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Abstract: - The paper is devoted to investigation of the nonlinear effects in a system of the coupled longitudinal-
torsional parametric vibrations of a rotating rod. The developed and studied mathematical model allowed 
calculating the resonance conditions of the nonlinear oscillations. In addition, we found the ratio of the parameters 
that require changing the sign of the coefficient in front of the term defining the possible reverse of torsional 
vibrations. The latter is a new phenomenon, a special mode, where the parametric action in the form of 
longitudinal vibrations at one end of the rod (for example, periodic strikes in the rod's end with a certain 
frequency) can lead to torsional vibrations due to nonlinear parametric interaction of oscillations. In the context 
of this, the reverse leads to control not only the rotation parameters, but also the direction of rotation, and there 
are possible torsional oscillations, which can be used in precision mechanics devices. 
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1 Introduction 
The parametric control of longitudinal-rotational rod 
oscillations and the phenomenon of excitation of 
nonlinear reverse rotational vibrations is a fascinating 
area of study within the field of mechanical 
dynamics. This topic explores how varying 
parameters such as amplitude, frequency, and phase 
can influence the behavior of oscillating rods, 
particularly in the context of both longitudinal and 
rotational motion.  

The nonlinear nature of these vibrations adds 
complexity, often leading to unexpected behaviors 
and phenomena such as reverse rotational vibrations. 
Understanding and controlling these dynamics is 
crucial for various engineering applications, 
including structural stability, vibration control, and 
machinery design. 

The parametric control of longitudinal-rotational 
rod oscillations and the excitation of nonlinear 
reverse rotational vibrations are topics within the 
broader field of mechanical dynamics and structural 
engineering. This area of study focuses on how 
varying parameters such as the length of the rod, its 
material properties, and external forces affect the 
oscillatory behavior of the rod. Parametric control 
involves manipulating these parameters to achieve 
desired responses or to understand the stability and 
behavior of the system. 

Research in this area often employs mathematical 
models, numerical simulations, and experimental 
validation to investigate the effects of parameter 
variations on rod oscillations. Key concepts include 
resonance phenomena, modal analysis, and control 
strategies to optimize performance or mitigate 
undesirable vibrations [1, 2]. 

There is also the unique Phenomenon of 
Excitation of Nonlinear Reverse Rotational 
Vibrations. Nonlinear reverse rotational vibrations 
occur when the rotational motion of a rod or structure 
exhibits behavior opposite to the direction of the 
applied torque or force. This phenomenon often 
arises in systems with nonlinearities, such as 
geometric constraints or material nonlinearity. 

Understanding the excitation mechanisms and 
dynamics of reverse rotational vibrations is essential 
for predicting and controlling the behavior of 
mechanical systems subjected to complex loading 
conditions. Research in this area involves theoretical 
analyses, numerical simulations, and experimental 
investigations to elucidate the underlying physics and 
identify factors influencing the occurrence and 
characteristics of reverse rotational vibrations [3, 4]. 

These references provide foundational knowledge 
and techniques for studying the parametric control of 
longitudinal-rotational rod oscillations and the 
phenomenon of excitation of nonlinear reverse 
rotational vibrations. Additionally, recent research 
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articles in journals such as "Journal of Sound and 
Vibration" and "Nonlinear Dynamics" may offer 
more specific insights and developments in these 
areas. 

Numerous ways of parametric excitation and 
suppression of oscillations in continuous media [5-
18], in particular in liquid ones, are known, for 
example, the physics of surface phenomena and thin 
films. Intensive development of modern industry and 
technology requires the study of parametric 
excitations (due to the resulting periodic force) or 
simply parametric oscillations in continuous media: 
dynamic resistance of elastic systems, fluctuations of 
plates, shells, rods, oscillations of liquids in vibration 
vessels, in pipelines, pumps, etc.  

New trends in modern natural science have 
appeared in connection with the study of nonlinear 
processes of various physical, mechanical and 
chemical nature: thermal hydraulic and 
magnetohydrodynamic instabilities, disasters, 
bifurcations, self-oscillation, and so on.  

Construction of the adequate physical and 
mathematical models of parametric oscillations of the 
media and processes occurring in them, the search for 
ways to effectively influence these processes, and 
control them - one of the most important directions  
of modern continuum mechanics and applied 
physics. 
 
2 Problem Formulation 
 
2.1 Introduction to the Problem 
This article is devoted to mathematical modeling and 
analysis of the behavior of parametric nonlinearly 
coupled parametric longitudinal and torsional 
oscillations of a rotating rod.  

Similar tasks are important for many practical 
applications, in particular, in precision mechanics, 
printers, and the like. So, at the Institute of 
Cybernetics of the Academy of Sciences of the USSR 
(Kyiv) with the participation of the head of the 
department G.O. Gurvich and leading specialists V.S. 
Lenchuk, V.V. Bazilevich, P.G. Shishkin a complex 
of works were executed in the field of development 
of the elements and systems with the pulsed droplet-
jet registration of information. 

The small-size single-nozzle and multi-nozzle 
printheads, the microprocessor control systems of 
high-performance, the monochrome and color 
printing devices designed for use in small computers, 
the terminal stations, and the facsimile digital devices 
were successfully developed and manufactured [19]. 
In the early 1990s, we bought their cheap printer that 
was used for high-quality color printing with the 

conventional cheap ink instead of an expensive 
printer refueling. 

 
2.2 Mathematical Model of Nonlinear 

Parametrically Coupled Longitudinal-

Torsional Rod Oscillations 
For the development of the mathematical model for 
parametric nonlinearly connected longitudinal-
torsional oscillations of a rotating rod, the following 
model of the elastic rod oscillations is considered 
(figure is given below in fig. 1).  

 
Fig. 1 Scheme of the rotating rod 

The rotating shafts are used as a model for 
calculating torsional vibrations of the engines. In the 
theory of the finite displacements, the nonlinear 
relations that bind them with elastic deformations 
[20-22] have the following form in the Cartesian 
coordinate system x, y, z: 
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In the partial differential equation array (1), the 
following parameters are: 𝜀𝑥, 𝜀𝑦, 𝜀𝑧 – the elements of 
the normal, and 𝛾𝑥𝑦, 𝛾𝑥𝑧, 𝛾𝑦𝑧 – the tangential 
components of the deformation tensor. Then {𝑢, 𝑣, 𝑤} 
– the components of the components of the vector of 
displacements by the corresponding coordinates. In 
the case of rotation of a circular cylinder of the length 
ℓ with a constant distributed stress along the axis х of 
the cylinder, while maintaining the shape of the 
cross-sections:  
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  𝜈 = −𝑦(1 − cos𝜑) − 𝑧sin𝜑, 𝑤 = −𝑧(1 −
          cos𝜑) + 𝑦sin𝜑.                                        (2) 

where 𝜑 is the angle of twisting. Substituting these 
expressions into the equation of deformation-
displacement and putting 𝜌 = √𝑦2 + 𝑧2, we get the 
following:  
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A linear relationship between the stresses and 
deformations is adopted. The longitudinal stress is: 
𝜎𝑥 = 𝛦 ⋅ 𝜀𝑥(1 + Ο(𝜀𝑥

2)), and the relusting shear 
stress is: 

  𝜏 = 𝐺 ⋅ 𝛾 ⋅ [1 +
2

3
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4

9
𝛾4𝛾4 + Ο(𝛾6)],      (4) 

where E is the elastic modulus, G is the displacement 
module, 𝛾2,𝛾4 are the physical constants of the 
material that are determined experimentally, O(𝜉) is 
the order of magnitude 𝜉, to estimate the errors.  
 
3. Parametric Oscillations of the Rod  
 

3.1 Parametric Control of the Oscillations 
In the control of movement of the system (1) - (4) 
includes elastic restorative forces created by these 
stresses. Let F be the cross-sectional area, and 𝑟 is the 
radius of the cylinder; then the elastic force is:  
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If the polar moment of inertia is introduced Ι0 =
0,5𝜋 ⋅ 𝑟4 for cross sectional area and the new 
constants for the material are: Γ2 = 4/9𝛾2 and Γ4 =
4/9𝛾4, then the elastic twisting moment is:  
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where 𝑅𝑧 is an additional twisting moment due to 
rotation of the forces σ𝑥, dF, which are created by 
interaction of the individual fibers. In this case, the 
rotation of two planes of the cross-section there are 
components 𝛿𝑥𝜌𝑑𝐹 ⋅ 𝑑𝜙/𝑑𝑥 perpendicular to the 
radius ρ that create the moment: 
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Longitudinal displacement and the angle of 
twisting φ of the shaft at the free end of the rod (and 
hence of the disk connected to a rod) satisfy the 
equation: 

𝑑𝑢/𝑑𝑥 = 𝑢/ℓ, 𝑑𝜑/𝑑𝑥 = 𝜑/ℓ.         (8) 

The mass and moment of inertia of the shaft are 
neglected in comparison with the mass μ and moment 
of inertia θ of the disk, so that the kinetic energy 
equals: Τ = 0,5𝜇(𝑢′)2 + 0,5𝜃(𝜙′)2, where the 
stroke marks a differentiation by time.   
 
3.2 The Lagrange Equation 
Next, the Lagrange equation of the second kind for 
undamplified free oscillations of the rod is written as: 

  𝑑

𝑑𝑡
(

∂Τ

∂𝑢′𝜐
) −

∂Τ

∂𝑢𝜐
+ 𝑅0 = 0, 𝜐 =

1.2, 𝑢1 = 𝑢, 𝑢2 = 𝑢,     (9) 

where from with account of (5) - (9) follows: 

  𝜇𝑢′′ + 𝐸 ⋅ 𝐹𝑢/ℓ + 0,5𝐸 ⋅ 𝐹𝑢2/ℓ2 + 0,25𝑟2𝐸 ⋅
𝐹𝜑2/ℓ2 + Ο(|𝑢|3 + 𝛾6) = 0,          (10) 

𝜃𝜑 + 𝐺Ι̇0𝜑/ℓ + 𝑟2Ι̇0/ℓ3

= (𝐺Γ2 + 1/3 ⋅ Ε)𝜑3 + ΕΙ̇0𝑢𝜑/ℓ2

+ 𝑟4𝐺Ι̇0Γ4𝜑5/ℓ5 + 0,5ΕΙ̇0𝑢2𝜑/ℓ3

+ Ο(|𝑢3𝜑| + |𝜑7|). 

 
3.3 The Eigen and Parametrically Excited 

Oscillations  
The second equation in the system (10) describes the 
torsional Eigen oscillations. Since the longitudinal 
displacement u is included only together with the 
angle of twisting φ, it is convenient for obtaining the 
estimations.  

Neglecting the magnitudes of order 𝑢2, φ4 in the 
first equation of the mathematical model (10), and in 
the second - of the order 𝑢2φ, φ5 of magnitude, 
respectively, we obtain the equations of motion, 
which serve as the basis for further research: 

𝜇𝑢′′ + 𝐸 ⋅ 𝐹𝑢/ℓ + 0,25𝑟2𝐸 ⋅ 𝐹𝑢2/ℓ2 ⋅ 𝜑2 =

0, 𝜃𝜑′′ + 𝐺Ι̇0𝜑/ℓ + 𝑟2Ι̇0/ℓ3(𝐺Γ2 +

1/3 ⋅ Ε)𝜑3 + ΕΙ̇0𝑢𝜑/ℓ2 = 0.       (11) 

Taking into account the first equation of system (11) 
and dissipative losses in the rod (the coefficient of 
losses γ is equal to the ratio of energy Δ𝑊 absorbed 
by the elementary volume of the rod during the period 
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of oscillations Τ = 2𝜋/𝜔 to the potential energy of 
the elastic deformation W, 𝛾 = Δ𝑊/2𝜋𝜔), the 
following equation is obtained: 

   𝜃𝑠 ⋅ 𝜑′′ + 𝐺 ⋅ Ι̇0𝜑/ℓ + {𝑟2Ι̇0/ℓ3(𝐺 ⋅ Γ2 + 1/3 ⋅

Ε) +
(−1)𝑟2Ε2Ι̇0⋅𝐹

4ℓ4√(𝐸⋅𝐹/ℓ−𝜇𝑠𝜔2)2+(𝐸⋅𝐹𝛾/ℓ)2
} 𝜑3 = 0.    (12) 

Here 𝜃𝑠 = 𝜃𝑑 + 𝜃𝑟– the total moment of Inertia for 
the rod and disk; 𝜇𝑠- the total mass (of the rod and 
disk); 𝜇𝑠 = 𝜇𝑑 + 𝜇𝑟.  
 
4 Analysis of the Model and Regimes 
 

4.1 Nonlinearity of Equations and the 

Resonant Regimes 
The equations of motion (11), (12) are nonlinear with 
respect to displacements. The terms with 
characteristics of the material Γ2, Γ4 have a nonlinear 
relationship between the stresses and deformations, 
that is, reflect the physical nonlinearity, while the 
other nonlinear expressions are due to the geometry 
of deformation. They establish a connection between 
the angle of rotation and longitudinal displacement.  

The effect of the nonlinearity of the two types can 
be compared by the equation (12). For example, for 
Siemens Martin steel we have γ2 = −8,5 ⋅ 104 and 
Γ2 = −3,8 ⋅ 104, and therefore in the region far from 
resonance 𝜇𝑠𝜔2 ≠ 𝐸 ⋅ 𝐹/ℓ, the factor in front of φ3is 
mainly determined by a physical nonlinearity.  

In addition, under the influence of geometric 
nonlinearity it varies by about 0.002%. But when 
approaching the resonance (𝜔2 → 𝐸 ⋅ 𝐹ℓ/𝜇𝑠), the 
contribution from geometric nonlinearity may 
increase depending on the value γ that can be 
determined from the area of the loop of the hysteresis 
of the rod material during its cyclic deformation.  

The magnitude of the elastic torque can be 
determined from (6), (7) after the solution of the 
equation (12), which has an exact solution through 
the Jacobi elliptic functions. 

 
4.2 The Case of Long Waves and Account of 

Distribution of a System  
For the long-wave oscillations, if a length of the rod 
ℓ~λ, wave processes from the generator to the disk 
should be taken into account, that is, the distribution 
of the system should be taken into account: a shaft 
(rod) with a disk that interact with the generator, 
which will change the resonant conditions of the 
interaction of the generator with the mechanical 
distributed system. The wave processes in the rod 
change the load applied to the generator of 
oscillations. 

The terms of coordination will also change. All 
this can be taken into account within the framework 
of the linear theory of the wave propagation along the 
rod. Then instead of [(𝐸 ⋅ 𝐹/ℓ − 𝜇𝑠𝜔2)2 + (𝐸 ⋅
𝐹𝛾/ℓ)2]−0,5 the following yields in the equation 
(12): 

{[(𝐸 ⋅ 𝐹/ℓ − 𝜇𝑠𝜔2) + 𝜇𝑠𝜔2𝑎1]2 + (𝐸 ⋅ 𝐹𝛾/ℓ +
𝜇𝑠𝜔2𝑑1)2}−0,5,                            (13) 

where 𝑎1, 𝑑1- the wave coefficients accounting the 
properties of the material.  

If the rod (wave conductor, wave spreading 
medium) is subjected to the harmonic oscillation at 
the generator frequency ω on one boundary (х = 0), 
and on the other - the free surface (the plane of the 
disk), then for 𝑎1, 𝑑1 results in the following  

       а1 =
𝛼⋅𝑠ℎ(2𝛼𝑙)+𝛽⋅sin(2𝛽ℓ)

ℓ(𝛼2+𝛽2)[𝑐ℎ(2𝛼ℓ)+cos(2𝛽ℓ)]
,   𝑑1 =

𝛼⋅sin(2𝛼ℓ)−𝛽⋅𝑐ℎ(2𝛼ℓ)

ℓ(𝛼2+𝛽2)[𝑐ℎ(2𝛼ℓ)+cos(2𝛽ℓ)]
.         (14) 

Here are 𝛼= 𝜔
𝑐е

√√1+𝛾2−1

2(1+𝛾2)
, β =

ω

с  е
 

√√1+γ2+1

2(1+γ2)
.  

The coefficient γ is characterizing an energy 
dissipation during a cycle of permanent oscillations 
with the amplitude corresponding to a value of the 
system’s potential energy of elastic body. It can be 
connected with the logarithmic decrement of 
oscillation as : 𝛾 = 2δ.  

If the concentrator of oscillations is present in a 
distributed system, then correlation (13) is multiplied 
by М3, which is the amplifying coefficient of 
oscillations (𝑢~φ2). Also, by transition through a 
resonance 𝜔0

2 = 𝐸 ⋅ 𝐹/(𝜇ℓ) (for longitudinal waves), 
there is a characteristic feature in a change of phase 
ψ difference between the oscillation (longitudinal) 
and the exciting force by variation of the frequency 
of exciting force. This phase difference is always 
negative so that the oscillations are delayed in 
relation to the external exciting force. For example, 
by 𝜔 < √𝐸 ⋅ 𝐹/(𝜇ℓ) it is 𝜓 → Ο, and by 𝜔 >

√𝐸 ⋅ 𝐹/(𝜇ℓ) it is 𝜓 → −𝜋. Variation of the ψ from 0 
to -π is going in a narrow range by frequencies (~γ), 
close to 𝜔0 = √𝐸 ⋅ 𝐹/(𝜇ℓ).  

By ω = ω0 the phase difference is 𝜓 = −𝜋/2. In 
an absence of a friction, the phase change for the 
excited oscillations by π is done abruptly by ω = ω0. 
But with an account of friction this jump is smoothed.  

For the steel, this coefficient with account of 
physical nonlinearity of a material is γ  2

 = 8,5 ⋅ 104. 
And Γ2 = −3,8 ⋅ 104. In a vicinity of a resonance, the 
equation for φ contains the nonlinear term ~φ3 and 
some corrections as concern to shift in the phases 
ψ, 𝑟. The amplifying coefficient depends on the 
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concentrator. The corresponding equation is as 
follows: 

𝜃𝑠 ⋅ 𝜑′′′ + 𝐺𝐼0𝜑/ℓ + {𝑟2𝐼0̇/ℓ3(𝐺 ⋅ Γ2 + 1/3𝐸) +

(−𝑟2)𝐸2𝐼0̇𝐹𝑀3cos𝜑

4ℓ4√[(𝐸⋅𝐹𝛾/ℓ−𝜇𝜔2)+𝜇𝜔2𝑎1]
2

+[𝐸⋅𝐹𝛾/ℓ+𝜇𝜔2𝑑1]2
},   (15) 

where 
sin𝜓 =

𝐸⋅𝐹𝛾/ℓ+𝜇𝜔2𝑑1

√[(𝐸⋅𝐹/ℓ−𝜇𝜔2)+𝜇𝜔2𝑎1]2+[𝐸⋅𝐹𝛾/ℓ+𝜇𝜔2𝑑1]2Δ . (16) 

 
4.3 Possibility for Reverse of Rod’s Rotations 

For the proof of possibility for the reverse of rotations 
of the rod and investigation of the conditions for this, 
the resonance conditions according to the expressions 
(15), (16) are considered. They reveal available 
change of the sign in front of the φ, which is of 
paramount importance being responsible for 
available reverse of the rod’s rotations.  

This is the new phenomenon found from the built 
by us mathematical model. It is caused by nonlinear 
behavior of the parametrically connected 
longitudinal-torsional oscillations of the rotating rod.  

The special regime exists when parametric action 

in a form of longitudinal external forced excitation of 

the oscillations (for example periodic beat at the end 

of a rod with a given frequency) can result in rotation 

oscillation due to nonlinear parametric connection of 

the oscillations.  

The above special regime can be used in a number 
of different devices, e.g. the ones of the precise 
mechanics, where the rod must rotate both clockwise 
and inversely, or suppression of the oscillations in a 
rod using the beat action in its end, and so on. Thus, 
it is an interesting new phenomenon with a potential 
for practical applications in engineering devices.  

In a vicinity of the resonance, the coefficient in 
front of φ3 may be presented in a form: 

𝐻 =
𝑟2𝐼0̇

ℓ3 (𝐺 ⋅ Γ2 +
1

3
𝐸) +

(−𝑟2𝐸2𝐼0̇⋅𝐹)𝑀3cos𝜓

4ℓ4√(𝜇𝜔2𝑎1)2+(𝐸⋅𝐹𝛾/ℓ+𝜇𝜔2𝑑1)2
.                        (17) 

If neglecting the effects of distributed elastic 
dissipative and inertial properties and inertial wavy 
part of the system rod-shaft, then 

𝐻 =
𝑟2𝐼0

ℓ3 (𝐺 ⋅ Γ2 +
1

3
𝐸 −

𝐸⋅𝑀3cos𝜓

4𝛾
).                 (18) 

For the resonance, cos𝜓 → 𝑠𝑖𝑔𝑛[𝜔 − √𝐸 ⋅ 𝐹/(𝜇ℓ)] 
must be, therefore from (18) follows: 

𝐻 =
𝑟2𝐼0̇

ℓ3 (𝐺Γ2 +
1

3
𝐸 +

𝐸⋅𝑀3

4𝛾
𝑠𝑖𝑔𝑛 [𝜔 − √

𝐸⋅𝐹

𝜇ℓ
]).  (19) 

As far as Γ2 < 0, a possibility for a change of the 
sign of parameter Н follows from equation (19) near 
the longitudinal resonance of the rod. It was assumed 
in the calculations that М =5. For the coefficient, the 
data of Academician G.S. Pysarenko with co-authors 
were used, which are presented in the table: 

Steel 
mark 

Е, N/m2 N/m2 % 

 
SHХ 9                       

2,195 ⋅ 9,8
⋅ 1010 

    0,85 ⋅
9,8 ⋅ 1010    

0,09(I)                                                                                                                          
0,04(ΙΙ)∗ 

 
 
 

ZХIZ 

2,2 ⋅ 9,8
⋅ 1010 
   2,2 ⋅

9,8 ⋅ 1010

  
2,14 ⋅ 9,8 ⋅

1010                                     

0,87 ⋅ 9,8
⋅ 1010 
0,87 ⋅ 9,8
⋅ 1010 
0,85 ⋅ 9,8
⋅ 1010 

0,66(I) 
 
0,07(ΙΙ)∗∗∗ 

 
0,069(ΙΙΙ) 

 Х17Н2 2,1 ⋅ 9,8
⋅ 1010 

0,85 ⋅ 9,8
⋅ 1010 

0,075(IV) ∗∗∗ 

* - the steel after annealing (HB=184); - after heating to 
840 oС, exposure for 1 hour, hardening in oil, release from 
150 oC, keeping for 3 hours, on air (HB =449) . 
 ** I – given state (HB = 185);  II - after thermal processing 
to the hardness HRC = 45-50;  III - after thermal processing 
to the hardness HRC = 50-55; 
 *** IV - after thermal processing to the hardness HRC= 40-
45. 

For example, for steel of mark SHХ9 /II/  by γ =
0,0008 = 8 ⋅ 10−4 follows: 

𝐻 =
𝑟2𝐼0

ℓ3 {0,85 ⋅ 9,8 ⋅ 1010(−8,5 ⋅ 104) +

2,195⋅9,8⋅1010

3
−

2,195⋅9,8⋅1010⋅53

4,8⋅10−4 } , 𝜔 < √
𝐸𝐹

𝜇ℓ
. 

The main income to Н is coming from the terms I 
and III in the main brackets. By ω < ω  0

 , 𝐻 < 0. 
Obviously, by ω > ω0 the last term in the brackets 
for Н is changing its sign to the opposite one and 𝐻 >
0 becomes by ω > ω0. This a possibility for the 
reverse of the torsional oscillations of a rod.  

Practical applications of nonlinear dynamics and 
parametric oscillations span a wide range of fields, 
including mechanical engineering, robotics, 
aerospace, and biomechanics. Examples include 
vibration control, energy harvesting from oscillatory 
motions, and the design of novel actuators and 
sensors based on nonlinear dynamics principles. 

By exploring these related areas, researchers can 
gain further insights into the dynamics of 
interconnected oscillatory systems and potentially 
uncover additional phenomena with practical 
implications. 
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5 Conclusion 
The developed mathematical model was applied to 
investigate nonlinear processes within a system 
comprising interconnected longitudinal-torsional 
parametric oscillations of a rotating rod, particularly 
focusing on a special regime characterized by 
resonance of nonlinear oscillations. 

Calculations were conducted to elucidate the 
correlation between parameters responsible for the 
reversal of rotation. This analysis unveiled a novel 
phenomenon: the reversal of torsional oscillations 
resulting from the coupled longitudinal-torsional 
parametric oscillations of the rotating rod. This 
discovery was thoroughly investigated through 
analytical means. The phenomenon holds significant 
promise for exciting and unique practical 
applications. The reverse regime not only enables 
control over the rotation of the rod but also facilitates 
a change in its rotational direction. 
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