Vaccines for Drug Dependence: A Systematic Review of the Literature

OCTAVIAN VASILIU*, DANIEL VASILE** * University Military Central Emergency Hospital "Dr. Carol Davila" Bucharest ** University of Medicine and Pharmacy "Dr.Carol Davila" Mircea Vulcanescu Str, no.88, Bucharest ROMANIA octavvasiliu@yahoo.com

Abstract: Drug abuse and dependence are serious threats to individual and public health. Drug use has a severe impact over global functionality, quality of life, healthcare costs, academic and professional performances, life expectancy etc. Although the importance of drug related disorders is obvious, very few approved treatments are available. Vaccines have been considered a possible solution due to their theoretical long-lasting effects. Vaccines for cocaine and nicotine dependence reached the phase III of human trials, but the results are not very encouraging. No human trials have been initiated for anti-methamphetamine and anti-opioids vaccines, as they are still in the preclinical phase of development. Problems related to haptens and adjuvants are related to the vaccines' immunogenicity and it seems that only a minority of tested subjects respond with significant levels of antibodies. A powerful motivation for change is also required, since a high dose of drug could overcome the level of circulating antibodies induced by vaccines. In conclusion, the current stage of research is not satisfactory, but there is still hope for the future development of anti-drugs of abuse vaccines.

Key-Words: vaccines, drug dependence, drug abuse, drug addiction, haptens, cocaine, nicotine, methamphetamine, opioids

1 Introduction

Drug-induced disorders represent a major challenge for public health due to a large number of negative consequences, d.e. high rates of somatic complications, lower rate of survival, lower quality of life etc. [1,2]. These disorders are being diagnosed frequently in adolescents and young persons, a phenomenon which creates individual health and functional problems, but also creates problems for society, due to the increases in healthcare costs and professional/academic lower performances in a very active population. The recreational use of illicit drugs has also been associated with sudden death, and various substances like cocaine, amphetamines and even marijuana may induce this outcome [3].

Many treatments have been recommended for drug induced disorders, but the problem of longterm efficacy is yet far from being solved. Only for alcohol, opioids and nicotine there are available psychopharmacologic approaches, while for psychostimulants, inhalants, phencicylidine, hallucinogenic drugs there are no approved treatments.

The use of immunotherapy is considered a possible solution to the drug dependence, but the results of studies conducted until now are not very

encouraging. Many trials have been conducted on animals, but only a few on humans [4].

There are several problems identified by reviews of trials dedicated to anti-drugs of abuse vaccines. The role of adjuvants is very important for the induction of high and prolonged levels of antibodies, still debates about what adjuvants can be transferred from animal studies to human trials are actual [5]. Another problem is the possibility of overcoming antibody level with higher drug doses, so the vaccine should be accompanied by a form of psychotherapy and enough motivation to discontinue drug use [6]. Haptened vaccines share a common feature, that only one third of the vaccinated subjects get a sufficiently antibody titre enables them to effectively block drug abuse [7].

2 Objective

To evaluate the available data regarding the efficacy of anti-drugs of abuse vaccines in humans and to compare the conclusions of the detected randomized trials.

The secondary objective was to find relevant data regarding possible anti-drugs of abuse vaccines in preclinical stages of development.

3 Methods

A search of major electronic databases (Cochrane, PubMed, PsychInfo, EMBASE, CINAHL) was performed, using key words "cocaine", "opioids", "methamphetamine", "nicotine", "drug of abuse", "psychoactive drugs" plus "vaccine", "immunotherapy" and "biological therapies".

We included only randomized controlled trials for the main analysis.

For the secondary analysis, of the preclinical trials, we included both trials and reviews of literature.

All papers found between 1990 and 2017 were included in the analyses.

We excluded trials without a specified design, researches without well-defined variables and those with no specified statistical methods.

4 Results

A number of 6 randomized controlled trials have been retained in the analysis for anti-cocaine vaccines, and 8 studies for anti-nicotine vaccines.

Very few studies for other anti-drugs of abuse vaccine have been detected in the literature, and all of them were about preclinical tests. We cited the most relevant sources of information in the secondary analysis, for anti-methamphetamine and anti-opioids vaccines.

4.1. Vaccines for cocaine dependence

The interest for an anti-cocaine vaccine is acute, since no treatment has been proven efficient for cocaine related disorders. A number of vaccines designed to treat cocaine dependence are currently in phase II or III of clinical research. Because cocaine is a small molecule, one of its active metabolites, nor-cocaine, must be conjugated with a immunogenetic protein, cholera toxin B.

Table 1. Anti-cocaine vaccine foc	used
alinical trials	

chinear triais		
Authors	Methods	Results
	(variables,	
	design)	
Kosten	6-site, 24-week,	No difference
TR,	phase III, double-	between the 3
Domingo	blind, placebo-	groups
CB,	controlled RCT;	(placebo,
Shorter	Efficacy of	high IgG,
D et al.	succinyl-	low IgG) in
[8]	norcocaine	the main
	conjugated to	outcome;
	cholera toxin B as	29 SAE, but

	a vaccine for cocacine dependence; Urine cocaine metabolites as the main outcome; N=300	not related to withdrawal or deaths; After 8 weeks more vaccinated than placebo subjects attained abstinence for at least 2 weeks, and the high IgG group had the most cocaine-free urines for the last 2 weeks of treatment, but neither were significant
Orson FM, Rossen RD, Shen X et al. [9]	Phase IIb double- blind, placebo- controlled RCT; Investigational product =cholera- toxin-B (CTB) as carrier protein; Isotype specific ELISAs for determination of IgG and IgM anti- cocaine and anti- CTB antibodies; N=55	Before immunization 36/55 subjects had IgM to cocaine, and after immunization IgG anti- CTB responses were reduced in patients who presented high IgM levels. Subjects who developed an IgM response to cocaine during repeated recreational exposure to cocaine are significantly less likely to produce high levels of IgG from the cocaine- conjugated

		vaccine,
		probably via
		type 2 T-cell
		independent
		immune
		response.
		Therefore,
		such subjects
		are poor
		candidates
		for the
		currently
		tested
		vaccine.
Nielsen	16-week, Phase IIb	Opioid kappa
DA,	double-blind,	receptor
Hamon	placebo-controlled	(OPKR) type
SC.	RCT:	1 genotype
Kosten	5 vaccinations	could be
TR [10]	over the first 12	useful for
	weeks:	identifying a
	Main outcome is	subset of
	to verify whether	subjects for
	rs647397 variant	whom the
	of the OPRK1	cocaine
	gene influences the	vaccine may
	response to	be effective
	cocaine vaccine [.]	Protective A
	N=114	allele of
		rs6473797
		had a higher
		drop in the
		rate of
		positive urine
		for cocaine
		than subjects
		with risk
		allele G
Martell	24-week phase	Subjects who
RΔ	Ib double-blind	reached
Orson	nlacebo-controlled	serum IgG
FM	RCT plus follow-	anticocaine
Poling I	up at week 24.	antibody
ot al	Immunogonicity	lovels of 13
ει ai.	safety and efficacy	$\mu q/mI$ or
[11]	of a cocaine	higher had
	vaccine:	significantly
	Main outcome	more
	urinary cocaine	cocaine free
	metabolitos lovalo	uring complex
	N=115	than those
	11-113	with lovels
		loss then this
		value and
		then pleashe
	1	man placebo.

		No SAE was
		reported.
Martell BA, Mitchell E, Poling J et al. [12]	Open-label, 14- week, dose escalation: Safety, immunogenicity, and clinical efficacy of TA-CD cocaine vaccine; Main outcome- urine toxicology and cocaine antibody; N=18 (16 completers)	2000 μg TA- CD dose group had a significantly higher mean antibody titer response, as compared to 400 μg. Attenuation of cocaine's usual euphoric effects at 6 month follow-up. No SAE was
Kosten TR, Rosen M, Bond J et al. [13]	Double-blind, placebo-controlled RCT, phase I; Immunogenicity and safety of a therapeutic cocaine vaccine (TA-CD); N=34	Antibody levels were corelated with vaccine dose and number of injections. Anti-cocaine antibodies were detected after second injection, peaked at 3 months and declined to baseline after one year. No SAE was

RCT= randomized controlled trial; SAE= serious adverse event

All trials detected were phase I, II and III, but the results are in general disappointing. An immune response is detected after various doses of vaccine, but the correlation between antibodies levels and cocaine abstinence rates has not reached the significance level in all the trials. Vaccines were generally well tolerated, with no remarkable serious adverse events being reported. A clinical trial detected that OPKR1 genotype could be useful for identifying a subset of subjects for whom the cocaine vaccine may be effective 10].

4.2. Anti-nicotine vaccines

A large quantity of research has been devoted to the validation of anti-nicotine vaccines in smoking population. A number of 7 well designed clinical trials were found, and no strong correlation could be established between antibodies levels and clinical efficacy. Vaccines have been well tolerated, without serious adverse events being reported.

Table 2. Anti-nicotine vaccines focused	
clinical trials	

Autho	Methods	Results
rs	(variables, design)	
Haver	Placebo-controlled	No significant
mans	parallel-group,	differences
А,	repeated-measures	related to
Vuurm	design RCT;	immunization
an EF,	Investigational	were detected
van der	product= 3'-	on brain
Hurk	aminomethyl-	activity in
et al.	nicotine	response to a
[14]	Pseudomonas	nicotine
	aeruginosa r-	challenge.
	Exoprotein-	
	conjugated vaccine;	
	Main outcome=	
	reaction-times at n-	
	back task	
	N=48 male smokers	
Hoogst	Placebo-controlled	No difference
eder	RCT;	in abstinence
PH,	NicVAX+vareniclin	rates between
Kotz	e&behavioural	NicVAX and
D, van	support vs.	placebo from
Spiege	placebo+varenicline	wks 9 to 52, or
1 PI et	& behavioural	wks 37-52.
al.	support;	The top 30%
[15,16]	Main	antibody
	outcome=prolonged	responders,
	CO-validated	compared to the
	abstinence;	placebo group,
	N=558 smokers	showed a non-
		significant
		tendency
		towards higher
		abstinence rates
		from wks 37-
		52.
Tonsta	Double-blind,	At 1-year non-
d S,	parallel-group RCT,	relapse rate was
Hegge	1-year, 16 visits+16	43.3% in
n E,	telephone calls;	vaccine treated
Giljam	Nicotine vaccine	group vs.
H et al.	(Niccine) 40 µg vs.	51.1% placebo.
[17]	placebo;	No benefit of

Hatsuk	Main outcomes=exhaled levels of CO, time to relapse, abstinence, withdrawal, smoking reinforcement; N=355 cigarette smokers	Niccine on smoking status at 6 or 9 months; nicotine antibodies levels increased in the vaccine treated subjects, but no relation with the relapse could be detected. Subjects with
ami DK, Jorenb y DE, Gonzal es D et al. [18]	placebo-controlled multicentre, 6- month RCT; NicVAX 200 µg vs. 400 µg vs. placebo; N=301 smokers	the highest serum anti- nicotine Ab response were significantly more likely than placebo- recipients to obtain 8 weeks of continuous abstinence. The 400 μg dose regimen elicited the greatest Ab response and resulted in significantly higher abstinence rates than placebo.
Comuz J, Zwahl en S, Jungi WF et al. [19]	6-month, double- blind, phase II RCT, and 6-month follow- up; Investigational product=Nicotine- Qbeta; N=341 smokers	Well tolerated, highly immunogenic, 100% antibody responder rate after the first injection. Abstinence rate at 2 months was statistically different (p<0.05). Continuous abstinence between months 2 and 6 was not significantly different, except for those

		with highest
		antibody levels
		(difference
		maintained at
		12 months
		follow-up).
Wagen	Phase 1/2 placebo-	Vaccine was
a EJ,	controlled RCT;	well tolerated
de Vos	Safety and	up to 266 days.
А,	immunogenicity of	Significant
Horwit	nicotine vaccine in	increases in
h G,	smokers and non-	levels of
van	smokers;	nicotine-
Schayc	Investigational	specific
k ČP	product= purified	antibodies were
[20]	3'-aminomethyl-	detected from 7
	nicotine conjugated	days after the
	with detoxified	second
	Pseudomonas	vaccination
	aeruginosa r-	(day 21), and
	Exoprotein A:	reached
	N=30	nicotine-
	11 50	specific
		antibody levels
		at day 49
		at day 191
Hatsuk	Placebo-controlled	Safe and well
ami	RCT	tolerated
DK	NicVAX 50 100	Vaccine
Rennar	200µg vs. placebo:	immunogenicit
d S	N-68 smokers	v was dose-
u D, Iorenh		related
v D et		The 30-day
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$		abstinence rate
ai. [21]		was
		significantly
		different across
		the doses the
		highest rota of
		abstinones was
		reached by
		subjects
		subjects
		receiving 200
		μg.

4.3. Other vaccines focused on drug dependence

Methamphetamine addiction is a serious health problem and vaccines designed for this disorder have been tested in animal models [22]. Antiopioids vaccines have also been created especially for blocking lethal overdoses, yet studies on humans are not ongoing [23]. A conjugated vaccine for a wide panel of fentanyl analogues has been designed and tested on animal models with good results [24].

4.4. Results discussion

There is a marked discrepancy between the expectations and reality in the field of anti-drug vaccines. While vaccines are considered a sort of "golden bullet" that will target the circulating drugs of abuse and annihilate them on the spot, reality is far more complicated. Finding tolerated haptens, and obtaining sufficient titres of antibodies are the main challenges detected by this review.

The current stage of research is relatively advanced for anti-nicotine and anti-cocaine vaccines, although no product obtained yet the approval of a drug-regulatory agency.

5 Conclusion

This review is considered necessary because the general interest for the field of vaccines not only for drug dependence, but also for other psychiatric disorders, like Alzheimer dementia, increased in the last century, and many clinical trials focused on this topic are ongoing.

The advance in anti-drugs of abuse vaccines research is very slow, and the results are yet inconclusive. Many challenges are still to be solved, regarding the level of vaccines immunogenicity. The overall tolerability of the tested vaccines is good, with very few adverse events being reported in clinical trials. Only anti-cocaine and anti-nicotine vaccines have reached the level of human trial development, with mixed results.

Further basic research should target the quality of haptens, and the clinical trials should include the monitorization of the antibodies titers on longer periods, to establish their stability. Vaccines for a wider range of drugs should be tested, as patients usually consume more than one drug at a time, and they could be addicted to multiple drugs concomitantly.

References:

[1] Zubaran C, Foresti K. Quality of life and substance use: concepts and recent tendencies. *Curr Opin Psychiatry* 22(3), 2009, 281-6.

[2] Neiman J, Haapaniemi HM, Hillbom M. Neurological complications of drug abuse pathophysiological mechanisms. *Eur J Neurol* 7(6), 2000, 595-606.

[3] Fischbach P. The role of illicit drug use in sudden death in the young. *Cardiol Young* 27(S1), 2017, S75-79.

[4] Ohia-Nwoko O, Kosten TA, Haile CN. Animal models and the development of vaccines to treat substance use disorders. *Int Rev Neurobiol* 126, 2016, 263-91.

[5] Alving CR, Matyas GR, Torres O et al. Adjuvants for vaccines to drugs of abuse and addiction. *Vaccine* 32(42), 2014, 5382-9.

[6] Orson FM, Wang R, Brimijoin S et al. The future potential for cocaine vaccines. *Expert Opin Biol Ther* 14(9), 2014, 1271-83.

[7] Kosten TR, Domingo CB. Can you vaccinate against substance abuse? *Expert Opin Biol Ther* 13(8), 2013, 1093-7.

[8] Kosten TR, Domingo CB, Shorter D et al. Vaccine for cocaine dependence: a randomized double-blind placebo-controlled efficacy trial. *Drug Alcohol Depend* 140, 2014, 42-7.

[9] Orson FM, Rossen RD, Shen X et al. Spontaneous development of IgM anti-cocaine antibodies in habitual cocaine users: effect on IgG antibody responses to a cocaine cholera toxin B conjugate vaccine. *Am J Addict* 22(2), 2013, 169-74. [10] Nielsen DA, Hamon SC, Kosten TR. The kopioid receptor gene as a predictor of response in a cocaine vaccine clinical trial. *Psychiatr Genet* 23(6), 2013, 225-32.

[11] Martell BA, Orson FM, Poling J et al. Cocaine vaccine for the treatment of cocaine dependence in methadone-maintained patients: a randomized, double-blind, placebo-controlled efficacy trial. *Arch Gen Psychiatry* 66(10), 2009, 1116-23.

[12] Martell BA, Mitchell E, Poling J et al. Vaccine pharmacotherapy for the treatment of cocaine dependence. *Biol Psychiatry* 58(2), 2005, 158-64.

[13] Kosten TR, Rosen M, Bond J et al. Human therapeutic cocaine vaccine: safety and immunogenicity. *Vaccine* 20(7-8), 2002, 1196-204.

[14] Havermans A, Vuurman EF, van der Hurk J et al. Treatment with a nicotine vaccine does not lead to changes in brain activity during smoking cue exposure or a working memory task. Addiction 109(8), 2014, 1260-7.

[15] Hoogsteder PH, Kotz D, van spiegel PI et al. Efficacy of the nicotine vaccine 3'-AmNic-rEPA (NicVAX) co-administered with varenicline and counselling for smoking cessation: a randomized placebo-controlled trial. *Addiction* 109(8), 2014, 1252-9.

[16] Hoogsteder PH, Kotz D, van Spiegel PI et al. The efficacy and safety of a nicotine conjugate vaccine (NicVAX®) or placebo co-administered with varenicline (Champix®) for smoking cessation: study protocol of a phase IIb, double-blind, randomized, placebo-controlled trial. *BMC Public Health* 12, 2012, 1052. [17] Tonstad S, heggen E, Giljam H et al. Niccine®, a nicotine vaccine, for relapse prevention: a phase II, randomized, placebocontrolled, multicentre clinical trial. *Nicotine Tob Res* 15(9), 2013, 1492-501.

[18] Hatsukami DK, Jorenby DE, Gonzales D et al. Immunogenicity and smoking-cessation outcomes for a novel nicotine immunotherapeutic. *Clin Pharmacol Ther* 89(3), 2011, 392-9.

[19] Comuz J, Zwahlen S, jungi WF et al. A vaccine against nicotine for smoking cessation: a randomized controlled trial. *PLoS One* 3(6), 2008, e2547.

[20] Wagena EJ, de Vos A, Horwith G, van Schayck CP. The immunogenicity and safety of a nicotine vaccine in smokers and nonsmokers: results of a randomized, placebo-controlled phase 1/2 trial. *Nicotine Tob Res* 10(1), 2008, 213-8.

[21] Hatsukami DK, Rennard S, Jorenby D et al. Safety and immunogenicity of a nicotine conjugate vaccine in current smokers. *Clin Pharmacol Ther* 78(5), 2005, 456-67.

[22] Stevens MW, Gunnell MG, Tawney R, Owens SM. Optimization of a methamphetamine conjugate vaccine for antibody production in mice. *Int Immunopharmacol* 35, 2016, 137-41.

[23] Kimishima A, Wenthur CJ, Zhou B, Janda KD. An advance in prescription opioid vaccines: Overdose mortality reduction and extraordinary alteration of drug half-life. *ACS Chem Biol* 12(1), 2017, 36-40.

[24] Bremer PT, Kimishima A, Schlosburg JE et al. Combating synthetic designer opioids: A conjugate vaccine ablates lethal doses of fentanyl class drugs. *Angew Chem Int Ed Engl* 55(11), 2016, 3772-5.

6