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Abstract: The problem of wave propagation in elastic beams is presented in a general fashion. The role of tuned

mass damper is also shown. In particular we will calculate reflection and transmission coefficients across a tuned

mass damper and show their frequency dependence. The same analysis will be extended to the case of an impact

tuned mass damper. In particular we will show the effect of impact on the equations that govern this kind of

devices.
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1 Introduction

In [40, 55] it is proposed a general set of equations,
obtained via a variational principle, accounting for
surface mass density, elasticity and inertia embed-
ded in a three-dimensional second gradient material
[2, 37, 38, 42, 59]. In particular, well posed dual-
ity jump conditions to be imposed at the considered
structured surfaces are introduced and discussed. In
this contribution we apply the same strategy to the
case of Euler beams. Euler beams are treated as sec-
ond gradient materials, i.e. as materials for which the
internal energy depends upon the second gradient of
the placement field [3, 24, 25, 46, 52, 53, 54, 60]. In
Euler beams the body is one-dimensional. Thus, the
internal energy of an Euler beam is assumed to depend
simply on the second derivative of the (dis)placement
field. Classic variational approach has been used to
derive the system of PDEs and boundary conditions.
Many types of internal constraints across two semi-

infinite Euler beams can be considered. In this pa-
per we consider the case of a Tuned Mass Damper
(TMD), that is a very efficient technique to reduce
wave propagation [1, 56]. Tuned mass dampers are
devices mounted in structures to reduce the amplitude
of mechanical vibrations. They are frequently used
in many fields of engineering. Various vibration con-
trol techniques may be used in order to reduce wave
propagation in beams [49]. Mass–spring systems are
widely used to control the response of resonant struc-
tures [48, 49, 50]. According to Ormoundroyd and
Den Hartog [51], the use of TMDs was first suggested
in 1909.

At its resonance frequency an undamped
mass–spring system is attached to the host structure
and it should be tuned to its resonance. However,
to give the best effect over a frequency band under
random excitation, Den Hartog [45] derived optimum
values for the frequency of a damped absorber and its
damping ratio in order to minimize the displacement
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response of the host structure. This paper gives an
easier method to achieve the same goal.

2 Wave propagation in 1D second
gradient elasticity (Euler beam)

2.1 Formulation of the problem

X is the coordinate of the material points of the 1D
body in the reference configuration, L is its length and
X ∈ [0, L]. t is the time and t ∈ [ti, tf ], where ti and
tf are initial and final time of the dynamic process,
respectively. The kinetic energy density functional
K (u̇) depends only on the first derivative u̇, i.e. on
the velocity, of the displacement field u (X, t) with
respect to t. The internal energy density functional
U (u′′) depends only on the second derivative u′′ of
the displacement field u (X, t) with respect to X . The
action functional A (u (X, t)) is given by the contri-
butions of kinetic, internal and the external energies
as follows,

A (u (X, t)) =

∫ tf

ti

{
∫ L

0
[K (u̇)− U

(
u′′
)

(1)

+bextu+mextu′]dX

+F ext
0 u (0, t) + F ext

L u (L, t)

+M ext
0 u′ (0, t) +M ext

L u′ (L, t)}dt

where bext (X) and mext (X) are the external dis-
tributed force and couple, F ext

0 , F ext
L are the external

concentrated forces at X = 0 and at X = L, respec-
tively, and M ext

0 , M ext
L are the external concentrated

couples at X = 0 and at X = L, respectively. If we
assume δA = 0 for any admissible variation δu then
from (1) we get the final form of the system of par-
tial differential equations, that can be explained once
kinematical restrictions are defined. Kinetic energy
density K is assumed to be quadratic in the velocity
u̇,

K (u̇) =
1

2
%u̇2, (2)

where the coefficient % (X) is the so-called mass den-
sity of the material. Internal energy density is as-
sumed to be quadratic in the so-called strain gradient
u′′,

U
(
u′′
)

=
1

2
KMu

′′2,

where the coefficient KM (X) is the so-called bend-
ing stiffness of the material.

If the displacement field u (X, t) is interpreted as
transverse to the direction of the line defined by the
reference configuration of the material body, and if
such a body is composed by isotropic elastic material
with Young modulus E and I is the moment of inertia
of its cross section, then we have KM = EI . Finally,
we will consider only the case of admissible variation
δu such that

δu (X, ti) = δu (X, tf ) = 0 (3)

The result is given by reporting the variation of
the action functional,

δA (u (X, t)) = −
∫ tf

ti

{
∫ L

0
[%ü+

(
KMu

II
)II

.(4)

−bext +
(
mext

)I
]δudX

+
[(
KMu

II −M ext
L

)
δu′
]
X=L

−
[(
KMu

II +M ext
0

)
δu′
]
X=0

−
[[(

KMu
II
)I

+ F ext
L +mext

]
δu
]
X=L

+
[[(

KMu
II
)I − F ext

0 +mext
]
δu
]
X=0
}dt.

2.2 Dispersion relation of the Euler beam
problem

Let us assume no external actions,

bext = mext = 0,

and an indefinite length, i.e. no boundary conditions
are considered. Thus, the Partial Differential Equa-
tions PDEs are,

%ü+
(
KMu

II
)II

= 0, ∀X, t. (5)

Let us, now, look for plane wave solution, for the ho-
mogeneous (K ′M = 0) case, in the following form,

u (X, t) = Re {u0 exp [I (ωt− kX)]} , (6)

where I is the imaginary unit, ω the frequency, k the
wave number, and insert (6) into (5),

Re
{(
−%ω2 +KMk

4
)
u0 exp [I (ωt− kX)]

}
= 0.

(7)
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Thus, the (7) is given in a more suitable way,(
−%ω2 +KMk

4
)
u = 0. (8)

The (8) is satisfied for every displacement field if and
only if,

k4 =
%

KM
ω2, (9)

that is the wanted dispersion relation.
If ω is real, then the 4 possible wave numbers (so-

lutions of the dispersion relation (9)) are,

k = k1,2,3,4, k1,2 = ±k,

k3,4 = ±Ik, k = 4

√
%

KM
ω2 ∈ R+

that correspond to four possible waves. A general so-
lution in terms of plane waves is therefore,

u (X, t) = Re{u01 exp [I (ωt− k1X)]

+u02 exp [I (ωt− k2X)]

+u03 exp [I (ωt− k3X)]

+u04 exp [I (ωt− k4X)]}

that is also

u (X, t) = Re{u01 exp
[
I
(
ωt− kX

)]
+u02 exp

[
I
(
ωt+ kX

)]
+u03 exp

[
I
(
ωt− IkX

)]
+u04 exp

[
I
(
ωt+ IkX

)]
}

or

u (X, t) = Re{exp [Iωt] [u01 exp
(
−IkX

)
(10)

+u02 exp
(
IkX

)
+ u03 exp

(
kX
)

+u04 exp
(
−kX

)
]

It is easy to show that the amplitude u01 corresponds
to a plane wave propagating towards the positive axis
X and, vice versa, the amplitude u02 corresponds to
a plane wave propagating towards the negative axis
X . Besides, the amplitudes u03 and u04 correspond to
the so-called standing waves, being the standing wave
associated to the amplitude u03 diverges to infinity at
X −→ +∞ and that to the amplitude u04 diverges at
X −→ −∞.

2.3 Energy and average energy fluxes related
to plane waves

The calculation of the energy fluxes is done as fol-
lows. First of all, we define the total energy density,
that is the sum of kinetic and internal energy. The time
derivative of the total energy density is

Ė = %u̇ü+KMu
′′u̇′′, (11)

and the flux H is defined in such a way that the fol-
lowing PDE is satisfied,

Ė +H ′ = 0 (12)

By the use of the PDE (5) of the process we have

Ė = −u̇
(
KMu

II
)II

+KMu
′′u̇′′. (13)

By the use of the chain derivative rule we have,

Ė = −
[
u̇
(
KMu

′′)I]I + u̇′
(
KMu

′′)I (14)

+
(
KMu

′′u̇′
)I − (KMu

′′)I u̇′
= −

[
u̇
(
KMu

′′)I]I +
(
u̇′KMu

′′)I
=
(
−u̇
(
KMu

′′)I + u̇′KMu
′′
)I

By comparison of (12) and (14), we have

H = u̇
(
KMu

′′)I − u̇′KMu
′′. (15)

The average flux density 〈H〉 related to a wave with
frequency ω is defined by the integration of H in time
over the period T = 2π/ω of the wave,

〈H〉 =

∫ t+T

t
H
(
X, t̃

)
dt̃. (16)

2.3.1 Energy flux related to a propagative wave
towards the positive direction of the axis X

Let us take into account the propagative wave to-
wards the positive direction of the axisX , with ω, k̄ ∈
Real+,

u (X, t) = Re
(
u0 exp

(
I
(
ωt− k̄X

)))
. (17)

Thus, its average density flux is defined by (15) and
(16),

〈H〉 =
〈
u̇
(
KMu

′′)I〉− 〈u̇′KMu
′′〉 ,
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that for the homogenous case is,

〈H〉 = KM

(〈
u̇uIII

〉
−
〈
u̇′u′′

〉)
. (18)

By insertion of (17) into (18) and by using the theorem
(33) defined in the Appendix2 in Sect. 4,

〈H〉
KMωk̄3

=
1

2
Re (u0u

∗
0) +

1

2
Re (u0u

∗
0) = ‖u0‖2 ,

that is
〈H〉 = KMωk̄

3 ‖u0‖2 ,

where ‖u0‖ is the modulus of the amplitude u0 and u∗0
is its complex conjugated.

Thus, we remark that the average energy flux of a
propagative wave towards the positive direction of the
axis X is positive.

2.3.2 Energy flux related to a propagative wave
towards the negative direction of the axis X

Let us take into account the propagative wave towards
the negative direction of the axis X , with ω, k̄ ∈
Real+

u (X, t) = Re
(
u0 exp

(
I
(
ωt+ k̄X

)))
. (19)

Its energy flux (18) is now computed. By insertion of
(19) into (18) and by using the theorem (33) defined
in the Appendix2 of Sect. 4,

〈H〉
KMωk̄3

= −1

2
Re (u0u

∗
0)−

1

2
Re (u0u

∗
0) = −‖u0‖2 ,

that is
〈H〉 = −KMωk̄

3 ‖u0‖2 ,

where ‖u0‖ is the modulus of the amplitude u0, and
u∗0 is its complex conjugated.

Thus, we remark that the average energy flux of
a propagative wave towards the negative direction of
the axis X is negative.

2.3.3 Energy flux related to a general standing
wave

Let us take into account a general standing wave, with
ω, k̄ ∈ Real+

u (X, t) = Re
(
u0 exp

(
Iωt± k̄X

))
. (20)

Figure 1: A mass-spring system with rigidity k and
mass m inside an indefinite beam at the position X =
0. Incident, reflection and transmission coefficients
are made explicit.

Its energy flux (18) is now computed. By insertion of
(20) into (18), and by using the theorem (33) defined
in the Appendix, we have

〈H〉 = 0,

where ‖u0‖ is the modulus of the amplitude u0, and
u∗0 is its complex conjugated.

Thus, we remark that the average energy flux of a
general standing wave is null.

2.4 Reflection and transmission coefficients

Reflection R and transmission T coefficients are re-
lated to the average energy fluxes of the reflected and
transmitted waves, respectively. Thus they do not con-
sider the standing waves solution, because their aver-
age density flux is null. If we assume that Hi is the
energy flux of an incident wave and Hr andHt are the
energy fluxes of the reflected and transmitted waves,
the following definition hold,

R =

∥∥∥∥〈Hr〉
〈Hi〉

∥∥∥∥ , T =

∥∥∥∥〈Ht〉
〈Hi〉

∥∥∥∥ . (21)

3 The case of an indefinite beam with
a tuned mass damper

3.1 Formulation of the problem

Let us consider a mass-spring system with rigidity
k and mass m inside an indefinite beam at the po-
sition X = 0, see the Fig. 1. The displace-
ment field must now be treated with two indepen-
dent functions, u1 (X, t) and u2 (X, t). The first re-
lated to the displacement field on the left-hand side
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and the second to that of the right-hand side. The
action A (u1 (X, t) , u2 (X, t)) is the superposition of
(A1 (u1 (X, t)),

A1 (u1 (X, t)) =

∫ tf

ti

{∫ 0

−L

[
1

2
%u̇21 −

1

2
KMu

′′2
1

]
dX

}
and A2 (u2 (X, t))),

A2 (u2 (X, t)) =

∫ tf

ti

{∫ L

0

[
1

2
%u̇22 −

1

2
KMu

′′2
2

]}
related to both sides of the indefinite beam and to that
of the internal constraint spring mass system AIC ,

A = A1 +A2 +AIC (22)

The vertical displacement of the mass m is not con-
strained to be attached to the beam but it is given by
its vertical coordinate y (t), that is a function of time.
The internal clamp constrained is considered

u1 (0, t) = u2 (0, t) , u′1 (0, t) = u′2 (0, t) , (23)

between the two sides of the indefinite beam. and the
action of the mass spring system is therefore,

AIC (·) =
1

2
m [ẏ (t)]2−1

2
k (y (t)− u1 (0, t))2 (24)

where no distributed nor concentrated external ac-
tions are considered, the length L will be assumed
to be arbitrary large, i.e. L → ∞ and the mass-
spring system is concentrated at X = 0 where the
displacement u1 (0, t) = u2 (0, t) and the velocity
u̇1 (0, t) = u̇2 (0, t) are the same in the two indepen-
dent branches of the beam. The variation of (24),

δAIC (·) = δy [−mÿ − ky + ku1]

+δu1 (0, t) k [y (t)− u1 (0, t)]

is used to derive the variation of (22),

δA (u1 (X, t) , u2 (X, t) , y (t)) =

−
∫ tf

ti

{
∫ L

0
{δu1

[
%ü1 +

(
KMu

II
1

)II]
δu2

[
%ü2 +

(
KMu

II
2

)II]}dX
+
[(
KMu

II
1

)
δu′1 −

(
KMu

II
2

)
δu′2
]
X=0

−
[[(

KMu
II
1

)I]
δu1 −

[(
KMu

II
2

)I]
δu2

]
X=0

δy [−mÿ − ky + ku1]

+δu1 (0, t) k [y (t)− u1 (0, t)]}dt.

Thus, the PDEs are

%ü1 +
(
KMu

II
1

)II
= %ü2 +

(
KMu

II
2

)II
= 0

and the boundary conditions at X = 0, because of the
kinematical restrictions in (23) are

u1 (0, t) = u2 (0, t) , u′1 (0, t) = u′2 (0, t) ,

uII1 (0, t) = uII2 (0, t) ,

−mÿ (t)− ky (t) + ku1 (0, t) = 0 (25)

−KMu
III
1 (0, t) +KMu

III
2 (0, t)

+k [y (t)− u1 (0, t)] = 0 (26)

3.2 A plane wave solution

Let us assume a propagative wave towards the right-
hand side (i.e. towards the positive direction of the X
axis) into the left-hand side of the beam. In this way,
such a propagative wave complies the mass-spring
system and interact with it. Such an incident wave has,
therefore, the form of (17), i.e., (with ω, k̄ ∈ Real+)

ui (X, t) = Re
(
upi exp

(
I
(
ωt− k̄X

)))
. (27)

Once the incident wave complies the concentrated
spring-mass system, a transmitted and a reflected
wave is generated. However, not all the 4 kind of
waves in (10) can be generated on both sides of the
concentrated mass. First of all, the standing wave
that diverges at X −→ −∞ is not possible (Sommer-
field condition) for the reflected wave and the stand-
ing wave that diverges at X −→ +∞ is not possi-
ble (Sommerfield condition) for the transmitted wave.
Thus the reflected wave can only be of the following
form,

ur (X, t) = Re(upr exp
(
I
(
ωt+ k̄X

))
+usr exp

(
Iωt+ k̄X

)
), ω, k̄ ∈ Real+.

and the transmitted wave is given by,

ut (X, t) = Re(upt exp
(
I
(
ωt− k̄X

))
+

+ust exp
(
Iωt− k̄X

)
), ω, k̄ ∈ Real+.

Thus, in the vicinity of the mass resonator, the
solution is the superposition ui (X, t) + ur (X, t) of
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incident ui (X, t) and reflected ur (X, t) waves for the
left-hand side of the concentrated mass,

u1 (X, t) = ui (X, t) + ur (X, t) =

Re(upi exp
(
I
(
ωt− k̄X

))
+ upr exp

(
I
(
ωt+ k̄X

))
+usr exp

(
Iωt+ k̄X

)
)

and simply the transmitted wave for the right-hand
side of the concentrated mass, (with ω, k̄ ∈ Real+)

u2 (X, t) = ut (X, t) =

Re
(
upt exp

(
I
(
ωt− k̄X

))
+ ust exp

(
Iωt− k̄X

))
.

The oscillation of the internal resonator is also
achieved,

y (t) = y0 exp (Iωt) (28)

3.3 Reflection and transmission condition
across a tuned mass damper

The amplitude of the propagative incident wave upi is
again considered a datum of the problem. In the fol-
lowing we will find both the amplitudes of reflected
upr and usr and of the transmitted upt and ust waves, as
well as the amplitude y0 of the internal resonator. The
boundary conditions are the 5 included in eqns. (25),
(25) and (26). By insertion of (28), (28) and (28) into
eqns. (25), (25) and (26) we derive the five equations
that are needed to derive the unknowns of reflected upr
and usr, of the transmitted upt and ust and of the internal

resonator y0waves. Keeping in mind that

u′1 = Re(upi
(
−Ik̄

)
exp

(
I
(
ωt− k̄X

))
+upr

(
Ik̄
)

exp
(
I
(
ωt+ k̄X

))
+usr

(
k
)

exp
(
Iωt+ k̄X

)
)

u′′1 = Re(upi
(
−Ik̄

)2
exp

(
I
(
ωt− k̄X

))
+upr

(
Ik̄
)2

exp
(
I
(
ωt+ k̄X

))
+usrk

2
exp

(
Iωt+ k̄X

)
)

uIII1 = Re(upi
(
−Ik̄

)3
exp

(
I
(
ωt− k̄X

))
+upr

(
Ik̄
)3

exp
(
I
(
ωt+ k̄X

))
+usrk

3
exp

(
Iωt+ k̄X

)
)

u̇1 = Re(upi (Iω) exp
(
I
(
ωt− k̄X

))
+upr (Iω) exp

(
I
(
ωt+ k̄X

))
+usr (Iω) exp

(
Iωt+ k̄X

)
)

ü1 = Re(upi (Iω)2 exp
(
I
(
ωt− k̄X

))
+upr (Iω)2 exp

(
I
(
ωt+ k̄X

))
+usr (Iω)2 exp

(
Iωt+ k̄X

)
)

and

u′2 = Re(upt
(
−Ik̄

)
exp

(
I
(
ωt− k̄X

))
+ust

(
−k
)

exp
(
Iωt− k̄X

)
)

u′′2 = Re(upt
(
−Ik̄

)2
exp

(
I
(
ωt− k̄X

))
+ust

(
−k
)2

exp
(
Iωt− k̄X

)
)

uIII2 = Re(upt
(
−Ik̄

)3
exp

(
I
(
ωt− k̄X

))
+ust

(
−k
)3

exp
(
Iωt− k̄X

)
)

u̇2 = Re(upt (Iω) exp
(
I
(
ωt− k̄X

))
+ust (Iω) exp

(
Iωt− k̄X

)
)

ü2 = Re(upt (Iω)2 exp
(
I
(
ωt− k̄X

))
+ust (Iω)2 exp

(
Iωt− k̄X

)
)

and, without loss of generality, assuming the time t =
0 and position X = 0, the five conditions (25), (25)
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and (26) are as follows,

upi + upr + usr = upt + ust ,

upi
(
−Ik̄

)
+ upr

(
Ik̄
)

+ usr
(
k
)

= upt
(
−Ik̄

)
+ ust

(
−k
)
,

upi
(
−Ik̄

)2
+ upr

(
Ik̄
)2

+ usrk
2

= upt
(
−Ik̄

)2
+ ust

(
−k
)2
,

upi
(
−Ik̄

)3
+ upr

(
Ik̄
)3

+ usrk
3

= upt
(
−Ik̄

)3
+ ust

(
−k
)3

+
k

KM
[y0 − upi − u

p
r − usr]

−my0 (Iω)2 − ky0 + k (upi + upr + usr)

that is possible to solve analytically,

upr = −(1 + I) kmω2

D1
upi , (29)

D1 = 4 (−1 + I) kKM k̄
3

+2
(
k + 2 (1− I)KM k̄

3
)
mω2

usr = −(1− I) kmω2

D2
upi , (30)

D2 = 4 (−1 + I) kKM k̄
3

+2
(
k + 2 (1− I)KM k̄

3
)
mω2

upt =
(1 + I)

(
4kKM k̄

3 −
(
k + 4KM k̄

3
)
mω2

)
D3

upi ,

D3 = 4 (1 + I) kKM k̄
3

−2I
(
k + 2 (1− I)KM k̄

3
)
mω2

ust = −(1− I) kmω2

D4
upi ,

D4 = (−1 + I) kKM k̄
3

+2
(
k + 2 (1− I)KM k̄

3
)
mω2

y0 =
2 (1 + I) kKM k̄

3

D5
upi

D5 = 2 (1 + I) kKM k̄
3

−I
(
k + 2 (1− I)KM k̄

3
)
mω2,

3.4 Numerical representation of reflection
and transmission coefficients

By the use of the definitions (21) of the reflection ant
transmission coefficients, it is possible to verify the

R

T

0.0 0.5 1.0 1.5 2.0
ω

0.2

0.4

0.6

0.8

1.0

Figure 2: Reflection and Transmission coefficients
with the following numerical characterization,KM =
1,ρ = 1, m = 1, k = 1.

energy conservation,

R+ T = 1.

Besides, reflection and transmission coefficients can
be plotted in the following figures 2, 3, 4, 5 and 6.

4 Towards the design of piece-wise
smooth tuned mass damper and
outlook

Finally, we consider the case of the piece-wise smooth
tuned mass dampers [5, 6, 7, 8, 9, 11, 12]. In particu-
lar we assume that the mass damper can only vibrate
at the top of the beam. This will be modeled by a
different assumption of the internal constraint action
(24),

AIC =
1

2
m [ẏ (t)]2 (31)

−1

2
kH (y (t)− u1 (0, t)) (y (t)− u1 (0, t))2

−1

2
kimpH (u1 (0, t)− y (t)) (y (t)− u1 (0, t))2

where the Heaviside functionH has been used and the
rigidity kimp >> k is the so called impact rigidity[4,
10, 13, 14, 15, 57].
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Figure 3: Reflection and Transmission coefficients
with the following numerical characterization,KM =
1,ρ = 1, m = 1, k = 2.
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Figure 4: Reflection and Transmission coefficients
with the following numerical characterization,KM =
1,ρ = 1, m = 2, k = 1.
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Figure 5: Reflection and Transmission coefficients
with the following numerical characterization,KM =
0.1,ρ = 1, m = 1, k = 1.

R

T

0.0 0.5 1.0 1.5 2.0
ω

0.2

0.4

0.6

0.8

1.0

Figure 6: Reflection and Transmission coefficients
with the following numerical characterization,KM =
1,ρ = 0.1, m = 1, k = 1.

Figure 7: Distributed mass-spring system with rigidity
k and mass m attached to an indefinite beam.
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Distributed systems, see e.g., Fig. 7, are not new
in the literature on the applications of Riccati equa-
tion [19, 22, 23] and are discussed at length in the
literature on transmission lines [16, 17, 18, 20, 21].
Thus, further developments will be achieved consider-
ing a system of distributed tuned mass dampers (e.g.,
the oscillation of fluid into the pore space[39, 41] of
different interesting metamaterials [36, 43, 44]), that
could be mathematically treated with the help of spe-
cial functions [26, 27, 28, 29, 30, 31, 32, 33, 34, 35].

Appendix: A theorem for the evalua-
tion of the average flux density

Let F and f be two general complex function of this
form

F = F0 exp (Iωt− γ1) ,
f = f0 exp (Iωt− γ2) , F0, f0 ∈ Real+(32)

then it is possible to prove that∫ t+T

t
Re (F ) Re (f) dt̃ =

1

2
Re (Ff∗) , (33)

where f∗ is the complex conjugated of f .
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