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Abstract: - During the motion of a railway vehicle on a rail, with a rail running table/surface of a random form, 

the rail running table imposes to the vehicle a forced oscillation. Due to different reasons –manufacturing, 

corrosion, deterioration etc.- the rail’s running surface is not smooth but instead it comprises a lot of defects that 

give to it a random surface in space. Furthermore, under the primary suspension of the railway vehicle there are 

the Non-Suspended Masses (N.S.M.) which act without any dumping directly on the track panel. On the contrary 

the Suspended Masses (S.M.), that are cited above the primary suspension of the vehicle, act through a 

combination of springs and dashpots on the railway track. A part of the track mass is also added to the Non-

Suspended Masses, which participates in their motion. The longitudinal vertical defects of the Track, which play 

a key role, on the dynamic component of the acting loads on the railway track-panel, and, consequently, -due to 

the principle action=reaction- on the dynamic component of the action/reaction of the railway track on the railway 

vehicle, are modelled and analyzed parametrically using the second order differential equation of motion. The 

parametric investigation is performed for the cases of defects of short and long wavelength.  
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1 The System ‘Vehicle-Track’ in 

Railways 
The railway track is usually modeled as a continuous 

beam on elastic support. Train circulation is a random 

dynamic phenomenon and, depending on the 

different frequencies of the loads it imposes, there is 

a corresponding response of the track superstructure. 

At the instant, when an axle passes from the location 

of a sleeper, a random dynamic load is applied on the 

sleeper. The theoretical approach for the estimation 

of the dynamic loading of a sleeper requires the 

analysis of the total load acting on the sleeper to 

individual component loads-actions, which, in 

general, can be divided into:  

(a) the static component of the load‚ and the 

relevant reaction/action per support point of the rail 

(sleeper) and  

(b) the dynamic component of the load, and the 

relevant reaction/action per support point of the rail 

(sleeper).  

The static component of the load on a sleeper, in 

the classical sense, refers to the load undertaken by 

the sleeper when a vehicle axle at standstill is situated 

exactly on top of the sleeper. For dynamic loads with 

low frequencies the load is essentially static. The sta- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1a. “Railway Vehicle - Railway Track”, in 

a cross-section with the parts of the vehicle, the track 

and the approach/simulation of the defects and the 

elasticity of the Track-Vehicle system. 

static load is further analyzed into individual 

component loads: the static reaction/action on a 

sleeper due to wheel load and the semi-static Reacti- 
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Figure 1b.  The “Railway Vehicle-Railway Track” 

system, simulated as an Ensemble of Springs and 

Dashpots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. (Upper illustration) MLW 500-series diesel 

locomotive of the Greek railways, with three-axle 

bogies; the three-axle bogie is marked with the black 

ellipse. In Greece, Qmax. 22,5 t/axle and NSMmax 5,08 

t/axle. (Lower illustration) A three-axle bogie in 

detail: in the white ellipse the primary suspension and 

in the black ellipse the secondary suspension are 

depicted. 

on/Action due to cant deficiency ([1], [29]). The 

dynamic component of the load of the track depends 

on the mechanical properties (stiffness, damping) of 

the system “vehicle-track” (Fig. 1), and on the excita-

tion caused by the vehicle’s motion on the track. 

The response of the Track to the aforementioned 

excitation results in increase of the static component 

of the load on the superstructure. The dynamic 

component of the load is primarily caused by the 

motion of the vehicle’s Non-Suspended (Unsprung) 

Masses, which are excited by track geometry defects 

-esecially the vertical ones-, and, to a smaller degree, 

by the effect of the Suspended (sprung) Masses.  

In order to formulate the theoretical equations (of 

motion) for the calculation of the dynamic 

component of the load, the statistical probability of 

occurrence/exceedance of the calculated load -in real 

conditions- should be considered, so that the 

corresponding equations would refer to the standard 

deviation (variance) of the load ([1]]; [2]).  

The track defects are classified as (a) short wave-

lenth defects and (b) long wavelength defects (see 

[3]). The real defects are consecutive, not isolated, 

and random. In the present paper the dynamic 

component of the acting load, for the short and long 

wave-length defects, is investigated through the 

second order differential equation of motion of the 

Non-Suspended Masses of the Vehicle and 

specifically the transient response of the reaction-

action on each support point (sleeper) of the rail. 

 

2 The Motion of a Railway Vehicle on 

a Railway Track 

The railway vehicles consist of (a) the car-body, (b1) 

the primary suspension between the bogie-frame and 

the axle(s), (b2) the secondary suspension between 

the bogie-frame and the car-body and (c) the axles 

with the wheels (Fig. 2). In general, the mass of the 

(c) case is situated under the primary suspension of 

the vehicle and is the Non-Suspended Mass of the 

vehicle. The heaviest vehicles are the locomotives, 

which are “motive units” and have electric motors 

whose a portion of its mass is suspended by the frame 

of the bogie and another portion of its mass is based 

on the axles directly. In Fig. 2-upper a locomotive 

with three-axle bogie is depicted, while the three axle 

bogie with the springs of the primary and secondary 

suspensions is depicted in Fig. 2-lower. 

There are electric motors suspended totally from 

the frame of the bogie but -in the case of diesel-

locomotives- they are suspended partly on the frame 

of the bogie at their one end and partly based on the 

axle at their other end. In the second case the electric 

motor is semi-suspended (Fig. 3) and a part of it is 

considered also as Non-Suspended Mass, as it will be 

clarified below.  

If we try to approach mathematically the motion 

of a vehicle on a railway track, we will end up with 

the model shown in Fig. 1b, where both the vehicle 

and the railway track are composed of an ensemble 

of masses, springs and dashpots. 

As we can observe, the car-body is based on the 

secondary suspension that includes two sets of 
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“springs-dashpots”, seated on the frame of the bogie 

(Fig. 1-left and Fig. 3-right). The loads are 

transferred to the truss and the side frames of the 

bogie-frame. Underneath the bogie there is the 

primary suspension, through which the bogie is 

seated onto the carrying axles and the wheels. Below 

the contact surface, between the wheel and the rail, 

the railway track also consists of a combination of 

masses-springs-dampers that simulates the rail, the 

sleepers, the elastic pad, the rail fastenings, the 

ballast and the ground. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Schematic depiction of an Electric Motor 

“semi-suspended” from the bogie’s frame at one end 

(“Nose” suspension) and supported on the vehicle’s 

axle at the other end. 

 

 

Figure 4. (Upper illustration) Cross-section of 

Ballasted Track as a multi-layered structure.; (Lower 

illustration) Characteristic Values of Static Stiffness 

Coefficients of each layer.  

The masses of the railway vehicle located under 

the primary suspension (axles, wheels and a 

percentage of the electric motor weight in the case of 

locomotives) are the Non-Suspended Masses 

(N.S.M.) of the Vehicle, that act directly on the 

railway track without any damping at all. Further-

more, a section of the track mass (mTRACK) also 

participates in the motion of the vehicle’s Non-

Suspended Masses, which also highly aggravates the 

stressing on the railway track (and on the vehicle too) 

([1]; [2]]. 

The defects of the rail running table, a wave in 

space of random nature, impose a forced oscillation 

on the Non-Suspended Masses of the vehicle; their 

form constitutes a forcing excitation. From the form 

of the rail running table the forcing period or 

frequency can be calculated.   

The remaining vehicle masses are called 

Suspended Masses (S.M.) or Sprung Masses: the car-

body, the secondary suspension, the frame of the 

bogie, a part of the electric motor’s weight and the 

primary suspension. 

 

3 Modelling the Railway Track to 

formulate the 2nd Order Differential 

Equation of Motion 

The theoretical analysis of a railway track is based 

mainly in Winkler's theory ([4]), which models it as 

an infinite beam on elastic foundation. In European 

literature it is also referred to as Zimmermann's 

theory ([5]). The elastic foundation of the railway 

track can be simulated by a large number of closely 

spaced translational springs and the following equati-

on is valid ([3]; [6]): 

 

                                                                       (3.1) 

 

in the absence of external force, or: 

 

                                                                       (3.2) 

 

with the presence of external force. 

In these equations y is the deflection of the beam, 

ρ1 is the mass of the track participating in the motion, 

k1 the viscous damping of the track, J is the moment 

of inertia of the rail, E is the modulus of elasticity of 

the rail, Q the force/load from the wheel (when the 

force is present) and δ(x) the deflection of the rail at 

the contact point between wheel and rail. 

The solution of equations (3.1) and (3.2) becomes 

challenging if we want to take into account all the 

parameters according to professor J. Alias ([7]). 

However, if we make some simplifying hypotheses, 

4 2
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we will be able to approximate the influence of 

certain parameters, provided that we will verify the 

theoretical results with experimental measurements. 

Apparently having in mind the tests on Track under 

operation/circulation, performed by the European 

Railways and the International Union of Railways 

(U.I.C. or UIC in French), professor J. Eisenmann 

states already since 1988 that, the -based on 

Zimmermann's theory- methods give results corre-

sponddent at the average of the measured on track 

values, for track's loading and stressing, as well as 

track's deflection ([8]). Consequently, the level of the 

maximum values is dependent on the possibility of 

occurrence -mainly- of the dynamic component of 

the acting load. 

The most widely used theory (referred to as the 

Zimmermann theory) based on Winkler analysis 

examines the track as a beam on elastic support.  

                                                                                                                     

                                                                      (3.3) 

where y is the deflection of the rail, M is the 

bending moment, J is the moment of inertia of the 

rail, and E is the modulus of elasticity of the rail. 

From the formula above it is derived that the reaction 

of a sleeper Rstatic (that is of each support point of the 

track) acting on the railway vehicle is: 

 

                                                                           (3.4a)                                                                                                                    

    

where Qwheel the static wheel load, ℓ the distance 

among the sleepers, E and J the modulus of elasticity 

and the moment of inertia of the rail, Rstat the static 

reaction/action on the sleeper, and ρ reaction 

coefficient of the sleeper which is defined as: ρ=R/y, 

and is a quasi-coefficient of the track elasticity 

(stiffness) or a spring constant of the track. The track 

consists of a sequence of materials  (substructure, 

ballast, sleeper, elastic pad/ fastening, rail), that are 

characterized by their individual coefficients of 

elasticity (static stiffness coefficients) ρi [see Fig.4-

Lower]. 

Hence, for the track:  

                                                                              

                                                                      

 

                                                                    (3.4b)                                                                                                                                 

 

 

where ν is the number of various layers of 

materials that exist: rail, elastic pad, sleeper, ballast, 

subgrade. The semi-static Action is produced by the 

centrifugal acceleration exerted on the wheels of a 

vehicle that is running in a curve with cant 

deficiency, given by [see [29]]:  

 

                                                                   (3.4c)                          

 

where α is the cant deficiency, hCG the height of 

the center of gravity of the vehicle from the rail and 

e the gauge. 

The total Static+Semi-Static Reaction/Action 

(Rstat-total) on each support point of the rail is given by 

Eqn. (3.4a) where: 

Qwheel = Qstatic + Qa                          

 

 

                                                              (3.4d) 

 
 

If the acting load is determined, then the Action-

Reaction on each support point (sleeper) of the rail 

will be determined too. The system “railway vehicle-

railway track” operates based on the classical 

principles of physics: equivalence of Action-

Reaction between the vehicle and the track. It is a 

dynamic stressing of random, vertical form. 

The loading of the railway track from a moving 

vehicle consists of: 

 (a) the static component of the load (static load of 

the vehicle’s axle), as given by the rolling stock’s 

producer. 

(b) the semi-static component of the load (due to 

cant or superelevation deficiency at curves, which 

results in non-compensated lateral acceleration). 

(c) the component of the load from the Non-

Suspended Masses of the vehicle (the masses that are 

not damped by any suspension, because they are 

under the primary suspension of the vehicle), which 

is a dynamic load by its nature and 

(d) the component of the load from the Suspended 

Masses of the vehicle, that is a damped force 

component of the total action on the railway track and 

it is also a dynamic load. 

On each support point of the rail (sleeper) a 

reaction/action is applied due to the distribution of 

the acting load to the adjacent sleepers (support 

points of the rail) because of the total elasticity/total 

static stiffness coefficient of the track. For the static 

and the semi-static components of the load these 

reactions/actions are given from the Eqns (3.4a) and 

(3.4d), as derived from the solution of the differential 

equation of motion. But for the dynamic component 

of the load a modelling of the motion of the Non-

Suspended Masses should be performed.  

Finally, the differential equation is transformed to 

the following equation connecting the deflection of 
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the continuous beam and the bending moment ([3]; 

[6]) as given by Eqn. (3.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Schematic mapping of a vehicle/car on a 

Raiway Track: (Upper) elementary graph; (lower)  

mNSM the Non-Suspended Masses (under the primary 

suspension) of the vehicle (the not depicted 

secondary suspension is between the bogie-frame and 

the car-body); mTRACK the mass of the track that 

participates in the motion of the Non-Suspended 

Masses (mNSM); mSM the Suspended Masses of the 

vehicle/car-body (above the primary suspension); Γ 

damping constant of the track; hTRACK the total 

dynamic stiffness coefficient of the track; n the fault 

ordinate of the rail running table, and y the deflection 

of the track. The dynamic component is owed to the 

NSM and the SM; [cf. [12]].   [SOURCE [28]] 

 

4 Modelling the Motion of the Non-

Suspended Masses on a Railway Track 

to formulate the 2nd Order Differential 

Equation of Motion  

The Suspended (sprung) Masses of the vehicle –

masses situated above the primary suspension– create 

forces with very small influence on the wheel’s 

trajectory and on the system’s excitation. This 

enables the simulation of the track as an elastic media 

with damping, as shown in Fig. 5 (see relevantly [3]; 

[10]), and also the modelling of the motion of the 

Non-Suspended Masses of a railway vehicle on it. 

Forced oscillation is caused by the irregularities of 

the rail running table (like an input random signal) -

which are represented by n-, in a gravitational field 

with acceleration g, whilst the total deflection of the 

rail’s running table, due to the wheel’s passage, is y. 

As already described, there are two suspensions on 

the vehicle for passenger comfort purposes: primary 

and secondary suspension. Moreover, a section of the 

mass of the railway track participates in the motion 

of the Non-Suspended (Unsprung) Masses of the 

vehicle. These Masses are situated under the primary 

suspension of the vehicle. 

If the random excitation (track irregularities) is 

given, it is difficult to derive the response, unless the 

system is linear and invariable. In this case the input 

signal can be defined by its spectral density and from 

this we can calculate the spectral density of the 

response. The theoretical results confirm and explain 

the experimental verifications performed in the 

former British railway network ([11]; relevant results 

in [7], p.39, 71 and also in [3]; [6]).  

The equation for the interaction between the 

vehicle’s axle and the track-panel becomes ([3]; [6]; 

[12]): 

 

 

 

                                                                 (4.1a) 

 

where: mNSM the Non-Suspended (Unsprung) 

Masses of the vehicle, mTRACK the mass of the track 

that participates in the motion, mSM the Suspended 

(Sprung) Masses of the vehicle that are cited above 

the primary suspension of the vehicle, Γ damping 

constant of the track (for its calculation see [13]; 

[14]), hTRACK=ρdynamic the total dynamic stiffness 

coefficient of the track, n the fault ordinate of the rail 

running table and y the total deflection of the track, 

and: 

                                                                    (4.1b) 

The phenomena of the wheel-rail contact and of 

the wheel hunting, particularly the equivalent 

conicity of the wheel and the forces of pseudo-glide, 

are non-linear. In any case the use of the linear 

system’s approach is valid for speeds lower than the 

Vcritical≈500 km/h. The integration for the non-

linear model (wheel-rail contact, wheel-hunting and 

pseudoglide forces) is performed through the Runge 

Kutta method ([7], p.94-95, 80; [15], p.98; [16], 

p.171, 351). Consequently, for all operational speeds 

in High-Speed Railway Lines up to now the linear 

model, which we use, is quite reliable. 

The defects of the rail running table are 

categorized in short wavelength defects and long 

wavelength defects. The analysis and investigation of 

the Eqn (4.1a), for consecutive short wavelength 
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defects (e.g. the rail surfaces corrugation, of 

wavelength of some centimeters), was presented in 

[3]. The long wavelength defects are difficult to be 

measured, since sometimes, their wavelength 

overpass the measurements’ base, which is 

determined by the distance between the measuring 

vehicle’s axles. In this article the long wavelength 

defects are modelled, analyzed and investigated. 

The dynamic component of the acting load 

consists of the action due to the Sprung or Suspended 

Masses (SM) and the action due to the Unsprung or 

Non-Suspended Masses (NSM) of the vehicle. To the 

latter a section of the track mass is added, that 

participates in its motion ([13]; [14]). The Suspended 

(Sprung) Masses of the vehicle –masses situated 

above the primary suspension (Fig. 1)– apply forces 

with very small influence on the trajectory of the 

wheel and on the excitation of the system.  This 

enables the simulation of the track as an elastic media 

with damping which takes into account the rolling 

wheel on the rail running table ([3]; [17]; [18]). 

Forced oscillation is caused by the irregularities of 

the rail running table (simulated by an input random 

signal) –which are represented by n–, in a 

gravitational field with acceleration g. There are two 

suspensions on the vehicle for passenger comfort 

purposes: primary and secondary suspension. 

Moreover, a section of the mass of the railway track 

participates in the motion of the Non-Suspended 

(Unsprung) Masses of the vehicle. These Masses are 

situated under the primary suspension of the vehicle.  

We approach the matter considering that the rail 

running table contains a longitudinal fault/ defect of 

the rail surface. In the above equation, the oscillation 

of the axle is damped after its passage over the defect. 

Viscous damping, due to the ballast, enters the above 

equation under the condition that it is proportional to 

the variation of the deflection dy/dt. To simplify the 

investigation, if the track mass (for its calculation see 

([13]; [14]) is ignored -in relation to the much larger 

Vehicle’s Non-Suspended Mass- and bearing in mind 

that y+n is the total subsidence of the wheel during 

its motion (since the y and n are added algebraically), 

we can approach the problem of the random 

excitation, based on a cosine defect (V< 

Vcritical=500 km/h): 

 

                                                                 (4.2) 

 

The second order differential equation of motion 

is: 

                                                                                                                                                                       

                                                                       (4.3) 

The complete solution of which using polar 

coordinates is ([6], p.199 and ch.3): 

                                                                          

                                                                      (4.4) 

where, the first term is the transient part and the 

second part is the steady state part. 

 

5 Mathematical Analysis of the System 

‘Vehicle-Track’, beginning from an 

Isolated Defect of the Railway Track 

The modelling -described above- gives equations to 

calculate the actions on track depending on the 

parametrical analysis of the conditions on the railway 

track. In order to approach the long wavelength 

defects, we begin by trying to relate the depth 

(sagittal) of an isolated defect to the dynamic 

component of the load. We neglect the steady state 

part of Eqn (4.4): 

                                                        (5.1) 

We focus herein on the transient part of the load, 

that is the term: 

 

                                                        (5.2) 

 

We investigate this term for ζ=0. The theoretical 

analysis for the additional -to the static and semi-

static component- dynamic component of the load 

due to the Non-Suspended Masses and the Suspended 

Masses of the vehicle, leads to the examination of the 

influence of the Non-Suspended Masses only, since 

the frequency of oscillation of the Suspended Masses 

is much smaller than the frequency of the Non-

Suspended Masses. If mNSM represents the Non-

Suspended Mass, mSM the Suspended Mass and 

mTRACK the Track Mass participating in the motion of 

the Non-Suspended Masses of the vehicle, the 

differential equation is (with no damping ζ=0): 
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where: g the acceleration of gravity and hTRACK, 

the total dynamic stiffness coefficient of track, given 

by Eqn. (4.1b). 

where the track mass mTRACK that participates in 

the motion of the Non-Suspended (Unsprung) 

Masses of the Vehicles, ρtotal the total static stiffness 

coefficient of the track, ℓ the distance among the 

sleepers, E, J the modulus of elasticity and the 

moment of inertia of the rail, m0 the unitary mass of 

track (per unit of length of the track). 
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For a comparison of the theoretical track mass to 

measurement results refer to [13]; [14]. The 

particular solution of the differential Eqn (5.3) 

corresponds to the static action of the weight of the 

wheel: 

 

 

                                                             (5.3a) 

 

We assume that the rolling wheel runs over an 

isolated sinusoidal defect of length λ of the form: 

 

 

 

where n is the ordinate of the defect. 

Consequently, the ordinate of the center of inertia of 

the wheel is n+z. Defining τ1 as the time needed for 

the wheel to pass over the defect at a speed V: 

 

                , then: 

 

 

 

 

 

 

 

Since: 

 

 

 

 

 

 

 

 

 

 

 

Where:  

 

and ω1 the cyclic frequency of the external force 

and ωn the natural frequency.  

The additional dynamic component of the load 

due to the motion of the wheel is: 

 

                                                                   (5.4)   

 

To solve Eqn (5.3) we divide by (mNSM+mTRACK): 

 

                                                                                                                                                               

(5.5a) 

The differential equation of motion, for an 

undamped forced harmonic motion is ([19]; [20]): 

 

 

                                                                    (5.5b) 

                                                                                                                                                               

where: 

 

Eqn (5.5a) is quite the same as Eqn (5.5b), since k 

is the spring constant and m the mass.  

The complete solution is (see Annex 1): 

                                                                                                                              

                                                                     (5.6) 

 

 

where: k=hTRACK, m=mNSM+mTRACK and: 

 

 

 

The general solution of Eqn (15) is: 

 

 

 

 

 

 

 

and: 

 

 

 

 

                                                                  (5.7) 

 

 

where, Tn=2π/ωn the period of the free oscillation 

of the wheel circulating on the rail and T1=2π/ω1 the 

necessary time for the wheel to run over a defect of 

wavelength λ: T1=λ/V. Consequently, Tn/T1=ω1/ωn. 

From Eqn (5.7):    

 

 

 

 

(5.8) 

 

We can investigate Eqn (5.8) after a parametric 

analysis by variating parameters: for given values of 

Tn/T1=ω1/ωn and for given value of V (for example 

equal to 1) the time period T1 is proportional to μ=0.1, 

0.2, … 1.0 of defect λ (where λ is the defect’s 

wavelength). Equation (5.8) is transformed: 

 

 

 

 

                                                                  (5.9) 

TRACK

TRACK

m g
z

h


=

2 2
1 cos 1 cos

2 2

a x a Vt
n

 

 

   
=  − =  −   

   

1
V


 =

( )
2 2

2 2
0 + +  +  = NSM TRACK TRACK

d d z
m z n m h z

dt dt

1

1

2 2 2 2
sin sin

2 2

2 2
sin

2

dn a V Vt a Vt

dt

dn a Vt

dt

=   =   


=   

   

    

 

 

2

1

2
, 2 , TRACK

n

NSM

hV
x V t

T m

 
 


=  =  = =



2 2
2

2

1 1 1

2 2

2 2

11

2 2 2 2
cos cos

2 2

2 2
cos

d n a Vt a t

dt

d n a t

dt

   
= −   = −      

   

= − 

   

    

 



( )
2 2

2 2

2

2

11

2 2
cos

NSM TRACK TRACK NSM

NSM

d z d n
m m h z m

dt dt

a t
m

 +  +  = −  =

= −  
 



( )NSM TRACK TRACKm z n h z m z  −  + =  + 

( ) ( )

2 2

2 2

11

2 2
cosTRACK NSM

NSM TRACK NSM TRACK

h md z a t
z

m m m mdt

 


+  = −  

+ +

( )

( ) ( )

0 1

20 0

1 1

cos

cos cosn

m z kz p t

p pk
z z t t

m m k

 + = 

+ = = 







  

2

2



=  =n

n

k k
m

m

( ) ( ) ( )0

12

1

1
cos cos

1

n

steady state transient part

n

p
z t t t

k
 




− −

 
 =   −
  
 −  

 



2

2

0 2

1

2
,TRACK NSM

n

NSM TRACK

h m
p

m m

 




  
= = −

+

( ) ( ) ( )

( )
( ) ( )

0

2

12 2

1
1

12

1

2 1 1
cos cos

1

1
cos cos

2
1

NSM

n

TRACK
steady state transient part

p
n

NSM

n

NSM TRACK
n steady state transient part

m
z t t t

h

m
t t

m m

− −

− −

 
  

 = −    − =
  
 −  

 

 
 =    −
+  
 −  

 






 
 

 




 







( )
 ( )

( ) ( )

( )
( ) ( )

2
1

2

12 2 2

1
1

12

1

1 4 1
cos cos

2
1

1
cos cos

2
1

TRACK

NSM

n

n NSM TRACK
steady state transient part

h
n

NSM

n

NSM TRACK
n steady state transie

m
z t t t

m m

m
t t

m m

− −

−

 
  = −     − =

  +  
 −  

 

=    −
+  

−  
 









 

  




 




nt part−

 
 
 
 



( )
( ) ( ) ( )12

1

1 1
cos cos

2
1

NSM TRACK

n

NSM
n steady state transient part

m m
z t t t

m
  




− −

 +
  =    −
  
 −  

 



( )
( )

( )
( ) ( )

( )
( ) ( )

1 12

2

1 1 1
cos cos

2 1

1 1
cos 2 cos 2

2 1

NSM TRACK

NSM
steady state transient part

steady state transient part

m m
z t t n t

m n

n
n

− −

− −

 + 
   =   −  = 
 −   

 
 =    −  
 −
 





 


   

Konstantinos Sp. Giannakos
International Journal of Theoretical and Applied Mechanics 

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 7 Volume 10, 2026



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where n=ωn/ω1, ω1=λ/V and we examine values of 

μ·λ=0, 0.1λ, 0.2λ,...., 0.8λ, 0.9λ, λ, for discrete values 

of n=ωn/ω1 (=Τ1/Τn) and μ a percentage of the 

wavelength λ. In Fig. 6 the equation (5.9) is depicted. 

In real Railway-Tracks the recordings of defects 

are distorted by the measurements of the Track 

Recording Cars and their correct evaluation is 

presented in [26], [27], [28], [29], [30].  

 

6 Passing from an Isolated Defect to 

Consecutive Defects of a Track 

The first term in the bracket of Eqn (5.9) is depicted 

on the vertical axis [y] while on the horizontal axis 

[x] the percentages of the wavelength μ·λ are shown. 

We observe that z(x) has its maximum value for 

T1/Tn=0,666667=2/3, equal to 1,465: 

 

                                                                 (6.1) 

 

for x=0.91λ. The relation T1/Tn represents the 

cases for short and long wavelength of the defects. 

For T1/Tn=2-2,5 the wavelength is long and for T1/Tn 

<< the wavelength is short ([7], p.49). The second de- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rivative of z(x) from Eqn (5.7), that is the vertical 

acceleration that gives the dynamic overloading due 

to the defect, is calculated, see the following Eqn:  

 

 

 

(6.2a) 

 

 

   (6.2b) 

for discrete values of n=ωn/ω1 (=Τ1/Τn) and μ a 

percentage of the wavelength λ, and Tn=0,0307 sec 

as calculated above. The additional subsidence of the 

deflection z at the beginning of the defect is negative 

in the first part of the defect. Following the wheel’s 

motion, z turns to positive sign and reaches its 

maximum and possibly afterwards z becomes again 

negative. After the passage of the wheel over the 

defect, one oscillation occurs which approaches to 

the natural cyclic frequency ωn (this oscillation is 

damped due to non-existence of a new defect since 

we considered one isolated defect) in reality, even if 

in the present analysis the damping was omitted for  
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Figure 6. Depicting Eqn (5.9) on a graph (in a scale). For the deflection [z] (Eqn 5.3a) due to a defect of 

short or long wavelength: on the Horizontal Axis the percentage of the wavelength λ of the defect is depicted. 

On the Vertical Axis the first term [y=kz] of Eqn (5.9), inside the brackets, is depicted [see §6]. 
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simplicity. The values of the calculations of both 

Fig.6 and Fig.7 are presented in Annex 2. 

 

7 Parametric Analysis of Short and 

Long Wavelength Defects 

If, now, we consider a long wavelength defect with a 

wavelength that produces a forced oscillation with: 

                        , we calculate (in Fig. 8 is 0,19, for 

 x=0,41·λ): 

with the values calculated above: Tn = 0,026 sec, T1 

= 0,065 sec, the wavelength λ equals: 

 

 

This value represents a defect of adequately long 

wavelength. The static deflection due to a wheel load 

of 11,25 t or 112,5 kN is equal to: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                   

                                                                 

                                                                  

 

                                                                  (7.1a) 

Consequently, for α=1 mm, that is for every mm 

of vertical defect, the dynamic increment of the static 

deflection is equal to (0,133/0,606)=21,9% of the 

static deflection (for every mm of the depth of the 

defect). 

If we examine the second derivative (vertical 

acceleration) as a percentage of g, the acceleration of 

gravity, then [from Eqn (6.2a-b)]: 
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Figure 7. Depicting Eqn (7.1a) on a graph (in a scale). For the vertical acceleration [z″] due to a defect 

of short or long wavelength: in the Horizontal Axis [x] the percentage of the wavelength λ of the 

defect is depicted. In the Vertical Axis [y] the first term of Eqn (7.1a), in the brackets, is depicted. 
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(7.1b) 

Equation (7.1a) is plotted in Fig. 7. 

The first term in the bracket of Eqn (7.1a) is 

depicted on the vertical axis [y] while on the 

horizontal axis [x] the percentages of the wavelength 

μ·λ are shown. For the case calculated above in Fig. 

6, at the point x=0,41·λ the term in bracket has a value 

of   -0,332: 

 

 

 

 

 

 

Eqn (5.3) (its second part corresponds to the static 

action of the wheel load) has as particular solution: 

 

 

 

Abandoning the second part leads to the classic 

solution where z is the supplementary subsidence 

owed to the dynamic increase of the Load. The 

dynamic increase of the Load is equal to: 

 

 

 

 

                                             (7.2) 

 

where, from the analysis above: hTRACK = 8539,6 

t/m = 85.396 N/mm, mTRACK = 0,426 t = 426 kg. 

Consequently, for arc height (i.e. sagitta) α=1 mm of 

a defect of wavelength λ, that is for every mm of 

vertical defect, the dynamic increase of the load is 

equal to (1,04/ 11,25)=9,24%  of the static load of the 

wheel (for every mm of the depth of the defect). 

Apparently the increase of the static stiffness 

coefficient and of the inferred dynamic stiffness 

coefficient of track leads to lower values of Qdynamic 

since the hTRACK is in the denominator in the equation 

for calculation of z, consequently the first term of the 

Eqn (23) for the Qdynamic will be reduced. The same 

happens for the track mass participating in the motion 

 
1 Initials of the Hellenic Railways Organization in Greek. 

of the Non-Suspended Masses of the wheel. Thus 

finally the Qdynamic will be reduced when the ρtotal and 

the hTRACK are increased. 

In the case of a defect of long wavelength, when 

the speed V increases, then T1 decreases and the 

supplementary subsidence, owed to the dynamic 

increase of the load, increases; consequently the 

dynamic component of the load due to the Non-

Suspended Masses increase more rapidly since it 

depends on       , that is on the square of the speed V. 

When the dynamic rigidity hTRACK=ρdynamic increases, 

then the eigenperiod Tn decreases and T1/Tn increases 

and the supplementary subsidence, owed to the 

dynamic increase of the load, decreases for the same 

speed V; one higher rigidity (stiffness coefficient) is 

still advantageous. For defects of longer wavelength, 

the oscillations of the Suspended Masses become 

predominant since the oscillations of the Non-

Suspended Masses decrease. 

The results presented so far and the arithmetic 

comparisons give an idea and enlighten the influence 

of some kinds of track defects as well as of several 

parameters, but the calculations do not take into 

account the amortization of the oscillations due to the 

damping of the track and mainly of the ballast, 

consequently the derived arithmetic values are larger 

than the real values.  For example in the case of the 

theoretical calculation of the track mass which 

participates in the motion of the Non-Suspended 

Masses of the railway vehicles without damping give 

results 33% larger than the real ones since if we take 

into account the damping coefficient of the track the 

variation between the results of the theoretical 

calculations and the real values measured on track 

fluctuates between 0,5 and 4% ([14]; compared to 

[13]), fact depicting the accuracy of the theoretical 

calculations, if the totality of the parameters is taken 

into account. 

 

8 Summary - Conclusions 

The basic concept for this article resulted during the 

theoretical and experimental investigation which 

took place under the cooperation among experts of 

OSE1 and SNCF2 (1988-1989) [[32], [33], [21]] and 

personal research of the author either in the Hellenic 

Railways Organization (OSE) or at the University of 

Thessaly, Civil Engineering Department (2007-

2014) but also later until now (2025). 

We should underline that the present article 

investigates with accurate mathematical calculations 

-in more depth and in more details-, the values of 

both z and z″ of the Eqns (5.9) and (7.1a), than the 

2 Initials of the French State Railways in French.  
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[31] and [30] did. The graphs of Figs 6, 7 are in a 

scale that permits easy interpolation to find the values 

of the parameters. We remark now in the present 

article that as the ωn/ω1 decreases, then -in absolute 

values- the values of the y-axis increase in Fig.6, but 

up to an upper limit (see Annex 2), since in Fig.7 they 

increase significantly; that’s why we did not proceed 

the calculations to values <0.05 in Annex 2, but till 

0.25 in Fig.7.  After detailed calculations, we also 

remark that, as the relation ωn/ω1 increases, the values 

of y-axis in both Figs 6, 7 tend to fluctuate around 

zero, that’s why we restricted the calculations for 

ωn/ω1 up to 2.5 in Fig.6 and 3 in Fig.7.   

General Ascertainments resulting from the 

present article but also from [31] and [30]: 

For a defect of long wavelength λ and sagitta of 1 

mm (depth of the defect), the dynamic increase of the 

acting load –compared to the static wheel load– is 

equal to 9,24%. Furthermore, from Fig. 6 and Fig. 7, 

it is verified that when the speed increases, the period 

T1 decreases and the supplementary sagitta (depth of 

the defect) increases. Supplementary, since it is 

added to the static deflection and it is owed to the 

dynamic component of the load. The increase of the 

dynamic component of the load increases faster since 

it is dependent on the square of the speed (ω1)
2. When 

the dynamic stiffness coefficient hTRACK increases, Tn 

decreases, T1/Tn increases, the supplementary sagitta 

decreases (for the same V), and the dynamic 

component of the action decreases also. Furthermore, 

in the case of longer wavelengths the oscillations of 

the Suspended Masses become predominant since the 

oscillations of the Non-Suspended Masses decrease. 

Consequently, the softer the pad and/or the 

subgrade (subgrade and prepared subgrade) then the 

higher percentage of the load is transmitted through 

the sleeper to the substructure of the railway track 

under the running load/axle. Finally in total, the 

reaction per support point of the rail/sleeper, in the 

case of softer pads and more resilient fastenings, is 

smaller due to a distribution of the load along the 

track in more support points of the rail/sleepers, as it 

can be derived from literature ([1]; [6]; [2]). In the 

case of the short wavelength defects this is more 

clearly verified.  

For defects of very long wavelength, the 

oscillations of the Suspended Masses become 

predominant since the oscillations of the Non-

Suspended Masses decrease.  
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ANNEX 1 

 

In the case of a free oscillation (without external 

force) the equation is: 

 

                                                                  (1.1) 

 

The general solution is [4]: 

 

 

                                                                                                                                                                              

                                                                       (1.2) 

 

Where: 

                                                                                                                                                 

                                                                      (1.3.)                                                                                                                                                                                                                                                  

 

If we pass to the undamped harmonic oscillation 

of the form: 

 

                                                                                                                                                                                         

                                                                      (1.4) 

 

 

 

where: 

                                                                                                                                                                   

                                                                      (1.5)                                                                                                                                                                                                                                                 

 

The particular solution of the linear second order 

differential equation (1.4) is of the form: 

 

                                                                                                                                                                   

                                                                     (1.6) 

                                                                                                                                                       

 

 

Substituting equation (1.6) to equation (1.4) we 

derive: 

 

 

 

 

                                                                                                                                                                    

 

 

                                (1.7) 

 

                                                                                                                                                  

 

The general solution for the equation (1.4) is the 

addition of the solution (1.2) and of the solution of 

the equation (1.6) combined with equation (1.7): 

                                                                      (1.8) 

 

                                                                          

                                                                                            

 

                                                                                                                                                                    

                                                                       (1.9) 

 

 

 

Calculating the values of equation (1.8) and (1.9) 

at t=0: 
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and for initial conditions z(0)=ż(0)=0:                                                                                                       

 

 

                                                                     (1.13) 
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ANNEX 2 – Calculations of Figs 6, 7 
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