May). Angstrom's Regression Coefficients for Nigerian Stations. Paper presented at the 2nd OAU/STRC Symposium on New, Renewable and Solar Energies Organized in Collaboration with UNESCO/ROSTA, Bamako, Mali
- [7] Ododo J.C. (1994, May). New Model Equations for the Prediction of Solar Radiation in Nigeria. Paper presented at the 2nd OAU/STRC Symposium on New, Renewable and Solar Energies Organized in

Collaboration with UNESCO/ROSTA, Bamako, Mali

[8] Ododo J.C., Sulaiman A.T., Aidan J. & Ogbu F.A (1994, May). Modelling of Solar Radiation in North-Eastern Nigeria. Paper presented at the 2nd OAU/STRC Symposium on New, Renewable and Solar Energies Organized in Collaboration with UNESCO/ROSTA, Bamako, Mali.