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Abstract: - One of the problems that are solved with Statistics, as division of theoretical Mechanics, is the 
equilibrium of the system of forces in which the conditions are determined for a system of forces to be in 
equilibrium. In classical mechanics, the state of equilibrium of a material body can be defined from static or 
dynamic point of view, both being forms of mechanic equilibrium. Mechanics depends on mathematics, in the 
sense that almost no problem of mechanics can be solved without mathematics. Thus, interdisciplinarity being 
the cooperation between various disciplines from the same curricular area, it means that the approach has as its 
aim forming a unitary image regarding a certain theme. This implies the combination of two or several academic 
disciplines in one single activity, thus simultaneously accumulating new knowledge in several domains. In this 
context, the paper presents aspects on solving problems of equilibrium of rigid bodies, by mechanical and 
geometrical considerations, namely with the condition of concurrency of three lines in a plane. 
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1 Introduction 
Statistics, as part of theoretical mechanics, studies the 
conditions of equilibrium of material systems under 
the action of applied forces, ignoring motion [1], [2]. 

It is recommended toapproach statistics 
deductively, starting from the simplest mechanical 
model (material point), and finishing with systems of 
bodies - the mechanical model with the highest 
degree of complexity. 

From the point of view of classical mechanics 
models [7], statistics has two parts: statistics of 
material points and statistics of rigid solid bodies, 
which extends in the case of body systems as well. 

In statistics, three categories of problems occur 
[4], [8], which differ especially by the modality of 
mathematical solving: 

a) direct problem, in which the position of 
equilibrium of the studied material system is 
supposed to be known, and in its solving, we focus 
on determining the forces under the action of which 
the equilibrium is reached; 

b) inverse problem, which lies on determining the 
position of equilibrium of the material system 
analyzed, when the forces acting on it are known; 

c) mixed problem, looking for finding all the 
unknown elements referring both to the position of 
equilibrium, and to the forces that concur to it 
beingcarried out, in the situation in which 
information is known both regarding the position of 
equilibrium and regarding the forces. 

The paper will analyze examples of the 
equilibrium of rigid bodies in a plane, in the solving 
of which cases from the category of the mixed 
problem are met. 

In the solving of these examples, mechanical and 
geometrical methods will be applied, which will be 
succinctly described below [11]. 
 
 
2 Mechanical Considerations 
As in the case of bound material point, in order to 
study the equilibrium of the rigid body submitted to 
bonds, the axiom of bounds is used, based on which 
the bond is suppressed and replaced by 
corresponding mechanical elements (forces or 
moments (reactions) [5], [10]. After all the bonds to 
which a solid rigid body is submitted are suppressed, 
directly applied exterior forces and moments, as well 
as bonding forces and moments, act on those [14]. 
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Reduction torsor inpoint O (considered the origin 
of the reference system) of exterior forces is

 ,O OR M , and the reduction torsor Oof the 

bonding forces is  ,O OR M    . 
In this case, vectorial conditions of equilibrium 

will be: 
' 0, ' 0O OR R M M    ,           (1) 

These two vectorial equations are equivalent with 
the scalar ones of equilibrium given by equations (3), 
valid, when equations (2) are considered [11]: 

' ' ' '
' ' ' '

O Ox Oy Oz

O Ox Oy Oz

R X i Y j Z k

M M i M j M k

R X i Y j Z k

M M i M j M k

     

     

     

     

,      (2) 

' 0' 0
' 0 ; ' 0
' 0 ' 0

Ox Ox

Oy Oy

Oz Oz

M MX X

Y Y M M

Z Z M M

   


    
     

,        (3) 

The unknown elements referring both to the 
equilibrium position and to the forces concurring to 
its being reached, are determined by solving the 
scalar equations, which in the case of rigid bodies in 
a plane are given by the equations: 

' 0
' 0

' 0Oz Oz

X X

Y Y

M M

 


 
  

,                (4) 

the solid rigid body being required by a system of 
coplanar forces. 

The bonds to which a solid rigid body can be 
subjected are: simple support, joint, framing and 
fastening with wires [3]. 

The rigid body can be simultaneously submitted 
to several bonds. In such a case, the rigid solid body 
is released from its bonds, and mechanical elements 
are introduced that replace each mechanically 
equivalent bond. The number of scalar unknowns 
introduced by bonds is then estimated to see whether 
the problem is statically determined or not. 

If the number of scalar unknowns is equal to the 
number of scalar equations of equilibrium, then the 
problem is statically determined. If the number of 
scalar unknowns is greater than the number of scalar 
equilibrium equations, then the problem is statically 
indeterminate [3]. 

The requirement for the number of scalar 
unknowns to be equal to the number of scalar 
equations of equilibrium is necessary, but not 
sufficient, since it is possible for the system of 
equations to be undetermined, although the number 
of scalar equations of equilibrium is equal to the 

number of unknowns. To study this, the conditions of 
equilibrium are then applied, as in the case of the free 
rigid solid body. 

In the case of the equilibrium of the rigid solid 
body submitted to friction bond, the solving of the 
applications will be done by completing the 
equations of equilibrium with inequalities between 
the components of the bonding forces torsor, as the 
case may be. 

In the case of sliding friction [13], [15], the 
equation intervenes between the friction force in 
sliding T (which in a certain range hinders the 
movement of the body), and the normal reaction �̄�:  

T N  ,                           (5) 
in which the number of contact points (support), in 
which the sliding friction takes place, is taken in 
consideration. 

The proportionality factor that intervenes in 
equation (5), μ, is called sliding friction coefficient, 
being a scalar value, positive, sub unitary, non-
dimensional, and experimentally determined. 

Rolling friction originates in the rolling of a body 
on a rolling surface, when in the contact area or point, 
the sliding friction force (rest) is higher than the 
tangential accelerating force (the respective body will 
roll with no sliding) [17-19]. 

The rolling friction is materialized in the form of 
the sliding moment in rolling rM , which, in a certain 
range, is opposed to the rotation tendency of a body 
around an axis. 

Bringing back the normal reaction in the 
contactpoint, it results, that the effect exerted by this 
in a point, is expressed by force N  (applied in the 
contact point), and by the friction moment in rolling 

rM : 

rM s N£ ,                     (6) 
where s is the friction coefficient in rolling, a value 
measured in units of length [17]. 

In the examples that will be shown and analyzed, 
except the sliding friction, no other friction occurs 
(rolling friction and also friction in joints and 
bearings, which has not been mentioned) [12]. 
 
 
3 Geometrical considerations 
The use of concurrency of lines in a plane, namely of 
the condition of concurrency of three lines in a plane, 
has been motivated, among other things, also by the 
fact that the forces acting on a rigid body in a plane 
(directly applied and bonding), are coplanar [9], [16]. 

In order to apply the concurrency condition of 
three lines in a plane, there should be possible to write 
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the support lines equations (as to the reference system 
chosen for the solving of the problem), of three vector 
forces, that act on the solid rigid body in a plane [4]. 

In the case of equilibrium with sliding friction, the 
components, normal N  and tangential T of the 
bonding reaction (force), will be replaced by their 
resultant, considering the equilibrium at its limit. 
This is done to diminish the number of unknowns and 
to be able to know the slope (angular coefficient) of 
the support line that enters in the calculation of the 
problem solving. For the case in which more than one 
active force act upon the solid body (for example its 
weight), then the respective forces will also be 
replaced with their resultant. The resultant’s support 
is the equation of the central axis, obtained as a result 
of the reduction of these (directly applied) active 
forces [6], [20]. 

There are also cases of exception, where the lines 
of the forces acting are parallel (thus they will not 
intersect), for the equilibrium the condition is 
required for the supports to coincide (if the lines 
coincide, then their intersection resides in all the 
point found on those) [12]. 

The lines in a Cartesian plane can be algebraically 
defined by linear equations and functions. In the bi-
dimensional case (line in a plane), the most 
frequently used form is the equation of the line where 
the dependent variable (y, here) is expressed 
“function of” the independent variable (x, here); to 
the line in a plane, a first-degree equation 
corresponds, of the form: 

y mx n= + ,                           (7) 
Where, m=tgαrepresents the slope of the line or the 
angular coefficient of the line (that is, the value of the 
tangent function of the angle between the line and the 
and the positive sense of the abscise (horizontal axis, 
Ox), n the y-axis cut (ordinate at origin (distance 
measured on the vertical axis, Oy, between the point 
of intersection of the line with Oy axis, and the origin 
of the system of coordinate)), and x is the 
independent variable. The angular coefficient of the 
line is the tangent of angle α, made by the line with 
axis Ox. Angle α takes values in the range of 0 and π, 

 0,  . 
Equation (7) is called the reduced equation of the 

line (or implicit equation). 
If  0, / 2  then the slope is positive, for 

 / 2,   the slope is negative. 
If the line is parallel to x-axis, the slope is null, m 

= 0, thus the equation of the line is reduced toy = n. 
If the line goes through the origin O, n = 0. The 

equation of the line that passes through the origin is 
y = mx, m = tg α. 

If the line is parallel with the y-axis, α = π/2șim = 

tg π/2 = ∞. On such a line, all the points have the 
same abscise. 

Similarly, the line can also be represented by the 
most general form of a first degree equation in xand 
y: 

Ax By C 0, A,B,C ,+ + = Ξ ΅ ,            (8) 
with A 0Ή  or B 0Ή  
It represents a line: 

A C
y x , 0 B 0

B B
= - - = Ή ,               (9) 

In this case: / , /m A B n C B    . 
The equation of the line that passes through a 

given point ( )0 0 0M x , y , and slope m is: 

( )0 0y y m x x- = - ,                (10) 
The equation of the line that goes through two 

different points ( )A AA x , y , ( )B BB x , y  is: 

A A

B A B A

x x y y

x x y y

- -
=

- -
,                (11) 

if the denominators are not null. 
The line can also be determined by a point and the 

direction vector, determined by a point and the 
normal vector to the line. 

The problems regarding concurrency of lines, as 
well as collinearity problems of certain points, are 
truths that can be generally easily inferred, but their 
rigorous demonstration requires accurate reasoning 
and a wide range of specific techniques. In the first 
stage, their solving is based on finding the 
intersection point of two lines, after which, 
depending on the data of the problem, we shall 
demonstrate that a third line passes through this 
point. The point found will be the point of 
concurrency of the given lines.  

Out of the most frequently used methods of 
solving of this type of problems, we mention: 

a) Demonstration of concurrency by reducing to a 
problem of collinearity; 

b) Demonstration of concurrency by reducing to 
known concurrencies; 

c) Demonstration of concurrency by showing that 
the intersection point of two of the three lines meets 
a characteristic property of the points belonging to 
the third line. In other words, we show that the 
intersection points of two of the three lines belong to 
the locus made up of the points of the third line. 

d) Demonstration of the concurrency of three lines 
d1, d2, d3, showing that d1 and d2, and d1 and d3, 
respectively, are concurrent and their concurrency 
points coincide; 

e) Demonstration that the three lines verify the 
conditions of the hypothesis of a theorem (direct or 
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reciprocal), the conclusion of which leads to their 
concurrency; 

f) Use of the definition of concurrent lines, 
namely, we show that there is a common point for the 
lines; 

g) In order to demonstrate the concurrency of 
three lines, we can use the theorems referring to the 
concurrency of the important lines in a triangle; 

h) Use of the reciprocal of Ceva’s theorem; 
i) For the concurrency of three lines, we 

demonstrate that two by two intersect and the area of 
the polygon obtained is null; 

j) Demonstration of the concurrency of three lines, 
using the reciprocal of Carnot’s theorem; 

k) Demonstration of concurrency with the help of 
complex numbers; 

l) Demonstrationof concurrency of three lines, 
with the help of geometrical transformations; 

m) Demonstrationof concurrency of three lines by 
the vectorial method; 

n) Demonstration of concurrency of three lines by 
analytical method (with the help of coordinates), 
using analytical equations of lines; 

This method means showing that being given 
three lines by their general equations: 

Ax By C 0

A x B y C 0

A x B y C 0

+ + =

Ά Ά Ά+ + =

ΆΆ ΆΆ ΆΆ+ + =

,                (12) 

for these lines to be concurrent, there should be a 
point M(x0,y0), which would verify these three 
equations. This means that the system of three 
equations with three unknowns from below should be 
compatibly determined. 

0 0

0 0

0 0

Ax By C 0

A x B y C 0

A x B y C 0

+ + =

Ά Ά Ά+ + =

ΆΆ ΆΆ ΆΆ+ + =

,                (13) 

For this, the necessary and sufficient 
conditions are: 

a) A second-order determinant should exist, made 
up with the coefficients of x and y, thus one of the 
determinants should be other than zero. 

0; 0; 0
A B A B A B

A B A B A B

 
  

     
,   (14) 

b) the determinant of the system should be null: 

0
A B C

A B C

A B C

   

  

,              (15) 

By condition a) we expressed analytically that 
two lines are concurrent. 

Condition b) shows that the third line passes 
through the point of intersection of the first two. 

Observation 

The criterion reflects the property that the lines are 
concurrent if, and only if the system of linear 
equations is compatibly undetermined, that is, the 
characteristic determinant of the system is null. 

In the following examples, the application of the 
concurrency condition of the lines in a plane, is done 
according to the requirements of each example in 
part. 

Next, we shall present examples the solving of 
which will be done according to the requirements, 
both from mechanical considerations, and 
geometrical ones. 
 
 

4 Applications solved by mechanical 

and geometrical considerations 
The following types of examples will be solved by 
mechanical and geometrical considerations. 

The reaction, where appropriate, will be 
determined only by mechanical considerations, and 
the other unknowns, where appropriate, will be 
determined by both considerations. Examples of the 
equilibrium of rigid bodies in a plane, submitted to 
bonds without friction [11] and to bonds with friction 
will be approached [12]. 
 
4.1 Rigid body submitted to bonds without 

friction 
We shall consider the following example: 

Homogeneous AB bar, G weight and 2l length is 
leaned in A to a vertical wall, and in D to the edge of 
another wall, at a distance of a from the first (Fig. 1). 
The contact is without friction. Let us determine the 
angle θ of the bar with the horizontal surface, in its 
resting position, and also the reactions from supports 
A and D (by mechanical consideration). 

 
Fig.1 

Solving 

1) Mechanical solving 

The bar is released from its bonds by introducing 
reactions in resting points A and D, each reaction 
having a normal direction at the surface which does 
not have singular point in the contact point. 

To get as simple as possible projection equations, 
simple, xAy reference system is selected, so that, as 
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far as possible, as many forces as possible of their 
true size would be projected. Scalar equations of 
equilibrium in respect to the reference system chosen 
in this case, are [17]: 

sin 0
cos 0

cos 0
cos

A D

D

A D

X N N

Y N G

a
M N Gl








  

  

  

,     (16) 

We solve the system (16): 

2

33

sin 0

cos 0
cos

sin
cos

coscos 0
cos cos

cos cos

A D

D D

A

N N

G
N G N

N G Gtg

G a
Gl

G

a a

l l














 

 

  



    


  

     

   

,   (17) 

So that the equilibrium would be possible: 
3 / 1a l  , a l . The reactions: 

2
3

31,A D

l l
N G N G

a a

 
   

 
,      (18) 

2) Geometrical solving to determine angle θ 

 
Fig.2 

For the problem in Fig. 1, the equations of the 
lines (Fig. 2) are [11]: 

  : 0Ax y  ,                            (19) 

     

 

0: 90Du y atg tg x a

y x a ctg atg

 

 

    

    
,    (20) 

  : cosCz x l  ,                       (21) 
The condition stipulated is that the three lines to 

be concurrent. We remove y from the first equations 
and calculations are made: 
   x a ctg atg x a ctg atg

tg ctg
x a

ctg

   

 



      


 

,(22) 

We substitute x with its expression of (22) in (21), 
and get: 

2 2 2

2 3

3

cos

cos sin coscos
sin cos sin

cos sin cos sin
sin sin cos

cos cos
cos

cos

tg ctg
l a

ctg

l a

l a

a a
l

l

a

l

 




  


  

  


  

 





 

 
    

 


   

    

 

,       (23) 

In the next example the active forces should be 
replaced by their resultant. 

A homogeneous hemisphere, of G weight and R 
radius is put with its convex part on a horizontal 
plane. In point B of the hemisphere, Q weight is 
appended. Angle φ, made in resting position by the 
symmetry axis of the hemisphere with the vertical 
(Fig. 3) will be determined [12]. 

   
Fig.3                               Fig.4 

Solving 

1) Mechanical solving 
Support A is replaced with the normal bonding 

force N. Out of the scalar equilibrium equations only 
the sum of moments is used, where only the required 
angle φappears as unknown. 

sin cos 0AM G OC Q R      ,        (24) 
where 3 / 8OC R  (see centers of gravity). 

The result is: 
8
3
Q

tg
G

  ,                           (25) 

2) Geometrical solving to determine angle φ 

Active forces G and Q that are parallel with Ay are 
replaced with their resultant, situated on axis (Δ), at a 
distance to Ay equal with: 

3 sin cos
8
R

G R Q

x
G Q

    




,         (26) 

For the problem in Fig. 3, the equations of lines 
(Fig. 4) in respect of the reference system xAy are: 

  : 0Au x  ,                          (27) 
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3 sin cos
8:

R
G R Q

x
G Q

    

 


,       (28) 

We eliminatexfrom equations (27) and (28), 
and calculate: 

3 1sin cos 0
8
3 1sin cos
8 cos

8
3 3
8

R
G R Q

R

R
G R Q

Q Q
tg tg

G G

 

 


 

      

     

   

,    (29) 

In the following example, the support lines of the 
acting forces are parallel (thus they will not 
intersect). To ensure equilibrium, the conditionhas to 
be met for the supports to coincide(if the lines 
coincide, then their intersection consists in all the 
points found on those). Let us determine weight P for 
the equilibrium of the bar, with G weight, l length, 
inclined with α angle as to the horizontal, which leans 
without friction in point B (Fig. 5) [12]. 

 
Fig.5                                 Fig.6 

Solving 

1) Mechanical solving 
From equations (30) and (31) of static equilibrium 

(Fig. 5), the result is (32): 
0BY T N   ,                      (30) 

cos / 2cos 0BM T l Gl               (31) 
/ 2BP T N G   ,                    (32) 

2) Geometrical solving for the calculation of P 

To have equilibrium, the supports of the resultants 
of active forces and of the bonding ones (Fig. 6), 
should coincide. Thus, we have: 

 / 2 cos
cos

2
Gl G

l P T
T G





   


,     (33) 

In the following example, reduction of forces and 
determination of the central axis will be done both for 
the active forces, and for the bonding forces. 

Let bar AB, of weight G, length l, supported in 
 / 8C AC l by a vertical cord, and in B by a cord 

passing through a ring (Fig. 7). Determine d=DB 

where a weight 2G should be put, so that the tensions 

in the vertical cord and in the one passing through the 
ring be equal [15]. 

 
Fig.7 

Solving 

1) Mechanical solving 
Static equilibrium equations are written (Fig. 8): 

cos cos 0 0 0X T T       ,        (34) 
2 sin 2 0Y T T G G     ,            (35) 

 2 sin 2 0
8 2A

l l
M T Tl G G l d         (36) 

 
Fig.8 

(35) gives: 

 
31 2sin 3

1 2sin
G

T G T


   


,       (37) 

and from (36), and considering the value of T from 
equation (37), gives: 

 

 

 

2 sin 2 2
8 2

3 2 sin
1 2sin 8

5 12
2
5 3 2 sin 2
2 1 2sin 8
5 3 6 sin 2
2 8 1 2sin 1 2sin
20 40 sin 3 48 sin 2

8 1 2sin
17 8sin

16 1 2sin

l l
T l G Gl Gd

G l
l

Gl
Gd

G

l l
l d

l l
d

l l l l
d

d l











 

 







 
     

 

 
   

  

   

 
     

  

    
  

  
  

 


 

 

,   (38) 

2) Geometrical solving for the calculation of d 

In order to have equilibrium, the supports of the 
resultants of active forces, and of the bonding ones, 
should coincide (if the lines coincide, then their 
intersection consists in all the points found on them). 
Thus, we have: 
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The equation of the central axis for the resultant 
of active forces G and 2G is [12]: 

 

5 2
2:

3C

l
d

x



  ,                  (39) 

and the equation of the central axis for the resultant 
of the forces related to the vertical cord and from the 
one that passes through the ring is: 

 
2 sin

8:
1 2sinC

l
l

x







 


,               (40) 

The equality of the equations (39) and (40) gives: 

   

 

 

 

5 2 sin2
82

3 1 2sin
3 6 sin
8

5 1 2sin 2 1 2sin
2
2 1 2sin

5 10 sin 3 6 sin
2 2 8

17 8 sin2 1 2sin
8 8

17 8sin
16 1 2sin

ll
ld

l
l

l
d

d

l l l
l

l l
d

d l







 















 


  

    

  

    

    


 

 

,     (41) 

Next, we shall consider a system of bodies in a 
plane: 

Bar AB, of weight G, length l is propped without 
friction to a hemisphere of radius R and to a vertical 
wall (Fig. 9). Determine angle θ, angle α being 
known [15]. 

 
Fig.9 

Solving 

1) Mechanical solving 
The bodies are separated. On the bar the following 

forces act: G - weight of the bar; NB - normal reaction 
of the wall; NA - reaction of the hemisphere (Fig. 10). 

The equilibrium conditions are: 
cos 0B AX N N     ,                (42) 

sin 0AY N G   ,                   (43) 

 Fig.10 

sin cos 0
2A B

l
M N l G    ,            (44) 

From equations (43) and (42) it results: 

sin , cos
sinA B A

G
N N N Gctg  


   ,   (45) 

(44) gives: 

G sinctg l G  
1cos

2 2
l

tg tg    ,   (46) 

2) Geometrical solving to determine angle θ 

For the problem in Fig. 9, the equations of the lines 
as to system xAy (Fig. 10) are: 

  :Au y xtg ,                        (47) 

  : sinBv y l  ,                       (48) 

  : cos
2
l

Cz x  ,                     (49) 

Equations (47), (48) and (49) give: 
1 1cos sin

2 cos 2
l

tg l tg tg
l

    


    ,   (50) 

 
4.2 Rigid body submitted to bonds with 

friction 
In the following examples the rigid body is also 
submitted to friction bonds as well, or only to friction 
bonds. In this example, we shall consider only one of 
the bonds with friction. We mention that friction is 
sliding friction and it is considered at the limit of 
equilibrium. We remind you that in the case of the 
equilibrium at the limit, normal components T , and 
tangential component N  of the bonding force 
(reaction) will be replaced with their resultant [12]. 

A homogeneous bar AB, weight G and length l, is 
propped against the inside surface of a cylinder (μ 
friction coefficient), and in point O it leans without 
friction to a simple support. Knowing that R<l<2R, 
where R is the radius of the cylinder, let us determine 
the reactions and angle α, made by the bar with the 
vertical, in position of rest (Fig. 11) [10]. 
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Fig.11 

Solving 

1) Mechanical solving 
The bonds are removed from the bar, the 

corresponding reactions being entered, and we write 
the scalar equations of equilibrium in the xOy system 
of reference chosen in the figure. 

cos 0
sin 0

sin 0
2

A

A O

A O

X N G

Y T G N

l
M N R G







  

   

  

,         (51) 

The friction force at the limit is 
A AT N . 

Solving thesystem of equations (51), where the 
expression of the friction force is also taken in 
consideration, we get: 

 

 

 

 

2 2 2

2 2 2

2 2 2

2

2 4

2

2 4

2 4

2
2

A

A

O

R l
N G

R l R

R l
T G

R l R

l
N G

R l R

R
tg

R l











 




 




 



 




,        (52) 

 
Fig.12 

2) Geometrical solving to determine α angle. 

For the problem in Fig. 11, the equations of the 
lines (Fig. 12) in relation with xOy reference system 
are: 

   :Av y tg x R   ,                   (53) 

     0: 180 / 2Cz y tg x R l        ,     (54) 

  : 0Ou x  ,                        (55) 
The normal reaction NA of the cylindrical support 

surface applied in A and the friction force in a A, TA 
as tangential force with the sense opposed to the 
sliding tendency, have been replaced by their 
resultant, so that by replacing the two forces with 
their resultant, we got to apply the concurrency 
condition of three lines. 

We eliminate y in equations (53), (54) and replace 
x with its expression in (55), and calculate: 

   
2

2

2
2

2

l
tg x R tg x R

l
tg R tg R

R
tg tg

l
R

R
tg

R l

  

 

 

 

  
         

  

 
      

 

  



 


,   (56) 

In the following example, all bonds are with 
sliding friction [12]. 

A homogeneous AB ladder, G weight, and l length 
is leaned, with friction in A on horizontal plane (μ1 
coefficient), against a vertical B wall (μ2 coefficient). 
Let us determine θ angle made by the ladder with the 
vertical surface in position of rest, as well as the 
reaction (Fig. 13). 

 
Fig.13                             Fig.14 

Solving 

1) Mechanical solving 
The ladder links are removed, the adequate 

reactions being inserted. The scalar equilibrium 
equations are written: 

0
0

sin sin cos 0
2

B A

B A

O A B

X N T

Y T G N

l
M N l G N l  

  

   

   

,    (57) 

Equations 1 2,A A A BT N T N    are added. 
Solving system (57) and considering the two 

equations, we get: 
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1

1 2 1 2

1

1 2

, ,
1 1

2
1

A B

GG
N N

tg



   




 

 
 




,        (58) 

2) Geometrical solving to determine angle θ 

For the problem in Fig. 13, the equation of lines 
(Fig. 14) in respect to the xOy reference system, are: 

     0
1: 90 sinAu y tg x l      ,        (59) 

  : sin
2
l

Cz x  ,                       (60) 

  2: cosBv y l xtg   ,                  (61) 
The normal reaction NA of the horizontal support 

surface applied in A, and the friction force in A, TA as 
tangential force in the opposite sense to the sliding 
tendency, and the normal reaction NB of the vertical 
support surface in B, and the friction force in B, TB as 
tangential force in the opposite sense of the sliding 
tendency, have been replaced by their resultants, and 
thus, by the replacement of the four forces with their 
resultants, the concurrency condition of three lines in 
a plane has been reached. 

We remove y from equations (59), (61), and 
replacing x with its expression from (60), the 
following calculations are made: 

 1 2

1 1

2

1 2

2
1

1 2
2

1 1

1

1 2

sin cos

sin sin
2

2sin cos
2 cos

2

1 2

11 2 2

2
1

ctg x l tg x l

l
ctg ctg l

l
tg l

l

ctg tg tg tg

tg tg
tg

tg tg

tg

   

   

  


   

 


 
  

 




 

     

     

   

     

 
    

 

  
      

 

 


,   (62) 

In the next example there are two friction bonds 
and two directly applied forces that have to be 
replaced with their resultant [12]. 

A homogeneous bar rests by two symmetrical 
supports as to the weight center C (Fig. 15) on a 
horizontal plane. The weight of the bar is P, and the 
friction coefficients μ1 and μ2. Let us determine the 
maximum value of the horizontal force Q, for which 
the bar stays in equilibrium. 

Solving 

1) Mechanical solving 

The scalar equations of the equilibrium of the bar  

are: 
1 2

1 2

1

0
0

0
2B

X Q F F

Y N N P

Pb
M Qa N b

   

   

    

,         (63) 

 
Fig.15 

Since the maximum value of force Q is required, 
for which the bar stays in equilibrium, the friction 
forces are maximum, that is F1 = μ1N1, F2 = μ2N2. 

N1 results from the third equation of the system 
(63): 

1 1

1

20
2

2

Pb
Qa

Pb
Qa N b N

b

P a
N Q

b



      

  

,   (64) 

From the second equation of the system (63), N2 
is determined: 

1 2 2 1

2 2

0

2 2

N N P N P N

P a P a
N P Q N Q

b b

      

      
,   (65) 

Replacing the values of N1 and N2 in the first 
equation of the system (63), Q is determined: 

   

 

 

1 2 1 1 2 2

1 1 2 2

1 2 1 2

1 2

1 2

0

2
2 2

2

2

Q F F Q N N

P a P a
Q Q Q b

b b

Q b a Pb

b
Q P

b a

 

   

   

 

 

      

      

         


 

    

,   (66) 

2) Geometrical solving to determine weight Q 
Normal reactions N1, N2 of the horizontal support  

surface in AandBand the friction forces A and B, F1, 
F2 as tangential forces, the sense being inverse to the 
sliding tendency, will be replaced by their resultant. 

 
Fig.16 

Similarly, the system made up of the weight  
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forces P and Q is reduced to their resultant, and we 
shall determine the central axis equation on which 
their resultant is found. 

Thus, as to system xAy (Fig.16), we have: 

 

, ,
/ 2A

Q Qi P Pj R Q P Qi Pj

M Pb Qa k

      

  
,      (67) 

The equation of the central axis is: 

 

 

: ,
2

2:

C

C

b
xP yQ P Qa

b
P Qa xP

y
Q

      

 

  

,        (68) 

For the problem in Fig. 15, the equations of lines 
(Fig. 16) are: 

   0
1 1: 90Au y xtg xctg     ,      (69) 

     

 

0
2

2

: 90Bv y tg x b

y ctg x b





   

   
,      (70)

  2:C

b
P Qa xP

y
Q

 

  ,             (71) 

Solving the system made up of equations (69) and 
(70) gives: 

1

1 2 1 2

,
b b

x y


   
  

 
,          (72) 

Substituting the values obtained for x and y, 
equations (72), in (71), gives: 

 

 

   

 

 

1

1 2

1 2

1 2

1 2 1

1 2 1 2
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2
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bb
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,   (73) 

 
 
5 Conclusion 
Correlation of knowledge from various disciplines 
substantially contribute to education, training and 
development of flexibility in the thinking process, of 
abilities of implementing knowledge in practice, it 
significantly helps in fixing and systematizing 
knowledge, one discipline helping the other to be 
better acquired. 

Examples of problems in the equilibrium of rigid 
bodies have been considered, submitted to 
frictionless bonds, solved by mechanical and 
geometrical considerations, namely with the 
condition of concurrency of three lines in a plane.  

The concept of interdisciplinarity is a component 
of the training process, by which active and formative 
aspects can be provided, of directing learning, and it 
has gained field more and more in the approach of 
modern teaching. 

By the examples approached, it is mentioned that 
determined unknowns by geometrical considerations 
can be distances (lengths), angles, friction forces or 
coefficients. No reactions (bonding forces) are 
determined. 
 
 
Acknowledgement: 

It is an optional section where the authors may write 
a short text on what should be acknowledged 
regarding their manuscript. 
References: 

[1] Al Nageim, H., Durka, F., Morgan, W., 
Williams, D.T. Structural mechanics: loads, 

analysis, materials and design of structural 

elements. 7th edition. London, Pearson 
Education. 2010. 

[2] Agrawal, S.K., Kumar, S., Yim, M., Suh, J.W. 
Polyhedral single degree-of-freedom expanding 

structures, in: Proc. 2001 ICRA IEEE 
International Conference on Robotics and 
Automation, Seoul, Korea, vol. 4, pp. 3338–
3343. 2001. 

[3] Bălan, Şt., Culegere de probleme de Mecanică, 
Ediţia a II-a, E.D.P., Bucureşti, 1972. 

[4] Coșniță, C., Sager, I., Matei, I., Dragotă, I., 
Culegere de probleme de geometrie analitică, 
E.D.P., București, 1963. 

[5] Daniel W. Baker, William Haynes. Engineering 
Statics: Open and Interactive. 
https://engineeringstatics.org/Chapter_05-3d-
rigid-body-equilibrium.html  

[6] Dumitrescu, I., Mihăilescu, S., Itu, V., 3D 
Modelling of Cylindrical Cutting Tool 
Geometry with Helical Teeth, Annals of the 

University of Petroșani, Mechanical 

Engineering, vol. 15, Petroșani, 2013, pp. 45-55, 
http://www.upet.ro/annals/mechanical/pdf/2013
/Dumitrescu%20Iosif%20-
%20Anale%202013.pdf  

[7] F.B. Beer, E.R. Johnston. Vector Mechanics for 

Engineers, Statics and Dynamics. McGraw Hill, 
Boston, 1997. 

[8] Faisal M. Mukhtar & Husain J. Al-Gahtani. On 
the use of three-force member concept versus 

Itu Răzvan Bogdan, Toderaș Mihaela
International Journal of Theoretical and Applied Mechanics 

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 22 Volume 8, 2024

https://engineeringstatics.org/Chapter_05-3d-rigid-body-equilibrium.html
https://engineeringstatics.org/Chapter_05-3d-rigid-body-equilibrium.html
http://www.upet.ro/annals/mechanical/pdf/2013/Dumitrescu%20Iosif%20-%20Anale%202013.pdf
http://www.upet.ro/annals/mechanical/pdf/2013/Dumitrescu%20Iosif%20-%20Anale%202013.pdf
http://www.upet.ro/annals/mechanical/pdf/2013/Dumitrescu%20Iosif%20-%20Anale%202013.pdf


equilibrium equations in Statics, International 

Journal of Mathematical Education in Science 

and Technology, DOI: 
10.1080/0020739X.2020.1756493. 2020. 
https://doi.org/10.1080/0020739X.2020.175649
3  

[9] Ferdinand P. Beer, E. Russell Johnston, Jr., 
David F. Mazurek, Phillip J. Cornwell, Brian P. 
Self. Vector Mechanics for Engineers: Statics 

and Dynamics, ELEVENTH EDITION. 
Published by McGraw-Hill Education, 2016. 

[10] Hegedüs, A., Drăgulescu, D., Probleme de 

mecanică. Statică şi cinematică, Editura Facla, 
Timişoara, 1989. 

[11] Itu R.B. Florea A.V. Vitan D.P. Aspects 
regarding the application in mechanics of 
concurrency condition of three lines in a plane, 
Annals of the University of Petroșani 
https://www.upet.ro/annals/mechanical/pdf/202
3/09_Itu_2.pdf  

[12] Itu, R.B., Concurența a trei drepte în plan 

aplicată în probleme de statica solidului rigid, 
Editura Universitas, Petroșani, 2023. 

[13] Meriam, J. L., Kraige, L. G. Engineering 

Mechanics: Statics (V.1), 7th edition, Wiley 
2012. 

[14] Rozenblat, G.M. The equilibrium of a rigid body 
on a plane with anisotropic dry friction, Journal 

of Applied Mathematics and Mechanics, 
Volume 73, Issue 2, 2009, Pages 145-155, ISSN 
0021-8928, 
https://doi.org/10.1016/j.jappmathmech.2009.0
4.004  
(https://www.sciencedirect.com/science/article/
pii/S0021892809000641) 

[15] Sandu, M., 500 probleme de fizică, Editura 
Tehnică, Bucureşti, ISBN 973-31-0354-3, 1991. 

[16] Sanh Do, Khoa Dang Do, Problems of the 
equilibrium of a rigid body and mechanical 
systems. Computer Assisted Mechanics and 

Engineering Sciences, 16: 2009, 81–100. 
[17] Sarian, M., et al. Probleme de mecanică – pentru 

ingineri și subingineri, E.D.P., București, 1975 
[18] Shai, O., Pennock, G.R. Extension of graph 

theory to the duality between static systems and 
mechanisms, ASME Journal of Mechanical 

Design 128 (1) 2006, 179–191.  
[19] Svanadze, M. Problems of Equilibrium of Rigid 

Body. In: Potential Method in Mathematical 

Theories of Multi-Porosity Media. 

Interdisciplinary Applied Mathematics, vol 51. 
2019, Springer, Cham. 
https://doi.org/10.1007/978-3-030-28022-2_5  

[20] Zanni, G., Pennock, G.R.  A unified graphical 
approach to the static analysis of axially loaded 

structures. Mechanism and Machine Theory (44) 
2009, 2187–2203.  
 

Contribution of Individual Authors to the 

Creation of a Scientific Article (Ghostwriting 

Policy) 

Itu Razvan Bogdan took care of the mechanical 
aspects of the article choosing the right examples, 
compatible with the geometric aspects. 
Toderas Mihaela realized the geometrical aspects 
related to the theme of the article and the geometrical 
solution of the problems chosen as examples. 
 

Creative Commons Attribution License 4.0 

(Attribution 4.0 International, CC BY 4.0) 

This article is published under the terms of the 
Creative Commons Attribution License 4.0 
https://creativecommons.org/licenses/by/4.0/deed.en
_US 
 
 

Itu Răzvan Bogdan, Toderaș Mihaela
International Journal of Theoretical and Applied Mechanics 

http://www.iaras.org/iaras/journals/ijtam

ISSN: 2367-8992 23 Volume 8, 2024

https://doi.org/10.1080/0020739X.2020.1756493
https://doi.org/10.1080/0020739X.2020.1756493
https://www.upet.ro/annals/mechanical/pdf/2023/09_Itu_2.pdf
https://www.upet.ro/annals/mechanical/pdf/2023/09_Itu_2.pdf
https://doi.org/10.1016/j.jappmathmech.2009.04.004
https://doi.org/10.1016/j.jappmathmech.2009.04.004
https://www.sciencedirect.com/science/article/pii/S0021892809000641
https://www.sciencedirect.com/science/article/pii/S0021892809000641
https://doi.org/10.1007/978-3-030-28022-2_5
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US



