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Abstract: The main subject of this work comes from the applications of Probabilistic Evolution Theory (PRE-
VTH) proposed and then developed in few recent years. Basic aim is to use a set of time-independent expecta-
tion value equations based on a given univariate function of the position operator. By choosing an appropriate
basis set it is possible to construct a recurrence which contains the unknown energy parameter of the system.
By finding the asymptotic solution of the recursion and then using it in the very first finite number of equations
we have shown that an approximation scheme can be established to get the energy of the system and a set of
expectation values constructed from the basis set of the recurrence. The confirmative applications to the sta-
tionary solutions of the hydrogen-like systems are also given.
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1 Introduction and Positional Func-
tion Image Expectation Value
Equation

The Hamilton operator of a one-degree-of-freedom
system which evolves under a potential function of
position operator q̂, V (q̂), can be defined as follows

Ĥ ≡ 1

2µ
p̂ 2 + V (q̂ ) . (1)

Herein p̂ and q̂ symbolize the momentum and position
operators whose definitions are given below as g(x)
denotes an arbitrary function in the space where the
wave function of system lies.

p̂g(x) ≡ −ih̄g′(x), q̂g(x) ≡ xg(x),

x ∈ (−∞,∞) (2)

where h̄ denotes the reduced Planck constant defined
as the ratio of the Planck constant to 2π while x stands
for a scalar variable which can be called “Position
Variable”. In other words, it symbolizes the positional
variable of Schrödinger equation. Even though x po-
sition variable is considered to be located anywhere
on the real axis, it can also be considered as taking
values from semi infinite or finite intervals on the real
axis.

After this preformatting, we can focus on the
Poisson Bracket evaluation between the system
Hamiltonian and a function operator depending on the
position operator defined through an analytic univari-
ate function. We can immediately write the following
equality by using the distributive property of the addi-
tion in Poisson bracket.{
Ĥ, f (q̂ )

}
=

1

2µ

{
p̂ 2, f (q̂ )

}
+ {V (q̂) , f (q̂ )}

=
1

2µ

{
p̂ 2, f (q̂ )

}
(3)

In this formula, we have used the fact that the Poisson
bracket between V (q̂) and f (q̂), each of which has an
algebraic multiplication operator structure, vanishes.

When one of the operands of a Poisson bracket
is a binary product, the correspondant of the Leibnitz
rule used in first order differentiation can be applied
on that Poisson bracket. This fact allows us to write
the following equality{
Ĥ, f (q̂ )

}
=

1

2µ

{
p̂ 2, f (q̂ )

}
=

1

2µ
{p̂, f (q̂ )} p̂+

1

2µ
p̂ {p̂, f (q̂ )}

(4)
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The following manipulation stages can be realized for
the rightmost Poisson bracket by using just differenti-
ation

{p̂, f (q̂ )} g(x)=
i

h̄
p̂f (q̂ ) g(x)− i

h̄
f (q̂ ) p̂g(x) (5)

q̂g(x) = xg(x) =⇒ f (q̂ ) g(x) = f(x)g(x) (6)

p̂f (q̂ ) g(x) = p̂ (f (q̂ ) g(x)) = p̂ (f(x)g(x))

= −ih̄ (f(x)g(x))′

= −ih̄f ′(x)g(x)− ih̄f(x)g′(x)

(7)

f (q̂ ) p̂g(x) = f (q̂ ) (p̂g(x)) = f (q̂ )
(
−ih̄g′(x)

)
= −ih̄f (q̂ ) g′(x)

= −ih̄f(x)g′(x) (8)

=⇒
{p̂, f (q̂ )} g(x) = f ′(x)g(x) = f ′ (q̂ ) g(x).(9)

Thus, we can arrive at

{p̂, f (q̂ )} = f ′ (q̂ ) (10)

and therefore{
Ĥ, f (q̂ )

}
=

1

2µ

[
p̂f ′ (q̂ ) + f ′ (q̂ ) p̂

]
. (11)

If the expectation value of both sides under the sys-
tem’s wavefunction is taken and the following fact
from Ehrenfest Theorem is used〈{

Ĥ, f (q̂ )
}〉

(t) =
d

dt
〈f (q̂)〉 (t) (12)

then the below dynamical equation can be obtained.

d

dt
〈f (q̂)〉 (t) =

1

2µ

〈
p̂f ′ (q̂ ) + f ′ (q̂ ) p̂

〉
(t) (13)

This equality means that the temporal variation of the
expectation value of f (q̂) is described by the expecta-
tion value of an operator depending on both momen-
tum and position operators and appearing at the right
hand side. Whereas an expression which contains no
momentum operator but Hamiltonian would be more
preferable. However, this situation is not possible for
the first temporal derivative. This urges us to focus on
higher temporal derivative of the expectation value.
The first thing to do this end appears to be concerning
with the second temporal derivative. If the following
equality, which can be derived from (12) by temporal

differentiation, is considered For this purpose. Then
it becomes clear that the analytic expression of two
nested Poisson brackets should be evaluated.

d2

dt2
〈f (q̂)〉 (t) =

〈{
Ĥ,
{
Ĥ, f (q̂ )

}}〉
(t) (14)

If the Poisson bracket of both sides of (11) has been
taken then we can immediately write{

Ĥ,
{
Ĥ, f (q̂ )

}}
={

Ĥ,
1

2µ

[
p̂f ′ (q̂ ) + f ′ (q̂ ) p̂

] }
(15)

which the distributive aspect of Poisson bracket on the
binary products at the right hand side enables us to
write the following equality

{
Ĥ,
{
Ĥ, f (q̂ )

}}
=

1

2µ

[ {
Ĥ, p̂

}
f ′ (q̂ ) +

+f ′ (q̂ )
{
Ĥ, p̂

} ]
+

1

2µ

[ {
Ĥ, f ′ (q̂ )

}
p̂+

+p̂
{
Ĥ, f ′ (q̂ )

} ]
(16)

In this formula, the Poisson brackets at the right
hand side can be evaluated by tracing the routes men-
tioned above, and then, the following equalities can be
obtained{

Ĥ, p̂
}

= {V (q̂ ) , p̂} = −V ′ (q̂ ) (17)

{
Ĥ, f ′ (q̂ )

}
=

1

2µ

[
p̂f ′′ (q̂ ) + f ′′ (q̂ ) p̂

]
(18)

The following intermediate result can be obtained in-
stead of (16) with the aid of these equalities{
Ĥ,
{
Ĥ, f (q̂ )

}}
= − 1

µ
V ′ (q̂ ) f ′ (q̂ ) +

+
1

2µ2
p̂f ′′ (q̂ ) p̂+

1

4µ2

[
p̂ 2f ′′ (q̂ ) + f ′′ (q̂ ) p̂ 2

]
(19)

where the first term at the right hand side is compati-
ble with what we desire since it does not contain mo-
mentum, while the last term contains no momentum
but its square. This permits us to replace the momen-
tum square with the expression in terms of the Hamil-
tonian and the position operator. On the other hand,
the second term outside these two terms contains mo-
mentum but not in its square. This pushes us to inves-
tigate the possibility of converting this term into an
expression such that it contains nothing involving the
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momentum but its square. Towards this end we can
write(
p̂f ′′ (q̂ )− f ′′ (q̂ ) p̂

)
g(x) = −ih̄

(
f ′′(x)g(x)

)′
+ih̄f ′′(x)g′(x)

= −ih̄f ′′′(x)g(x)

=⇒
p̂ f ′′ (q̂ )− f ′′ (q̂ ) p̂ = −ih̄f ′′′ (q̂ )

=⇒

p̂ f ′′ (q̂ ) = f ′′ (q̂ ) p̂− ih̄f ′′′ (q̂ )

f ′′ (q̂ ) p̂ = p̂ f ′′ (q̂ ) + ih̄f ′′′ (q̂ ) . (20)

Here, if the first and second of the last two equali-
ties are multiplied by momentum from the right and
the left respectively and the resulting equalities are
added side by side and then the resulting equality’s
both sides are divided by 2 then

p̂ f ′′ (q̂ ) p̂ =
1

2

[
p̂ 2f ′′ (q̂ ) + f ′′ (q̂ ) p̂ 2

]
+
ih̄

2

[
p̂f ′′′ (q̂ )− f ′′′ (q̂ ) p̂

]
(21)

is obtained. For the second term at the right hand side
of this equality it is not hard to produce the following
equality

ih̄
[
p̂f ′′′ (q̂ )− f ′′′ (q̂ ) p̂

]
= h̄2

{
p̂, f ′′′ (q̂ )

}
= h̄2f (4) (q̂ )

(22)

Thus the following equality, which contains momen-
tum only in its square, is obtained

p̂f ′′ (q̂ ) p̂ =
1

2

[
p̂ 2f ′′ (q̂ ) + f ′′ [ q̂ ) p̂ 2

]
+
h̄2

2
f (4) (q̂ ) (23)

After all these investigations we can write the follow-
ing equality instead of (19){
Ĥ,
{
Ĥ, f (q̂ )

}}
= − 1

µ
V ′ (q̂ ) f ′ (q̂ ) +

+
h̄2

4µ2
f (4) (q̂ ) +

1

2µ2

[
p̂ 2f ′′ (q̂ ) + f ′′ (q̂ ) p̂ 2

]
(24)

and from this, by using the Hamiltonian instead of the
momentum square, we can get{

Ĥ,
{
Ĥ, f (q̂ )

}}
= − 1

µ
V ′ (q̂ ) f ′ (q̂ )

− 2

µ
V (q̂ ) f ′′ (q̂ ) +

h̄2

4µ2
f (4) (q̂ )

+
1

µ

[
Ĥf ′′ (q̂ ) + f ′′ (q̂ ) Ĥ

]
(25)

If we take the expectation value of both sides of this
equality under the system’s wave function then we can
arrive at the following equality

d2 〈f (q̂ )〉 (t)
dt2

= − 1

µ

〈
V ′ (q̂ ) f ′ (q̂ )

〉
(t)

− 2

µ

〈
V (q̂ ) f ′′ (q̂ )

〉
(t)

+
h̄2

4µ2

〈
f (4) (q̂ )

〉
(t)

+
1

µ

〈
Ĥf ′′ (q̂ ) + f ′′ (q̂ ) Ĥ

〉
(t)

(26)

(26) has a quite flexible structure since the func-
tion f has no other constraint except it analyticity.
This also gives a high level universality. However, this
flexibility and universality is not only due to f . Even
though we have not explicitly emphasized on there is
also a relation to the spectral properties of the sys-
tem. The expectation value is taken under the system’s
wave function which is evolved from a given initial
state wave function. Hence it is strongly depending on
how the initial state wave function is given. In other
words there is a flexibility in the selection of the initial
state.

In the systems whose Hamilton operator is tem-
porally autonomous, in toher words, not changing in
time, it is possible to mention the overall (remaining
constant in time) spectral properties of the Hamilto-
nian. The eigenvalues of this operator correspond to
the stationary energy values of the system.

The wave function of a state whose energy is de-
noted byE temporally changes in accordance with the
following equality.

ψ(x, t) = e−
i
h̄
Etψ0(x) (27)

where ψ0 stands for the system Hamiltonian’s eigen-
function corresponding to E. It can also be taken as
the initial wave function for a motion where system
energy remains unchanged.

(27) enables us to write the following equalities
for any given linear operator corresponding to an ob-
servable of the system under consideration.

〈 ô 〉 (t) ≡
∫ ∞
−∞

dxψ(x, t)∗ôψ(x, t)

=

∫ ∞
−∞

dxe
i
h̄
Etψ0(x)∗ôe−

i
h̄
Etψ0(x)

=

∫ ∞
−∞

dxψ0(x)∗ôψ0(x). (28)

which states that the expectation value of a tempo-
rally autonomous operator does not vary in time if
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the system under consideration stands in a specific en-
ergy state. The stationary nature of autonomous states
arises from this reality in fact.

(26) takes the following form for a stationary state
with energy E.

− 1

µ

〈
V ′ (q̂ ) f ′ (q̂ )

〉
− 2

µ

〈
V (q̂ ) f ′′ (q̂ )

〉
+
h̄2

4µ2

〈
f (4) (q̂ )

〉
+

1

µ

〈
Ĥf ′′ (q̂ )

+f ′′ (q̂ ) Ĥ
〉

= 0 (29)

All expressions whose expectation values are ap-
pearing at the right hand side of this equality are au-
tonomous (unchanging in time) operators. Hence their
expectation values are also unchanging in time. For
this reason, we have removed the time dependence
originally appearing in (26).

E and ψ0(x) in (27) are not independent from
each other. They have a relation through the
eigenequation of the Hamilton operator. Hence,

Ĥψ0(x) = Eψ0(x) (30)

can be written. We can also write the following equal-
ities for the system state whose energy is represented
by E.〈

Ĥf ′′ (q̂)
〉

=

∫ ∞
−∞

dxψ0(x)∗Ĥf ′′ (q̂)ψ0(x)

=

∫ ∞
−∞

dxĤψ0(x)∗f ′′ (q̂)ψ0(x)

= E
〈
f ′′ (q̂)

〉
(31)

〈
f ′′ (q̂) Ĥ

〉
=

∫ ∞
−∞

dxψ0(x)∗f ′′ (q̂) Ĥψ0(x)

= E
〈
f ′′ (q̂)

〉
(32)

where we have used the self-adjointness (or Hermitic-
ity) of the Hamilton operator. The use of these identi-
ties in (29) gives

− 1

µ

〈
V ′ (q̂ ) f ′ (q̂ )

〉
− 2

µ

〈
V (q̂ ) f ′′ (q̂ )

〉
+
h̄2

4µ2

〈
f (4) (q̂ )

〉
+ 2

E

µ

〈
f ′′ (q̂ )

〉
= 0

(33)

The entities appearing in this equality have values
with physical units. Certain appropriate scalings in
the relevant entities may change the form to a new one
wthout physical units. However, for this the potential
parameters may need to be treated in the same way as

well. It is also possible to show that these changes can
be actualized by directly taking h̄ = 1 and µ = 1 to-
gether with certain similar standardizations in the po-
tential. If we assume that all these changes have been
made and the energy parameter has been changed with
its physical unit free correspondant then we can write

−
〈
V ′ (q̂ ) f ′ (q̂ )

〉
− 2

〈
V (q̂ ) f ′′ (q̂ )

〉
+

1

4

〈
f (4) (q̂ )

〉
+ 2E

〈
f ′′ (q̂ )

〉
= 0

(34)

We call f “Positional Function” and the equality in
(34) “Positional Function Image Expectation Value
(POFIMEV) equation. This is the most important
equation we are going to use in our investigations in
this work.

2 Constructing Singular Recursions
via Positive Function Image Expec-
tation Value Equation

To understand the singular recursion structure pro-
duced by using Positive Function Image Expectation
Value Equation (POFIMEV), first we are going to fo-
cus on the quantum systems composed of two parti-
cles interacting with a potential depending on the in-
terparticular distance only then we can separate out
the mass center motion and the relative motion of the
particles. The latter can be reformulated in spherical
coordinates and then the potential becomes depend-
ing just on the radial variable and angular behavior
appears only in the kinetic energy terms of the Hamil-
tonian, and in such a way that, the angular and the
radial motion can also be separated. When this is re-
alized the potential term gains an extra additive term
proportional to the reciprocal square of interparticle
distance. Hence, we can mathematically consider the
potential functions having a second degree polar term
located at the origin. Beyond this, the potential is de-
fined to have a Coulomb interaction term. So to pro-
ceed, we can write

V (q̂) ≡
∞∑
j=0

Vk−2q̂
k−2 (35)

which takes us to the following recursion when we set
f equal to jth power of the position operator.

1

2(j + 1)

∞∑
k=0

(2j + k)Vk−2
〈
q̂ j+k−2

〉
− j(j − 1)

8

〈
q̂ j−2

〉
= E

〈
q̂j
〉
,

j = 0, 1, 2, ... (36)
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This recursion contains the expectation value of the
position operator reciprocal in its first two equations.
Since we have considered the natural number power
expectation values only, this is a one dimensional
overflow from the operator space spanned by the natu-
ral number powers of the position operator. This over-
flow changes the character of the spectral problem we
have previously focused on and impels us to work on
the extended space by adding the expectation value of
the position operator’s reciprocal an additional com-
ponent. So we focus on the phase space spanned by
the expectation values of the natural number powers
and reciprocal of the position operator. This urges us
to define a vector, having denumerable infinite num-
ber of components, whose elements are defined as fol-
lows

hj =
〈
q̂ j−2

〉
, j = 1, 2, 3, ... (37)

We also define the following matrices via their ele-
ments

Hj,j+k ≡ 2j + k − 1

2j
Vk−1,

j = 1, 2, 3, ...; k = 0, 1, 2, ...

Hj,j−1 ≡ j − 1

j
V−2 −

(j − 1)(j − 2)

8
,

j = 2, 3, 4, ... (38)

Sj,j+1 ≡ 1, j = 1, 2, 3, ... (39)

where all other elements (which do not show up in the
above formulae) of the matrices H and S vanish.

These definitions allow us to write the following
concise equation instead of (36)

Hh = ESh (40)

(40) is an algebraic weighted eigenvalue equation.
In its present form S can be considered as a weight
matrix at the first glance. However, it is a singular
matrix and therefore can not be considered as a true
weight matrix. Then we can divide this equation by E
at its both sides and have E−1 as the eigenvalue pa-
rameter. This urges us to consider H as a weight ma-
trix, even though it may have zero eigenvalue depend-
ing on the potential structure. Weight matrix must be
positive definite by definition. This may not be en-
countered in the structure of H. If this happens then
we do not have a weight matrix at the both sides of the
eigenequation, neither at the left nor the right. This is
apparently a singularity. In fact the singularity of S is
sufficient to make the problem singular, since the re-
ciprocal of E will have zero value if H is singular or
its nullspaces intersects with the nullspaces of S.

The singular nature of (40) reflects to the relevant
recursion as singularity. Hence, the ordinary trun-
cations we have mentioned in the previous section
should not be expected to give good quality results.
Convergence slow downs must be anticipated. This
urges us to develop a little bit different approaches for
the solution of the recursion.

We have used the power basis operator in posi-
tion, therefore the analiticity is preserved in f . How-
ever, overflows from the operator space spanned by
power set happen because of the appearence of the
first and second reciprocal powers of the position op-
erator. Even though the expectation value of the recip-
rocal square of the position operator does not show up
the expectation value of the position operator recipro-
cal exists in the first two equations of the recursion.
This produces element shifts to the right in the coef-
ficient matrix and has the basic responsibility for the
singularity.

3 An Experimentative Application:
Hydrogen-like Quantum Systems

Let us now consider the hydrogen-like quantum sys-
tems which are composed of two electrically charged
particles having opposite signs and interacting via a
Coulomb potential. In the physically unitless repre-
sentation we can write the following formula for the
potential

V (q̂) ≡ −q̂−1 (41)

which takes us from (38) to the following matrix struc-
ture

Hj,j ≡ −2j − 1

2j
, j = 1, 2, 3, ...;

k = 0, 1, 2, ...

Hj,j−1 ≡ −(j − 1)(j − 2)

8
,

j = 2, 3, 4, ... (42)

where only nonzero elements are given. The previ-
ously defined matrix S remains unchanged. The re-
cursion for this system can be explicitly given as fol-
lows

−(j − 1)(j − 2)

8
hj−1 −

2j − 1

2j
hj − Ehj+1 = 0,

j = 1, 2, 3, ... (43)

This is a second order, linear, homogeneous recur-
sion with varying coefficients. Since its first term
grows unboundedly while the others remain constant,
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its asymptotic counterpart when j climbs to infinity
gives inconsistency. Whereas we prefer to have its
asymptotic counterpart as a recursion which is same
kind but having constant coefficients. To get this situ-
ation we may use the transformation hj ≡ (j + 1)!h̃j .
This gives

− (j − 1)(j − 2)

8(j + 2)(j + 1)
h̃j−1 −

2j − 1

2j(j + 2)
h̃j

− Eh̃j+1 = 0, j = 1, 2, 3, ... (44)

whose asymptotic form for unboundedly increasing j
values is as follows

1

8
h̃
(∞)
j−1 + Eh̃

(∞)
j+1 = 0, j = 1, 2, 3, ... (45)

which has the following general solution

h̃
(∞)
j = c1

(
1

2
√
−2E

)j−1
+ c2

(
− 1

2
√
−2E

)j−1
,

j = 1, 2, 3, ... (46)

where c1 and c2 stand for the constants which are mo-
mentarily arbitrary.

Now we can rewrite the following approximation
for the recursion in (44) by preserving the first n equa-
tions as they are while the remaining equations are re-
placed by their asymptotic counterparts

− (j − 1)(j − 2)

8(j + 2)(j + 1)
h̃j−1 −

2j − 1

2j(j + 2)
h̃j

−Eh̃j+1 = 0, j = 1, 2, 3, ..., n

1

8
h̃j−1 + Eh̃j+1 = 0,

j = n+ 1, n+ 2, n+ 3, ... (47)

whose second part inspires us to assume the following
form for the solution

h̃j (c1, c2, E) = c1

(
1

2
√
−2E

)j−1

+c2

(
− 1

2
√
−2E

)j−1
,

j = 1, 2, 3, ... (48)

Even though this form does not satisfy the first part of
(47) we may expect that the satisfaction can be asymp-
totically achieved as n grows unboundedly. This urges
us to minimize the square sum of the lefthand side ex-
pressions in (47) with respect to c1 and c2. To present
an explicit formulation for the minimization we can
define

h1(E) ≡
[
h̃1(1, 0, E) h̃2(1, 0, E) ...

]T
,

h2(E) ≡
[
h̃1(0, 1, E) h̃2(0, 1, E) ...

]T
(49)

which gives the following cost functional to minimize
the square sum of the left hand side terms of the first
part in (47).

J (c1, c2;E) cTG(E)c ≡

[ c1 c2 ]

[
G1,1(E) G1,2(E)
G2,1(E) G2,2(E)

] [
c1
c2

]
(50)

where

Gi,j(E) ≡
(

n∑
k=1

Hkhi(E)

)(
n∑

k=1

Hkhj(E)

)T

(51)

and Hk stands for the transpose of the kth row of the
matrix H.

The cost functional given through (51) is in a
quadratic form format. Its minimum with respect to
the vector c corresponds to the least eigenvalue of the
G matrix which is positive definite. This eigenvalue
depends on the system energy paramater which is un-
known. Hence, it can be minimized with respect to
this parameter. However there is no warranty to get a
real value for the energy parameter which makes this
eigenvalue minimum. Beyond that the expressions are
not so manageable as expected from the quite simple
structure of the matrix G(E). Hence the optimization
of this cost functional may be avoided.

The abovementioned optimization is uncon-
strained. We can also launch a constrained optimiza-
tion by taking the condition c1 + c2 = 1 which can
be produced from the requirement h2 = 1. This can
be formulated either by eliminating c2 in terms of c1
in the above cost functional and then minimizing the
resulting entity with respect to c1 or we can use the
following new cost functional

J (c1, c2, λ;E) ≡ cTG(E)c

≡ [ c1 c2 ]

[
G1,1(E) G1,2(E)
G2,1(E) G2,2(E)

] [
c1
c2

]
+λ (c1 + c2 − 1)

(52)

where λ stands for the Lagrange parameter. This op-
timization problem can be analytically and uniquely
solved and all unknowns except E can be determined.
This takes us to the following equality

J (c1, c2, λ;E) ≡ cTG(E)c

=
det(G(E))

G1,1(E) +G2,2(E)− 2G1,2(E)

(53)

which depends on the energy parameter and therefore
can be further optimized with respect to E. However,
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it is better to deal with the expressions depending on
not E but α ≡ 1/2

√
−2E for brevity.

The rightmost ratio of (53) has a double root cor-
responding to α = 1/2 and therefore E = −1/2 for
all truncations except the very beginning one term one
where this ratio spontaneously vanishes.

This portion of this section is not completely new.
We have announced it in a very concise manner [14].
Beyond that all intermediate but conceptually impor-
tant details of the issue have been given here very first
time and belong to the research group of the authors.

4 Concluding Remarks

This work has a two sided goal. First of all to es-
tablish a new solution method for parametric recur-
rence. Today’s computer technologies do not almost
leave a gap to develeop a novel approach for the so-
lution of non-parametric recurrences because of the
concrete structure. However, parametric recurrences
contain one or more undetermined parameters and di-
rect computations via computers become quite diffi-
cult. They enforces us to develop different efficient
algorithms. This is the one side of the goal of this
work.

The second side of the goal is to test a recently
developed quantum dynamical relation based recur-
rences and their solutions [1–13]. In this work we
take the hydrogen-like systems as foci for testing and
show that all expected conceptuality appear to verify
the method proposed here.

We now are at such a point that more complicated
systems’ eigenvalue problems can be treated by the
method we have developed here.
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