Objective Evaluation of Impedance Matching Theory versus Wave Mechanics Theory for Microwave Absorption: A Theoretical Analysis Using Transmission Line Principles Subtitle: A new development of microwave theory in the field of material and device

YUE LIU¹, YING LIU¹, MICHAEL G. B. DREW²

¹College of Chemistry and Chemical Engineering Shenyang Normal University Shenyang, 110034 P. R. CHINA

> ²School of Chemistry The University of Reading Whiteknights, Reading RG6 6AD UK

Abstract: - The mechanism of microwave absorption in films remains a subject of fundamental theoretical disagreement. This study provides a rigorous theoretical evaluation comparing impedance matching theory and wave mechanics theory using undergraduate-level transmission line principles. We demonstrate that impedance matching theory contains a critical logical flaw: when its core premise is satisfied (complete microwave entry into the material), no absorption peaks occur, contradicting experimental observations. Through phase and amplitude analysis of reflection coefficients at both film interfaces, we prove that wave mechanics theory correctly explains all observed phenomena through destructive wave interference. Calculations show that optimal absorption occurs when incident microwaves do not all enter the film, yet the film absorbs all incident energy through phase-cancellation effects. The theoretical foundation is supported by analysis of experimental data demonstrating multiple absorption peaks, thickness-dependent oscillatory behavior, and conditions where impedance matching coincides with minimum rather than maximum absorption. These results reveal that impedance matching theory represents a fundamental misinterpretation of transmission line theory, while wave mechanics theory which is a new development of microwave theory in the field of material and device that many new concepts contrary to common sense have been established, provides the correct physical understanding of microwave absorption mechanisms. This work addresses a critical gap in the scientific literature where demonstrable theoretical errors persist despite clear mathematical evidence.

Key-Words: - microwave absorption, impedance matching theory, wave mechanics theory, transmission line theory, reflection loss, electromagnetic wave interference

Received: May 2, 2025. Revised: June 17, 2025. Accepted: July 23, 2025. Published: October 22, 2025.

1 Introduction

Microwave absorption technology has become essential for applications ranging from electromagnetic interference (EMI) shielding in next-generation wireless communications, to radar stealth systems in defense, and the protection of sensitive electronic equipment in complex electromagnetic environments. As the demand for electromagnetic compatibility increases with the widespread adoption of 5G/6G communications and advanced electronic platforms, materials research has focused on

achieving high-performance absorption characteristics across broad frequency bands. [1-9] The mainstream theoretical foundation for this field is impedance matching theory. According to this widely adopted viewpoint, optimal microwave absorption is realized when the impedance of the absorbing layer matches that of free space, thereby minimizing surface reflection and maximizing the entry of incident electromagnetic waves. This principle is now established as the fundamental design guideline for state-of-the-art microwave absorbing materials, as documented in numerous

 recent reviews and exemplar research articles across leading journals. A 2024 review in Carbon articulates that "impedance mismatch and undesired dielectric relaxation are the main obstacles to realizing simultaneous resonant absorption," [10] while a contemporary Materials Horizons review notes, [11] "maximum absorption occurs when the impedance of the absorber closely matches free space". Advanced materials studies, [6] including those highlighted in ACS Applied Materials & Interfaces (2025) [12] and Advanced Science (2025), [7] demonstrate that matching optimization" "impedance directly translates to record microwave absorption performance.

Review articles on carbon-based absorbers now position impedance matching as a central requirement for high-performing nanostructured composites. [2, 6, 7, 10] Recent research also stresses that achieving impedance matching values in the 0.8–1.2 range is optimal for material design, and that this paradigm underpins the latest technologies for military stealth, flexible electronics, and EMI protection in commercial wireless systems. In fact, even reviews of novel multifunctional and MOF-derived absorbers [13, 14] present impedance matching as the key mechanism for improving absorption.

Despite its almost universal acceptance, impedance matching theory is not without critics. Alternative theoretical frameworks, especially wave mechanics theory, [15, 16] suggest that absorption results from destructive interference of multiple reflected tracks within multilayer or backed structures. [17-19] This perspective explains complex phenomena such as multiple absorption peaks and oscillatory thickness dependencies—which impedance matching alone does not consistently account for. However, this approach remains marginalized in mainstream research. [20]

These unresolved theoretical inconsistencies for decades [21] in the impedance matching view are not merely academic: experimental work routinely observes multiple, sharp absorption peaks and oscillatory dependence on absorber thickness, as well as anomalous cases where absorption is maximized at non-optimal impedance matching conditions. Since theoretical understanding is synonymous with advancing absorber design, clarifying this fundamental mechanism is an urgent and consequential issue for both applied and basic research

In this context, the present work provides a rigorous comparative theoretical evaluation employing transmission line analysis and undergraduate-level electromagnetic principles to directly test both impedance matching and wave mechanics frameworks. The goal is to resolve this persistent controversy and thereby inform rational electromagnetic absorber design across rapidly growing technological sectors.

2 Theoretical Framework

2.1 Transmission Line Theory Foundation

The theoretical analysis is based on standard transmission line theory, where the reflection loss (*RL*) of a metal-backed film is given by:

$$RL = 20 \log_{1.0} |\Gamma_{total}| \tag{1}$$

where Γ_{total} represents the total reflection coefficient accounting for multiple reflections within the film structure. For a metal-backed film, the input impedance is:

$$Z_{in} = Z_1 \tanh(\gamma d) \tag{2}$$

where Z_I is the characteristic impedance of the film material, γ is the propagation constant, and d is the film thickness. The reflection coefficient at the air-film interface is:

$$\Gamma_{01} = \Gamma_{total} (d = \infty) = (Zin - Z_0)/(Z_{in} + Z_0)$$

$$= (Z_1 - Z_0)/(Z_1 + Z_0)$$
with $Z_{in} = Z_1 Z_1$ when $d = \infty$. [22-25]

2.2 Critical Test: The "All-Entry" Condition Impedance matching theory claims maximum absorption occurs when $Zin = Z_0$, which theoretically allows all incident microwaves to enter the film ($\Gamma_{0\ 1}=0$). To test this premise, we examine what occurs when the material characteristic impedance Z_1 equals the free space characteristic impedance Z_0 .

When $Z_1 = Z_0 = 377 \Omega$, the input impedance becomes:

$$Z_{in} = Z_0 \tanh(\gamma d) \tag{4}$$

For this condition, $\Gamma_{0\ 1}=0$ only when $\tanh(\gamma d)=1$, which occurs only at infinite thickness. For finite thickness lossy materials, $Z_{in}\neq Z_0$ when $Z_1=Z_0$, meaning complete microwave absorption cannot be achieved at the condition of complete microwave entry when $d\neq\infty$.

2.3 Wave Mechanics Analysis

Wave mechanics theory considers the phase relationships between:

- 1. Waves reflected from the front interface $(\Gamma_{0\ 1})$
- 2. Waves transmitted into the film, reflected from the metal backing, and re-emerging ($R_2 = \Gamma_{total} \Gamma_{0.1}$) [18]

The total reflection coefficient is:

$$\Gamma_{total} = \Gamma_{0 \ 1} + R_2 \tag{5}$$

Maximum absorption (minimum $|\Gamma_{total}|$) occurs when these two wave components are equal in magnitude but opposite in phase, resulting in destructive interference. [16-18] The absorption peaks occur not

when the reflection coefficient R_2 is minimal (as conventional wisdom holds) but when R_2 is maximal [18] – precisely the opposite of the impedance – matching prediction. These findings have been confirmed by experimental data but require rethinking textbook assumptions.

3 Results and Analysis

3.1 Demonstration of Impedance Matching Theory Failure

Mathematical analysis reveals that when all microwaves enter the material ($\Gamma_{0\ 1}=0$), the reflection loss varies monotonically with thickness according to:

$$|\Gamma_{total}| = e^{-2\alpha d} \tag{6}$$

where α is the attenuation constant. [17, 22, 26-28] This produces no distinct absorption peaks, contradicting experimental observations of sharp, well-defined absorption maxima. When the material is lossless ($\alpha = 0$), no absorption occurs whatever the conditions are. [29]

3.2 Wave Mechanics Theory Validation

Wave mechanics theory successfully predicts:

- 1. Multiple Absorption Peaks: Different thickness-frequency combinations create various destructive interference conditions, explaining the observed multiple peak structure.
- 2. Thickness-Dependent Oscillatory Behavior: Absorption varies sinusoidally with thickness at fixed frequency, contrary to impedance matching theory's prediction of monotonic increase.
- 3. Peak Positions: The theory accurately predicts peak locations based on phase relationships rather than impedance matching conditions. [16, 19, 29]
- 4. Counter-intuitive Results: The theory explains cases where impedance matching conditions coincide with minimum rather than maximum absorption, as observed experimentally. [17]

3.3 Phase Analysis Results

Detailed phase calculations demonstrate that optimal absorption occurs when:

- The front interface reflection coefficient $\Gamma_{0 \ 1}$ $\neq 0$ (not all waves enter)
- The phase difference between direct and indirect reflections approximately equals π [16, 19, 29]
- The magnitudes of the interfering waves are approximately equal

This mechanism allows the film to absorb all incident energy while some microwaves are reflected at the front interface—a result that impedance matching theory cannot explain.

4 Discussion

4.1 Fundamental Flaw in Impedance Matching Theory

The critical flaw in impedance matching theory lies in its assumption that maximizing microwave entry necessarily maximizes absorption. Our analysis proves this premise false through direct calculation. [26, 28, 30] When the theory's ideal condition (complete microwave entry) is artificially imposed, no absorption peaks appear in the theoretical predictions.

Furthermore, experimental data consistently show that the strongest absorption peaks occur when significant interface reflection exists, directly contradicting the theory's core assumption.

4.2 Wave Mechanics as the Correct Framework

Wave mechanics theory provides a comprehensive, internally consistent explanation for all observed phenomena in microwave absorption. Unlike impedance matching theory, it successfully predicts:

- The existence and positions of multiple absorption peaks
- The oscillatory nature of absorption versus thickness relationships
- Cases where impedance matching correlates with minimum absorption
- The phase-dependent nature of the absorption mechanism

Wave mechanics theory enables the study of how both material structure and film structure affect microwave absorption by analyzing the influence of complex permittivity and permeability on reflection loss, as well as the dependence of reflection loss on film thickness. Specifically, changes in a material's complex permittivity (ε_r) and permeability (μ_r) determine how material composition impacts absorption, whereas systematic variation of the film thickness allows direct investigation of film structural effects. [16, 30] In contrast, impedance matching theory incorrectly attributes the influence structure—particularly variations of film thickness—on microwave absorption exclusively to material effects, conflating structural fundamentally distinct contributions. [31] According to wave mechanics theory, absorption peaks in thin films result from destructive interference of reflected waves between interfaces, [17, 18] while the impedance matching approach wrongly interprets these absorption maxima as arising from intrinsic material resonance. [10, 31] This distinction clarifies that the origin of absorption peaks is structural and wave-interference-driven, not solely tied to the material's inherent resonance characteristics.

The theory's superiority is not merely empirical but stems from its correct application of fundamental electromagnetic principles without the logical contradictions inherent in impedance matching theory. [15, 28, 30, 32]

4.3 Scientific Implications

The persistence of impedance matching theory in the literature despite its demonstrable flaws raises important questions about the peer review process and the acceptance of theoretical frameworks. 20] The mathematics involved are accessible to any undergraduate student familiar with complex numbers and transmission line theory, yet the error has remained largely uncorrected in mainstream publications. [33]

This situation exemplifies a broader issue in modern scientific publishing where paradigm inertia and institutional bias may prevent the acceptance of correct theoretical frameworks that challenge established but flawed theories [34]. The resistance to theoretical innovation, particularly when it contradicts widely accepted models, reflects systemic problems in how scientific validity is assessed [35].

5 Conclusion

This theoretical analysis provides definitive evidence that wave mechanics theory correctly describes microwave absorption in films, while impedance matching theory contains fundamental logical flaws that render it scientifically invalid. The correct mechanism involves destructive interference between waves reflected at different interfaces, not the maximization of microwave entry into the material.

Four fundamental revelations establish impedance matching theory, while widely accepted, contains critical flaws: it mistakenly attributes microwave absorption peaks solely to material resonance rather than the combined effect of wave interference within thin films. Wave mechanics theory explains absorption peaks as arising from destructive interference of reflected waves at film interfaces, accurately capturing the oscillatory dependence on film thickness and multiple absorption peaks observed experimentally. Furthermore, wave mechanics differentiates the influences of material intrinsic properties (complex permittivity and permeability) from structural parameters (film thickness), whereas impedance matching theory incorrectly conflates these effects. Ultimately, wave mechanics provides a consistent, mathematically verifiable framework that resolves experimental discrepancies and advances understanding of microwave absorption mechanisms

beyond traditional impedance matching interpretations.

Because the confusion between films and materials in the mainstream theory, the effect of film thickness on absorption represented by |*RL*| has been wrongly attributed to the effect of material structure on absorption, and the absorption peaks caused by interference has been wrongly attributed to the resonance frequencies of the material.

The mathematical proof is straightforward and relies only on undergraduate-level physics and transmission line theory. The fact that such a basic theoretical error has persisted in the literature suggests significant problems with the current scientific review and validation process.

These findings have immediate practical implications for electromagnetic absorber design and highlight the need for rigorous theoretical validation in scientific research. The results also demonstrate the importance of maintaining intellectual honesty and theoretical rigor in the face of established but incorrect paradigms.

The theoretical framework established here provides a solid foundation for future developments in microwave absorption technology and serves as a clear example of how fundamental physics principles can resolve apparently complex theoretical disputes through careful mathematical analysis.

Acknowledgments

We acknowledge Perplexity.ai for assistance in manuscript preparation and analysis support (https://yueliusd.substack.com/p/objective-

evaluation-impedance-matching). The theoretical insights presented here build upon extensive prior work in transmission line theory and electromagnetic wave propagation.

References:

- [1] Lim, D.D., et al., A tunable metamaterial microwave absorber inspired by chameleon's color-changing mechanism, *Sci Adv*, Vo.11, No.3, 2025, pp. eads3499.
- [2] Cui, R., et al., Controlled deintercalation of graphene/organic superlattices with dense atomic-scale steric Schottky heterojunctions for extreme microwave absorption, *Nat Commun*, Vol.16, No.1, 2025,:pp. 5804.
- [3] Sun, Y., et al., Flexible solid-liquid bicontinuous electrically and thermally conductive nanocomposite for electromagnetic interference shielding and heat dissipation, *Nat Commun*, Vol.15, No.1, 2024, pp. 7290.
- [4] Qu, S., Y. Hou, and P. Sheng, Conceptual-based design of an ultrabroadband microwave metamaterial absorber, *Proc Natl Acad Sci USA*, Vol.118, No.36, 2021, pp. e2110490118.

- [5] Song, R., et al., Comparison of copper and graphene-assembled films in 5G wireless communication and THz electromagnetic-interference shielding, *Proc Natl Acad Sci USA*, Vol.120, No.9, 2023, pp. e2209807120.
- [6] Cui, K.B., et al., Multispectrum Electromagnetic Response in FeNiHo/C Heterodimensional Structure for Microwave Absorption and Multimode Photodetection, *Adv Mater*, 2025, pp. e10507. https://doi.org/10.1002/adma.202510507
- [7] He, M., et al., Low-Frequency Microwave Absorption Composites, *Adv Sci (Weinh)*, Vol.12, No,35, 2025, pp. e11580.
- [8] Lu, J., et al., Microwave-Driven Dielectric-Magnetic Regulation of Graphite@alpha-MnO(2) Toward Enhanced Electromagnetic Wave Absorption. *Adv Sci (Weinh)*, Vol.12, No.34, 2025, pp. e04489.
- [9] Calvo de la Rosa, J., et al., New Approach to Designing Functional Materials for Stealth Technology: Radar Experiment with Bilayer Absorbers and Optimization of the Reflection Loss, *Advanced Functional Materials*, Vol.34, No.6,2023, pp. 2308819.
- [10] Hou, Z.-L., et al., A perspective on impedance matching and resonance absorption mechanism for electromagnetic wave absorbing, *Carbon*, 222, 2024, pp. 118935.
- [11] Xiao, J., et al., Multifunctional microwave absorption materials: construction strategies and functional applications, *Mater Horiz*, Vol.11, No.23, 2024, pp. 5874-5894.
- [12] Zhang, Y., et al., Boosting Impedance Matching by Depositing Gradiently Conductive Atomic Layers on Porous Polyimide for Lightweight, Flexible, Broadband, and Strong Microwave Absorption, ACS Appl Mater Interfaces, Vol.17, No.2, 2025, pp. 3796-3805.
- [13] Qu, N., et al., 2D/2D coupled MOF/Fe composite metamaterials enable robust ultrabroadband microwave absorption, *Nat Commun*, Vol.15, No.1, 2024, pp. 5642.
- [14] Wang, B., et al., Design and optimization oriented composition and morphology engineering for MOF derived microwave absorbents, *Nano Materials Science*, 2025. http://dx.doi.org/10.1016/j.nanoms.2024.10.01
- [15] Liu, Y., Y. Liu, and M.G.B. Drew, Wave mechanics of microwave absorption in films Distinguishing film from material, *Journal of Magnetism and Magnetic Materials*, Vol.593, 2024, pp. 171850

- [16] Liu, Y., Y. Liu, and M.G.B. Drew, Wave mechanics of microwave absorption in films: A short review, *Optics and Laser Technology*, Vol.178, 2024, pp. 111211
- [17] Liu, Y., Y. Liu, and M.G.B. Drew, A theoretical investigation of the quarter-wavelength modelpart 2: verification and extension, *Physica Scripta*, Vol.97, No.1, 2022, pp. 015806.
- [18] Liu, Y., Y. Liu, and M.G.B. Drew, A Reevaluation of the mechanism of microwave absorption in film Part 2: The real mechanism, *Materials Chemistry and Physics*, Vol.291, 2022, pp. 126601
- [19] Liu, Y., Y. Liu, and M.G.B. Drew, Wave Mechanics of Microwave Absorption in Films: Multilayered Films, *Journal of Electronic Materials*, Vol.53, 2024, pp. 8154–8170.
- [20] Liu, Y., Y. Liu, and M.G.B. Drew, Citation Issues in Wave Mechanics Theory of Microwave Absorption: A Comprehensive Analysis with Theoretical Foundations and Peer Review Challenges. *arXiv*:2508.06522v2, 2025.
- [21] Liu, Y. Commentary on Electromagnetics Journal Rejections: The Interdisciplinary Gatekeeping Problem, 2025, Available from: https://yueliusd.substack.com/p/commentary-on-electromagnetics-journal.
- [22] Liu, Y., et al., An experimental and theoretical investigation into methods concerned with "reflection loss" for microwave absorbing materials, *Materials Chemistry and Physics*, Vol.243, 2020, pp. 122624.
- [23] Liu, Y., et al., A theoretical and practical clarification on the calculation of reflection loss for microwave absorbing materials, *AIP Advances*, Vol.8, No.1, 2018, pp. e015223
- [24] Liu, Y., et al., Several Theoretical Perspectives of Ferrite-Based Materials—Part 1: Transmission Line Theory and Microwave Absorption, *Journal of Superconductivity and Novel Magnetism*, Vol.30, No.9, 2017, pp. 2489-2504.
- [25] Liu, Y., M.G.B. Drew, and Y. Liu, A physics investigation of impedance matching theory in microwave absorption film—Part 1: Theory, *Journal of Applied Physics*, Vol.134, No.4, 2023, pp. 045303
- [26] Liu, Y., M.G.B. Drew, and Y. Liu, Theoretical insights manifested by wave mechanics theory of microwave absorption—Part 1: A theoretical perspective, *Preprints.org*, 2025. https://www.preprints.org/manuscript/202503.0 314/v5
- [27] Liu, Y., M.G.B. Drew, and Y. Liu, Characterization microwave absorption from

- active carbon/BaSm $_x$ Fe $_{12-x}$ O $_{19}$ /polypyrrole composites analyzed with a more rigorous method, *Journal of Materials Science: Materials in Electronics*, Vol.30,No.2, 2019, pp. 1936-1956.
- [28] Liu, Y., M.G.B. Drew, and Y. Liu, A physics investigation of impedance matching theory in microwave absorption film— Part 2: Problem analyses, *Journal of Applied Physics*, Vol.134, No.4, 2023, pp. 045304.
- [29] Liu, Y., et al., Unexpected results in Microwave absorption -- Part 2: Angular effects and the wave cancellation theory, *Surfaces and Interfaces*, Vo.40, 2023, pp. 103024.
- [30] Liu, Y., et al., Unexpected Results in Microwave Absorption -- Part 1: Different absorption mechanisms for metal-backed film and for material, *Surfaces and Interfaces*, Vol.40, 2023, pp. 103022.
- [31] Cheng, J., et al., Emerging Materials and Designs for Low and Multi Band Electromagnetic Wave Absorbers: The Search for Dielectric and Magnetic Synergy? *Advanced Functional Materials*, Vol.32, No.23, 2022, pp. 2200123
- [32] Liu, Y., M.G.B. Drew, and Y. Liu, A theoretical exploration of impedance matching coefficients for interfaces and films, *Applied Physics A*, Vol.130, 2024, pp. 212.
- [33] Liu, Y., Y. Liu, and M.G.B. Drew, Recognizing Problems in Publications Concerned with Microwave Absorption Film and Providing Corrections: A Focused Review, *Industrial & Engineering Chemistry Research*, Vol.64, No.7, 2025, pp. 3635–3650.
- [34] Liu, Y., Self-Citation Versus External Citation in Academic Publishing: A Critical Analysis of Citation Reliability, Publication Biases, And Scientific Quality Assessment, SSRN, 2025. http://dx.doi.org/10.2139/ssrn.5392646
- [35] Liu, Yue, The Right to Academic Freedom: Why Scholarly Articles Should Not Require Citations and the Critique of the Academic Gaming System, *SSRN*, 2025. http://dx.doi.org/10.2139/ssrn.5452134