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Abstract: Enhanced matched filter (EMF) comprises a distortion tolerant correlation filter and its associated 

threshold. It is an effective signal detection tool with superior immunity to noise, distortion, and clutter, used for 

imagery-based detection, authentication, classification, recognition, and tracking of targets of interest. The EMF 

is synthesized by combining multiple image templates of the target of interest, acquired under prescribed target 

states and view conditions. In autonomous vision and tracking systems, one EMF can potentially replace copious 

manifold of exemplar images without adversely affecting the classifier performance. This leads to proportional 

reduction of operation phase computational load, and concomitant smaller footprint, lighter, faster, and more 

power efficient smart vision systems. This paper develops the underlying theory of EMF and provides the 

analytical models of its operation. The EMF and the standard matched filter (MF) performance results based on 

analytical formulations and empirical studies are presented and are compared to the performance data using virtual 

and real test images. Results pertaining to the performance comparison of the EMF and the synthetic discriminant 

function (SDF) filters are also presented. 
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1. Introduction 

The growing proliferation of imaging and machine 

vision systems has led to the incessant production of 

vast volumes of imagery data. Machine vision 

deployment is wide ranging and persistent, spanning 

diverse application areas including advanced driver 

assist systems, biometrics, medical diagnostics, 

environmental monitoring, public safety, defense 

and security, robotic navigation, virtual reality, 

entertainment, manufacturing, education, and others 

[1-9]. In machine vision systems, including those 

with human in the loop, due to the massive volumes 

of sensor data involved, human inspection of all the 

images is virtually impossible. Effective utilization 

of the colossal quantities of imagery data, therefore, 

necessitates a high degree of automation. 

Autonomous vision systems, depending on the 

application area, may be required to detect, 

authenticate, classify, recognize, and track objects of 

interest in image and video files, based on 

combinations of spatial and spectral signatures. 

Pseudo autonomous vision systems, on the other 

hand, are expected to queue the human in the loop 

towards the spatiotemporal regions of interest. The 

system must sift through enormous volumes of data 

proficiently to present the human operator with 

timely actionable intelligence or with drastically 

abridged datasets that make further analysis 

practicable. This paper explores an innovative tool 

for detection, classification, and recognition of 

objects in imagery data, based on the objects' spatial 

signatures. Specifically, it presents a technique for 

reducing data storage and processing loads while 

concurrently improving the detector and classifier 

robustness. 

The objective of the image detector and classifier 

presented here is different from those of the recently 

developed and very powerful neural network based 

deep learning image classifiers [6-16]. Deep 

learning image classification algorithms using 

convolutional neural networks are purely data 

driven and require copious amounts of training data, 

which may not be available in some applications. 

The image classifier presented here is intended for 

niche application areas with dearth of training 

images, where model transparency and adaptability 

are desired. The image classifier presented here 

allows for computationally efficient online real-time 

retraining of the classifier which affords an 

evolutionary mechanism for improving the classifier 

as new episodes of the target of interest are detected 

during the operation phase. 

The universally accepted gold standard for detection 

of known signatures in noise corrupted sensor 

signals is the matched filter (MF), which reduces to 

template matching under white noise condition [10-

19]. The standard method for locating an object of 

interest in a two-dimensional (2D) intensity image is 

template matching or correlation filtering. The 

appealing attributes of correlation filters include 

linearity, shift invariance and graceful degradation, 

which make them suitable for detection of targets at 

arbitrary positions in the image frame in the 

presence of noise and clutter. In template matching, 

a set of image templates representing the object of 

interest under assorted view conditions, constitutes 

the target filter bank. The image at the sensor output 
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is correlated with the set of templates to establish the 

presence, or lack thereof, and the locations of the 

objects of interest in the image under test. The 

images of a particular object have an immense 

degree of variability owing to changes in intrinsic 

and extrinsic conditions. Intrinsic conditions include 

object articulation, non-rigid deformation, 

temperature, in-plane, and out-of-plane rotation. 

Extrinsic conditions that affect the object image 

include range, view angle, in-plane rotation, 

lighting, shadowing, background, partial occlusion, 

other environmental conditions, and sensor noise. 

Objects associated with a target class of interest can 

project an innumerably diverse set of signatures in 

the sensor focal plane array [20-35]. Hence, the filter 

associated with a particular target class may 

potentially contain multitude of image templates. In 

a typical application, the autonomous vision system 

must store target filters associated with all object 

classes of interest for that application. It must also 

process each sensor image by spatially correlating it 

with respect to potentially many image templates 

related to various target filters associated with the 

respective object classes of interest [28]. This results 

in data storage and processing requirements that 

may not be available in practical systems especially 

in mobile applications with power constraints. For 

example, an autonomous vision system that is 

required to ascertain presence and locations of 

several classes of objects of interest in a video 

stream must store potentially thousands of image 

templates and correlate each sensor image with 

many templates in real-time. For practical systems, 

this presents an insurmountable data storage and 

computational load. 

To circumvent the computational challenges 

presented by target image variability, various classes 

of distortion tolerant correlation filters have been 

developed and successfully implemented [26, 27, 

32-55]. These are composite filters obtained by 

combining multiple training images associated with 

the respective target class of interest. The 

computational complexities of processing a sensor 

image with one target template and the 

corresponding composite filter are equivalent. 

Replacing a typical set of target templates with the 

respective composite filter, therefore, leads to 

reducing the operational phase processing and data 

storage loads. The computational effort expended 

for synthesis of the distortion tolerant composite 

filter pays dividend in the operation phase. The 

expenditure of computational resources for filter 

synthesis is a one-time investment, whereas the 

operation phase savings are recurring. This paper 

presents an intuitive and computationally efficient 

technique for the synthesis of a distortion tolerant 

composite correlation filter. The enhanced matched 

filter (EMF) presented here is obtained by 

straightforward amalgamation of the corresponding 

set of target-class training images. Training images, 

representing prescribed target states and view 

angles, are properly conditioned and added pixel-

wise. The resultant synthetic image is subsequently 

normalized to form the EMF. One of the advantages 

of EMF, with respect to other composite filters 

reported in the literature, is the potential for 

operation phase dynamic improvement of the filter. 

The EMF training and its application for detection 

of targets of interest in the sensor images are 

performed entirely in the image space without the 

need for transformation to a feature space and 

feature extraction. The EMF can be adaptively 

upgraded while detecting new target episodes, 

without involving the constituent original trainer 

image templates. A distinguishing feature of EMF is 

the ascribed threshold, which is a byproduct of the 

filter computation process and does not rely on non-

target class training images. 

The paper organization is as follows. Section 2 

provides definitions and the detailed procedure for 

the EMF synthesis. Section 3 presents a theoretical 

framework for assessment of the EMF filter 

performance and develops mathematical formulas 

for determining the filter threshold. Analytical 

formulas for computation of the expected values of 

the MF and EMF thresholds are derived. As far as 

can be ascertained by the author, hitherto closed-

form mathematical expressions for the expected 

values of MF and EMF thresholds have not been 

reported in the open literature. The analytical 

comparisons of the MF and EMF thresholds account 

for their relative performance in relation to detection 

of untrained-on images. Section 4 develops and 

implements a simple procedure for comparing EMF 

and MF thresholds using synthetically generated 

images. Presented in Section 5 are filter 

performance test results using actual binary images. 

In Section 6 performance of the EMF is compared 

with an image classifier based on the synthetic 

discriminant function SDF described in [5]. 

Conclusions and suggested future work are 

presented in Section 7.

 

2. Formulation of the MF and 

EMF Correlation Filters and 

Thresholds 

This Section presents the process of determining the 

trainer image that best characterizes the target class 

training set of images. Here, the characteristic 

trainer and the associated threshold constitute the 

matched filter (MF). The procedure for computing 

the correlation filter and the associated threshold 

comprising the enhanced matched filter (EMF) is 

also described. Let us assume that a set of training 

images representing the target class of interest under 

prescribed target states and view conditions is 
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available. The trainer set peak cross-correlation 

matrix is given below. 

Λ = [𝜆𝑝,𝑞]𝑄×𝑄 ; 𝜆𝑝,𝑝 = 1, 𝜆𝑝,𝑞 = 𝜆𝑞,𝑝 < 1  ∀𝑝 ≠ 𝑞 
(1). 

Where, 𝑄, 𝜆𝑝,𝑞 denote, respectively, the number of 

images in the training set, and the peak mutual cross-

correlation between typical trainer pairs as given 

below. 

𝜆𝑝𝑞 = max
𝑚,𝑛

{∑∑𝑠𝑝(𝑢, 𝑣)𝑠𝑞((𝑢 − 𝑚 + 1),

𝑀

𝑢=1

𝑁

𝑣=1

(𝑣 − 𝑛 + 1))} ; 1 ≤ 𝑝, 𝑞 ≤ 𝑄     (2). 

Where, 𝑠𝑝(𝑚, 𝑛) represents a typical normalized 

training image, and 𝑀,𝑁 denote spatial dimensions 

of the image along, respectively, the vertical and 

horizontal directions. It is assumed that all trainers 

have the same spatial dimensions. This is done by 

appending zero rows and columns to images whose 

spatial dimensions are smaller than the largest image 

in the set. Here and henceforth, periodic 

continuation of the matrices is used for the 

computation of correlation surfaces. The images in 

(2) are assumed to be normalized such that for each 

image the mean of pixel values is zero and the sum 

of squares of pixel values is one. 

∀𝑞: ∑ ∑ 𝑠𝑞(𝑚, 𝑛) = 0

𝑀

𝑚=1

𝑁

𝑛=1

,∑ ∑ 𝑠𝑞
2(𝑚, 𝑛) = 1 

𝑀

𝑚=1

(3)

𝑁

𝑛=1

. 

Each training image is normalized as shown below. 

�̅�𝑞(𝑚, 𝑛) = 𝑔𝑞(𝑚, 𝑛) −
(∑ ∑ 𝑔𝑞(𝑚, 𝑛)

𝑀
𝑚=1

𝑁
𝑛=1 )

𝑀𝑁
     (4). 

𝑠𝑞(𝑚, 𝑛) =
�̅�𝑞(𝑚, 𝑛)

√∑ ∑ �̅�𝑞
2(𝑚, 𝑛)𝑀

𝑚=1
𝑁
𝑛=1

                              (5). 

Where, 𝑔𝑞 , 𝑠𝑞denote, respectively the raw and the 

corresponding normalized training image. Among 

the set of Q training images, the trainer that best 

represents the set is the one whose minimum peak 

correlation with respect to all the trainers has the 

greatest value. This trainer is called the 

characteristic trainer or the anchor and is identified 

as follows. 

∃𝑘:min
𝑞
𝜆𝑘𝑞 ≥ min

𝑞
𝜆𝑝𝑞  ∀𝑝, 1 ≤ 𝑝 ≤ 𝑄        (6). 

ℎ𝑀𝐹(𝑚, 𝑛) =  𝑠𝑘(𝑚, 𝑛)                                       (7). 

Where, 𝑘 is the index of the characteristic trainer, 

and ℎ𝑀𝐹(𝑚, 𝑛) denotes the characteristic trainer. 

Coupled with a threshold value, the characteristic 

trainer can potentially be utilized as a binary 

classifier as will be shown shortly. In this paper, the 

characteristic trainer and its threshold are 

collectively referred to as the matched filter (MF). 

𝑇𝑀𝐹 =  min
1≤𝑞≤𝑃

𝜆𝑘𝑞                                                    (8). 

Where, 𝑘 is given in (6), and ℎ𝑀𝐹 , 𝑇𝑀𝐹  denote, 

respectively, the correlation filter and the threshold 

associated with the MF. An image whose 

normalized peak correlation with respect to ℎ𝑀𝐹  

exceeds 𝑇𝑀𝐹  is classified as target, otherwise it is 

classified as non-target. 

Next, the process of formulating the enhanced 

matched filter (EMF) is articulated. Each of the 

training images, for the purpose of spatially aligning 

it with respect to the anchor ℎ𝑀𝐹 , must be shifted in 

accordance with the location of the peak of its cross-

correlation surface with respect to the anchor. 

∀𝑞 ∃(1 ≤ 𝑖𝑞 ≤ 𝑀, 1 ≤ 𝑗𝑞 ≤ 𝑁)    ∶  … 

∑ ∑ ℎ𝑀𝐹(𝑚, 𝑛)𝑠𝑞 ((𝑚 − 𝑖𝑞 + 1), (𝑛 − 𝑗𝑞 + 1)) ≥  

𝑀

𝑚=1

𝑁

𝑛=1

 

…∑ ∑ ℎ𝑀𝐹(𝑚, 𝑛)𝑠𝑞((𝑚 − 𝑢 + 1), (𝑛 − 𝑣 + 1))  (9).

𝑀

𝑚=1

𝑁

𝑛=1

 

�̂�𝑞(𝑚, 𝑛) = 𝑠𝑞 ((𝑚 − 𝑖𝑞 + 1), (𝑛 − 𝑗𝑞 + 1))           (10).     

Where,�̂�𝑞(𝑚, 𝑛) denotes a typical normalized trainer 

which has been spatially aligned with respect to the 

anchor. The enhanced matched filter (EMF) 

template is obtained by the pixel-wise summation of 

the spatially aligned trainers given in (10), and 

subsequent renormalization of the resultant 

synthetic image, as shown below. 

ℎ̂𝐸𝑀𝐹(𝑚, 𝑛) = ∑ �̂�𝑞(𝑚, 𝑛)

𝑄

𝑞=1

                      (11). 

ℎ𝐸𝑀𝐹( 𝑚, 𝑛) =
ℎ̂𝐸𝑀𝐹(𝑚, 𝑛)

√∑ ∑ ℎ𝐸𝑀𝐹
2 (𝑚, 𝑛)𝑀

𝑚=1
𝑁
𝑛=1

        (12). 

The nominal value of the EMF threshold is 

computed as the minimum peak correlation of 

ℎ𝐸𝑀𝐹(𝑚, 𝑛) with respect to all the constituent 

trainers as shown below. 

𝐶𝑞 = max
𝑚,𝑛

{∑∑ℎ𝐸𝑀𝐹(𝑢, 𝑣)𝑠𝑞((𝑢 −𝑚 + 1), (𝑣 − 𝑛 + 1))

𝑀

𝑢=1

𝑁

𝑣=1

} (13). 

𝑇𝑀𝐹 = min
1≤𝑞≤𝑃

(𝐶𝑞)                                                            (14). 

Substituting for ℎ𝐸𝑀𝐹 from (11,12) in (13,14), 

utilizing (2,3), after simplification, one arrives at the 

following expression for the EMF threshold. 

𝑇𝐸𝑀𝐹 =
𝑚𝑖𝑛1≤𝑝≤𝑄{∑ 𝜆𝑝,𝑞

𝑄
𝑞=1 }

√𝑄 + 2∑ ∑ 𝜆𝑝𝑞
2𝑄

𝑝=1
𝑄
𝑞=𝑝+1

             (15). 

Appendix A summarizes the procedural steps for 

obtaining the enhanced matched filter and the 

corresponding threshold. One can use the MF or the 

EMF as a binary classifier as described next. The 

input image is first normalized in accordance with 

(4,5), and its peak cross-correlation (PCC) with 

respect to the template associated with the 

designated classifier is computed. If PCC exceeds 

the respective threshold, the input image is labeled 

as target, otherwise it is labeled as non-target. Two 

types of classification error can occur, namely, false 

negative, where a target class image is classified as 

non-target, and false positive, where a non-target 

class image is labeled as target. Raising the 

threshold value results in decreasing the false 
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positive and increasing the false negative error, 

whereas, lowering the threshold results in higher 

false positive and lower false negative classification 

error. 

 

3. Analytic Formulas for 

Computing the MF and EMF 

Thresholds 

The steps for obtaining filter thresholds were 

outlined in the previous section. Equations (8) and 

(15) are used for computing the exact threshold 

values of the MF and EMF classifiers, respectively. 

As explained before, raising the classifier threshold 

beyond the respective nominal value, while 

lowering the false-positive error increases the false 

negative error, to the extent that one or more 

constituent trainers will not be properly captured by 

the classifier. A quantitative measure of the relative 

performance of the two types of classifiers entails 

comparison of their respective threshold values. All 

things being equal, the classifier with higher 

nominal threshold is considered superior, due to its 

potentially lower false-positive error, for 

comparable false-negative error rates for the two 

classifier types. Closed-form mathematical formulas 

for computing the expected values of the MF and 

EMF thresholds are given next. 

3.1 Expected Value of the Matched Filter 

Threshold 

The peak cross-correlation matrix of the target-class 

training set of images, given in (1), is used to find 

the nominal value of the MF threshold as follows. 

∀𝑝 1 ≤ 𝑝 ≤ 𝑄 𝑉𝑝 = min
1≤𝑞≤𝑄

(𝜆𝑝𝑞)                              (16). 

𝑇𝑀𝐹 = max
1≤𝑝≤𝑄

(𝑉𝑝)                                                         (17). 

Where, Q is the number of trainers, 𝜆𝑝,𝑞 is the peak 

cross-correlation between a trainer pair, and 𝑇𝑀𝐹  

denotes the MF threshold. The expected value of the 

nominal threshold is computed in terms of the 

trainer set maximum disparity factor defined below. 

𝛾 = 1 − min
1≤𝑝.𝑞≤𝑄

(𝜆𝑝𝑞)                                                   (18). 

E{𝑇𝑀𝐹} = E { max
1≤𝑝≤𝑄

(𝑉𝑝)}                                              (19). 

Where, 𝛾 is the trainer set maximum disparity factor, 

and E{ 𝑥} denotes the expectation operator. 

E{𝑉𝑗} = ∫ 𝑣𝑓𝑉𝑗(𝑣) 𝑑𝑣
1

1−𝛾

 ;   1 ≤ 𝑗 ≤ 𝑄   (20). 

𝑓𝑉𝑗(𝑣) =
𝑑

𝑑𝑣
𝐹𝑉𝑗(𝑣)                                        (21). 

Where, 𝑓𝑉𝑗(𝑣), 𝐹𝑉𝑗(𝑣) denote, respectively, the 

probability density function (PDF) and the 

cumulative distribution function (CDF). 

𝐹𝑉𝑗(𝑣) = Pr{𝑉𝑗 ≤ 𝑣} = 1 − Pr{𝑉𝑗 > 𝑣}       (22). 

Pr{𝑉𝑗 > 𝑣} = ∏ Pr{𝜆𝑗𝑞 > 𝑣}

𝑄

𝑞=1,𝑞≠𝑗

              (23). 

Where, Pr{ 𝑥}, 𝚷 denote, respectively, the 

probability and product operators. To arrive at (23) 

one must assume that the mutual peak correlation 

between an arbitrary pair of trainers is independent 

of the peak correlations of those trainers with respect 

to a third trainer. It is further assumed that the peak 

correlation between two arbitrarily selected trainers 

is uniformly distributed. 

Pr{𝜆𝑗𝑞 > 𝑣} =
1 − 𝑣

𝛾
  1 − 𝛾 ≤ 𝑣 ≤ 1     (24). 

Substituting (24) in (23), and differentiating the 

resultant CDF of (22), one arrives at the following 

PDF expression. Substituting the resultant PDF in 

(20) leads to the expectation value given below. 

𝑓𝑉𝑝( 𝑣) =
𝑄 − 1

𝛾𝑄−1
(1 − 𝑣)𝑄−2; 1 − 𝛾 ≤ 𝑣 ≤ 1   (25). 

E{𝑉𝑝} = 1 − 𝛾 +
𝛾

𝑄
 ;  1 ≤ 𝑝 ≤ 𝑄              (26). 

Equation (26) gives the expected value of the 

minimum peak correlation of a typical trainer with 

respect to all the trainers of a certain class. 

Therefore, considering (19) the expected value of 

the MF threshold is expressed as follows. 

E{𝑇𝑀𝐹} = E{𝑊}   ∶ 𝑊 = max
1≤𝑝≤𝑄

(𝑉𝑝)                          (27).   

E{𝑊} = ∫ 𝑤𝑓𝑊(𝑤)𝑑𝑤 ∶   𝑓𝑊(𝑤) =
𝑑

𝑑𝑤
𝐹𝑊(𝑤)   (28).

1

1−𝛾

 

𝐹𝑊(𝑤) = Pr { max
1≤𝑝≤𝑄

(𝑉𝑝) ≤ 𝑤} =∏Pr{𝑉𝑝 ≤ 𝑤}   (29).

𝑄

𝑝=1

 

Pr{𝑉𝑝 ≤ 𝑤} = ∫ 𝑓𝑣𝑝(𝑣)𝑑𝑣                                         (30).

𝑤

1−𝛾

 

Substituting (25) in (30), after integration and 

subsequent substitution in (29), we arrive at the 

following CDF expression. 

F𝑊(𝑤) = [1 −
(1 − 𝑤)𝑄−1

𝛾𝑄−1
]

𝑄

                    (31). 

Differentiating (31) and substituting the result in 

(28), integrating by parts and simplifying, one 

arrives at the following. 

E{𝑊} = 1 − ∫ [1 −
(1 − 𝑤)𝑄−1

𝛾𝑄−1
]

𝑄

𝑑𝑤
1

1−𝛾

        (32). 

The closed-form analytical expression for the 

integral in (32) is give in Appendix B. Substituting 

from (32) in (27) leads to the following expression 

for the expected value of the MF threshold. 

E{𝑇𝑀𝐹} = 1 − 𝛾(𝑄 − 1)
𝑄∏(

𝑞

1 + (𝑄 − 1)𝑞
)

𝑄

𝑞=1

 (33). 

It is noted that the expected value of the MF 

threshold is a linearly decreasing function of the 
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trainer set disparity factor, and the slope is 

dependent on the number of trainers, which is an 

intuitively expected result. In the limit, as the 

number of trainers approaches infinity, the expected 

threshold is given below. 

lim
𝑄→∞

{𝑇𝐸𝑀𝐹} = 1 − 𝛾                                                   (34)- 

 

3.2 Expected Value of the Enhanced 

Matched Filter Threshold 

It is seen from (15) that, in general, the EMF 

threshold can be expressed as the ratio of two 

random variables as shown below. 

T𝐸𝑀𝐹 =
𝑋

𝑈
 , 𝑋 = min

1≤𝑝≤𝑄
{𝑉𝑝} , 𝑈 = √𝑊    (35𝑎). 

𝑉𝑝 = 1 +∑𝜆𝑝,𝑞

𝑄

𝑞=1
𝑞≠𝑝

,𝑊 = 𝑄 + 2 ∑ ∑𝜆𝑝,𝑞
2

𝑄

𝑝=1

      (35𝑏).

𝑄

𝑞=𝑝+1

 

Invoking the central limit theorem [56] the random 

variables 𝑉𝑃,𝑊 are approximated as normally 

distributed with means and standard deviations 

given below. 

𝑉𝑝 ∼ N( 𝑚𝑉𝑝 , 𝜎𝑉𝑝) ,  𝑊 ∼ N( 𝑚𝑊, 𝜎𝑊)   (36). 

𝑚𝑉𝑝 =
𝛾

2
+ (1 −

𝛾

2
)𝑄 , 𝜎𝑉𝑝 = 𝛾

√
(𝑄 − 1)

12
  (37𝑎). 

𝑚𝑊 = (1 −
𝛾

2
)𝑄2 +

𝛾𝑄

2
, 𝜎𝑊 = 𝛾√

𝑄(𝑄 − 1)

6
 (37𝑏). 

Where, as before 𝑄, 𝛾 are, respectively, the number 

of trainers and the trainer set maximum disparity 

factor, and N( 𝑚, 𝜎) denotes the normal distribution 

function. For typical parameter values associated 

with practical scenarios, i.e., 𝑄~10, 𝛾~0.5, it is seen 

from (37-b) that 𝑚𝑊 ≫ 𝜎𝑊. Using (35) and 

considering the foregoing observations one arrives 

at the following expression for the expected value of 

the EMF threshold. 

E{𝑇𝐸𝑀𝐹} ≅
E {min

𝑝
[𝑉𝑝]}

E{𝑈}
≅
E {min

𝑝
[𝑉𝑝]}

√𝑚𝑊

         (38). 

Where, 𝑚𝑊 is given in (37-b) and the computation 

of the numerator term in (38) proceeds as follows. 

E {min
𝑝
[𝑉𝑝]} = ∫ 𝑥𝑓𝑋(𝑥)

∞

−∞

𝑑𝑥                            (39𝑎).  

𝑋 = min
𝑝
[𝑉𝑝] ,   𝑓𝑋(𝑥) =

𝑑

𝑑𝑥
𝐹𝑋(𝑥)                   (39𝑏). 

𝐹𝑋( 𝑥) = 1 − Pr{𝑋 > 𝑥} = 1 −∏Pr{𝑉𝑝 > 𝑥}

𝑄

𝑝=1

 (40). 

Where, the mutual independence of samples of the 

random variable 𝑉𝑃 is implied. Using the normal 

distribution function of (36) for computing the 

probability terms in (40), substituting in (39) and 

simplifying, one arrives at the following. 

Pr{𝑉𝑝 > 𝑥} =
1

2
erfc (

𝑥 − 𝑚𝑉𝑝

√2𝜎𝑉𝑝
)             (41). 

𝑓𝑋(𝑥) =

=
𝑄

√2𝜋2𝑄−1𝜎𝑉𝑝
𝑒
−(
𝑥−𝑚𝑉𝑝

√2𝜎𝑉𝑝
)

2

[𝑒𝑟𝑓𝑐 (
𝑥 −𝑚𝑉𝑝

√2𝜎𝑉𝑝
)]

𝑄−1

 (42). 

Where, 𝑒𝑟𝑓𝑐( 𝑥) is the complementary error 

function. Substituting the PDF of (42) in (39), after 

simplification, one arrives at the following. 

E {min
𝑝
[𝑉𝑝]} = 𝑚𝑉𝑝 +

𝑄𝜎𝑉𝑝

2(𝑄−1)
 √
2

𝜋
 × … 

… ∫ 𝑦𝑒−𝑦
2
[𝑒𝑟𝑓𝑐(𝑦)](𝑄−1)𝑑𝑦            (43).

∞

−∞

 

The integral in (43), for 𝑄 = 1,2 can be evaluated 

exactly, and for 𝑄 ≥ 3 is approximated as follows. 

∫ 𝑦𝑒−𝑦
2
[𝑒𝑟𝑓𝑐(𝑦)](𝑄−1)𝑑𝑦 =

∞

−∞

 … 

…       

{
 

 
0                 ;             𝑄 = 1 

−
1

√2
                   ;      𝑄 = 2 

−∏ (2 −
0.45

√𝑞
)  ;   𝑄 ≥ 3

𝑄
𝑞=3

       (44). 

Substituting the expression of (44) in (43), and 

subsequent substitution of the result in (35), one 

arrives at the following closed-form expression for 

the expected value of the EMF threshold. 

𝐸{𝑇𝐸𝑀𝐹} ≅   

≅

(1 −
𝛾
2
)𝑄 +

𝛾
2
− 𝛾𝑄√

𝑄 − 1
24𝜋

∏ (1 −
0.225

√𝑄
)

𝑄
𝑞=3

√(1 −
𝛾
2
)𝑄2 +

𝛾𝑄
2

  (45). 

It is seen from (45) that the EMF threshold is related 

to the trainer set disparity factor non-linearly. This 

contrasts with the linear relationship between the 

MF threshold and 𝛾 as expressed in (33). In the limit, 

as the number of trainers approaches infinity, the 

expected value of the EMF threshold is given below. 

𝑙𝑖𝑚
𝑄→∞

E{𝑇𝐸𝑀𝐹} ≅ √1 −
𝛾

2
                      (46). 

It is instructive to compare the asymptotic 

expressions for the expected values of the thresholds 

of two types of correlation filters, namely, MF and 

EMF given by (34, 46). It is seen that the rate of 

descent of the EMF threshold, as the maximum 

trainer set disparity factor is increased, is much 

slower than that of the MF threshold. For any value 

of 𝛾 (0 < 𝛾 < 1), the expected value of the EMF 

threshold is greater than that of MF. This property is 

responsible for the EMF classifiers' lower false 

positive error than MF classifiers, for a prescribed 

level of false negative error. The numerical 

examples of the next section affirm this principle. 
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3.3 Analytical and Empirical 

Comparisons of Filter Thresholds  

In this section the expected values of the thresholds 

for two types of correlation filters, namely, MF and 

EMF, are assessed using the analytical formulations 

of the previous two sections and empirical 

techniques. The effects of two parameters, namely 

the number of trainers Q, and the trainer set 

maximum disparity factor on the thresholds are 

examined. Here, it is assumed that the peak 

correlations between pairs of randomly selected 

trainers are independent samples of the random 

variable uniformly distributed in [(1 − 𝛾), 1]. This 

assumption is made to permit closed-form analysis 

and direct comparison of the models, and its 

violation does not in any way negate the 

conclusions. 

The plots of Figure 1 show the effect of trainer set 

maximum disparity factor on the expected values of 

filter thresholds for MF and EMF, based on the 

analytical formulations provided by Equations (33, 

45). For each of the filters the threshold values are 

plotted for two settings of the number of training 

images. It is seen that for fixed  and Q, the 

expected value of TEMF exceeds that of TMF by a 

great margin. 

 
FIGURE 1: Effect of trainer set maximum disparity 

factor  on the expected values of filter thresholds for 

MF and EMF. Numbers in the caption denote number 

of trainers. 

The plots of Figure 2 show the effect of the number 

of trainers on the expected values of filter 

thresholds. For each filter type the threshold values 

are plotted for two settings of the trainer set 

maximum disparity factor . As before, for fixed 

and Q, the expected value of EMF threshold 

exceeds that of MF by a great margin. 

 
FIGURE 2: Effect of the number of trainers on the 

expected values of filter thresholds. Numbers in the 

caption denote trainer set maximum disparity factor 

. 

The plots of Figure 3 show the Monte Carlo based 

empirical data related to the effect of  on filter 

thresholds, with the number of trainers fixed at 

Q=50. For each  setting, one thousand 50 × 50 

correlation matrices were generated, such that each 

off-diagonal element is an independent sample of 

the uniform probability distribution in [(1- ), 1]. 
The true threshold values associated with each 

correlation matrix are computed using Equations 

(8,15). The minimum, maximum, and mean 

thresholds for MF and EMF across one-thousand 

trials are plotted in Figure 3.  

 
FIGURE 3: Filter thresholds versus trainer set 

maximum disparity factor . 

The plots of Figure 4 compare the expected values 

of the EMF threshold based on empirical and 

analytical formulation of Equations (15) and (45), 

respectively. It is noted that the analytical formula 

of Equation (45), which is based on the approximate 

closed-form formulation of the integral in (44), 

yields very accurate results. The plots of Figure 4 

show that the expression in (45), slightly 
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overestimates the true threshold for small values of 

Q, and it slightly underestimates the true threshold 

for larger values of Q. The first-order approximation 

used in (38) does not include the effect of the mutual 

correlation of random variables 𝑋, 𝑈 in (35), which 

partially accounts for the discrepancy between the 

analytical and simulated results of Figure 4. 

However, if one utilizes the third-order expansion of 

the 
𝑋

𝑈
 function in (35), and considers their mutual 

correlation coefficient and respective variance 

expressions, it will become clear that the 

approximation of (45) underestimates the true value 

of the threshold for large values of Q and 

overestimates the threshold for smaller values of Q.  

 

 
FIGUR 4: Expected EMF threshold versus maximum 

trainer set disparity factor . The solid line with dots 

is based on Monte Carlo simulations, and the dashed 

line is obtained from the analytical formula. Numbers 

at the top of plots denote trainer set populations. The 

horizontal axes represent maximum disparity factor. 

 

4. Comparisons of the MF and 

EMF Thresholds Using Synthetic 

Images 
To demonstrate the superior efficacy of EMF in 

comparison to MF, several simulations were 

conducted using computer generated virtual images. 

In the example of Figure 5, the set of target-class 

training images comprises nine randomly generated 

white rectangles of arbitrary dimensions and aspect 

ratios against black background. For each trainer, 

the dimensions of the black frame and the center 

coordinates of the white rectangle are chosen 

randomly. The trainers are shown on the left where 

the rightmost trainer in the top-row is the MF 

correlation filter with threshold TMF=0.4097 as 

determined by Equations (6-8). The image on the 

right shows the EMF correlation filter with threshold 

TEMF=0.6697, obtained in accordance with 

Equations (12, 15) of Section 2. It is noted that, in 

this example, the EMF threshold is substantially 

higher than the MF threshold. This means, for 

comparable false-negative error rates, the EMF has 

substantially lower false-positive error in 

comparison to the MF. 

 

 

FIGURE 5: Nine images on the left represent the 

trainer set. The MF template is the rightmost image in 

the top row. The image on the right is the EMF 

templet. 

Next, a geometric interpretation of the image 

hyperspace is presented to illustrate the relationship 

between the trainer set disparity factor and the filter 

thresholds for MF and EMF. A geometric 

interpretation of the effect of threshold on filter 

performance is also presented. Each image is 

envisaged as a point in the hyperspace of all possible 

images. The mutual disparity factor involving an 

image pair is expressed as 𝛿 = 1 − 𝜆 , where 𝛿 

denotes the mutual disparity factor or distance 

between the image pair and 𝜆 is the peak cross-

correlation between the two corresponding 

normalized images. The mutual disparity factor is 

akin to the Euclidean distance between two points 

representing the respective images in the image 

hyperspace. 

The hypersphere centered at the MF with radius (1-

TMF) in the image hyperspace has a much larger 

volume than that centered at the EMF with radius (1-

TEMF), since TMF is generally much smaller than the 

corresponding TEMF as seen from the examples of 

Figures 1-5. The larger volume surrounding the MF, 

inevitably, leads to higher probability of capturing 

non-target images, and therefore higher false-

positive error rate. The probabilities of capturing 

non-trained-on target class images, however, are 

comparable for two filters since both hyperspheres 

encompass all the trainers. In the example of Figure 

5 for instance, the hyperspheres centered at the MF 

and EMF, with corresponding radii, both capture all 

the nine trainers. This leads to comparable 

probabilities of false-negative errors for the MF and 

EMF. 

In the example of Figure 6 the number of trainers 

was varied from one to twenty-five. For each setting 

of the number of trainers, the white rectangles 

comprising the target-class training set of images 

were generated as before. The respective MF was 

identified, and the corresponding threshold was 

computed. The EMF was also synthesized from the 

trainers, and the corresponding threshold was 

computed. The maximum size of each image frames 

was set at 50 × 50-pixels. For each setting of the 

number of trainers, the simulation was repeated 
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twenty times, and the resulting threshold values, TMF 

and TEMF, were averages across all twenty trials. The 

plots of Figure 6 show the average threshold values 

for the resultant MF and EMF. It is seen that TEMF 

values are consistently and substantially higher than 

TMF values. This property, in general, leads to lower 

false-positive errors for the EMF in comparison to 

MF, for comparable false-negative errors.  

 
FIGURE 6: Comparison of MF and EMF thresholds. 

In the example of Figure 7, for each setting of the 

nominal number of trainers the number of randomly 

generated white rectangles is higher by one. The 

image whose minimum peak correlation with 

respect to all the generated images in the set is 

greatest (anchor/prototype image) is eliminated, and 

the remaining images constitute the training set. As 

before, the MF and EMF correlation filters and the 

respective thresholds are computed. The plots of 

Figure 7 show the comparison between threshold 

values of the two filters for each setting of the 

nominal number of trainers. It is seen that the 

advantage offered by the EMF in this case is even 

more striking than that of the example of Figure 6. 

This is a significant observation, since in practical 

scenarios only a limited number of target-class 

images are available for training the classifier. It is 

assumed that the large-scale target-class training set 

has been properly partitioned into compact clusters 

each comprised of a small number of images that 

form a cohesive volume in the image hyperspace. 

The circumscribing hypersphere in the hyperspace, 

that contains within its volume all the training 

images associated with a particular training cluster 

and has the smallest volume is the best filter for that 

zone of the hyperspace. Ideally, the trainers in that 

zone are distributed uniformly; the circumscribing 

hypersphere is the convex hall of the set; the 

correlation filter associated with MF constitutes the 

center of the hypersphere; and the MF threshold is 

equal to its radius. However, if the hyperspace 

distribution of the trainers is non-uniform, the 

circumscribing hypersphere is expected to have a 

larger volume than that of the convex hull. 

Formation of the trainer set by removing the 

prototype from the set of randomly generated 

images results in an image cluster whose center in 

the hyperspace does not coincide with a physical 

image. The MF, which in this case is the prototype 

image of the reduced set, is one of the remaining 

images in the cluster. The hypersphere which is 

centered at the MF and encases all the cluster images 

has a larger radius (lower threshold) than the 

previous case and therefore contains more non-

target entities. This, in general, will lead to higher 

false-positive error. Removal of the prototype from 

the pre-cluster set of images does not, in general, 

change the overall outline of the constellation in the 

hyperspace. Constructing the EMF from the reduced 

set, results in a synthetic image which, in general, is 

very similar to the EMF constructed from the 

original set of images in the cluster. In both cases the 

synthetic image representing the EMF would be at 

or very close to the center of the convex hull. The 

hypersphere radius (EMF threshold) is therefore 

insensitive to the removal of the prototype from the 

original image set. 

 
FIGURE 7: Thresholds of MF and EMF versus 

number of trainers. 

The example of Figure 8 further compares the MF 

and EMF thresholds for different number of trainers 

under realistic scenarios where the known target-

class images (trainers) may be obtained by 

nonuniform sampling of the target-class image 

hyperspace. For each setting of the number of target-

class images, first the images are generated 

randomly to form the raw image cluster. 

Subsequently, one image at a time is peeled off from 

the raw cluster to arrive at a reduced cluster. Each 

time, the image with the greatest minimum peak 

correlation with respect to all the remaining images 

(cluster prototype) is eliminated from the cluster. In 

the plots of Figure 8, the abscissa represents the 

number of eliminated images from the raw cluster to 

arrive at the actual trainer set, from which the MF 

and EMF are computed. The number next to each 

plot denotes the number of original images. The 

plots of Figure 8 illustrate the deleterious effect of 

the nonuniform sampling of the target-class image 

hyperspace for formation of the trainer set on the 

MF. It is also seen that this nonuniform sampling, 

which is to be expected in all practical scenarios, has 

virtually no effect on the EMF. 
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FIGURE 8: Effects of non-uniform sampling of the 

target class image hyperspace on MF and EMF 

thresholds. 

 

5. Comparison of the MF and EMF 

Performance Using Real Images 

The target and non-target classes in this section 

denote two user-specified sets of image masks 

stored in the Amsterdam Library of Object Images 

(ALOI), described in [57]. The database from which 

the training and test images are derived is in [58]. In 

the experiment of Figures 9-13, image masks 

associated with objects number-138 (blue car) and 

136 (purple car) in ALOI represent target and non-

target classes, respectively. Here, each class 

comprises seventy-one image masks associated with 

the respective object, obtained at uniformly spaced 

view angles five-degrees apart and identical ranges. 

Figure 9 shows samples associated with the target 

and non-target classes. Eight images were randomly 

selected from the target class to form the trainer set. 

The test set is comprised of 134 images, including 

71 non-target and the remaining 63 target class 

images. The training set was then utilized to select 

the appropriate MF and to synthesize the EMF in 

accordance with the procedures of Section 2. Each 

of the two filters were utilized to classify 134 

unlabeled test images. Correct classification 

(detection) and misclassification rates denote, 

respectively, the percentage of untrained-on target 

class test images that are correctly labeled, and the 

percentage of non-target class images that are 

erroneously labeled as target. 

This experiment was repeated one-hundred times, 

each time using eight randomly chosen target class 

images as the training set and the remaining 63 

target and 71 non-target class images as the test set. 

Figure 10 shows the receiver operating 

characteristic (ROC) plots for the MF and the EMF 

obtained by averaging across 100 trials of the 

experiment. The superior performance of the EMF 

in comparison to the MF is evident from the plots of 

Figure 10. The EMF achieves 93.65-percent correct 

classification with zero misclassification, whereas 

the MF achieves 42.86-percent detection at zero 

misclassification. At 100-percent detection, the 

EMF and MF have misclassification rates of, 

respectively, 0.52 and 7.54-percent. Figure 11 

shows the set of eight target-class trainers and the 

corresponding synthesized EMF associated with 

four different instantiations of the experiment. 

 
FIGUR 9: Top and bottom rows show four samples 

of, respectively, object-136 (purple car) and object-

138 (blue car) masks of the ALOI dataset.  

 
FIGURE 10: Comparison between MF and EMF 

performance. 

  

  
FIGURE 11: Four typical instantiations of the 100 

experiments. Each3 × 3-block shows eight trainers 

and the respective synthesized EMF shown in the 

lower-right corner of the block. 

The experiment was then repeated by reversing the 

target and non-target class designations. In the new 

experiment the image masks associated with objects 

number-136 and 138 represent target and non-target 

classes, respectively. As before, eight images were 

randomly selected from the target class to form the 
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trainer set. The test set is comprised of 134 images 

including 71 non-target and the remaining 63 target 

class images. The training set was then utilized to 

select the appropriate MF and to synthesize the 

EMF, which were subsequently utilized to classify 

the images in the test set. Figure 12 shows the ROC 

plots for two types of filters, obtained by averaging 

the corresponding filter performance across one-

hundred instantiations of the experiment. As 

expected, the EMF outperforms the MF by a great 

margin. Figure 13 shows the set of eight target-class 

trainers and the corresponding synthesized EMF 

associated with four instantiations of the 

experiment. 

 
FIGURE 12: Comparison between MF and EMF 

performance. 

  

  
FIGURE 13: Four typical instantiations of the 100 

experiments. Each3 × 3-block shows eight trainers 

and the respective synthesized EMF shown in the 

lower-right corner of the block. 

In the experiment of Figure 14 the classifier zone of 

effectiveness was restricted by designating the first 

35 purple-car image masks in ALOI as the target 

class universe. These are the masks corresponding 

to view angles between zero and 170-degrees. The 

training set of images consists of eight randomly 

selected samples from the 35 purple-car masks, and 

the test set comprises 98 images, including all 71 

blue-car and the remaining 27 purple-car masks. 

The ROC plots of Figure 14 show the performance 

of the MF and the EMF for this experiment. 

 
FIGURE 14: Comparison between the MF and the 

EMF performance. 

The plots of Figures 15 and 16 show filter thresholds 

for the MF and the EMF based on empirical data as 

well as the theoretical formulas of Section 3. In 

Figure 15, the objet-136 masks denote the target 

class, from which a user-prescribed number of 

images (Q) are randomly chosen to form the trainer 

set. For each value of Q, the experiment was 

repeated 200 times, TMF and TEMF were computed 

and were averaged across all trials. For each value 

of Q, the theoretical formulas of Section 3, 

Equations (33) and (45) with maximum disparity 

factor of =0.358, were also used to compute the 

expected values of MF and EMF thresholds. The 

maximum disparity factor is obtained by subtracting 

the minimum peak cross-correlation among 71 

object-136 images from one. In Figure 16, the 

object-55 masks denote the target class, for which 

the maximum disparity factor is =0.491. In both 

cases, it is seen that EMF threshold is substantially 

greater than the MF threshold. This is further 

confirmation of the analytical results of Section 3 

and the empirical results of Section 4, which was 

based on synthetically generated images. As the 

number of trainers is increased, the difference 

between empirical and theoretical values of TMF 

decreases, as expected. It is also seen that there is a 

discrepancy between theoretical and empirical TEMF 

values, which is attributable to the fact that spatially 

aligning all the trainers with respect to the anchor 

trainer does not guarantee pair-wise spatial 

alignment amongst all the trainers, as implied by 

Equation (15). 
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FIGURE 15: Comparisons between empirical and 

theoretical values of EMF and MF thresholds. 

 
FIGURE 16: Comparisons between empirical and 

theoretical values of EMF and MF thresholds. 

 

6. Comparison Between EMF and 

SDF Performance 

This section presents a concise performance 

comparison between two image classifiers based on 

the enhanced matched filter (EMF) of Section 2 and 

a synthetic discriminant function (SDF) proposed in 

reference [47]. The grayscale images of six ALOI 

objects [57, 58] were used as the basis of the training 

and test images for this experiment. The original 

database contains seventy-two 144 × 192 -pixel 

images of each object viewed at the same distance 

(range) and equally spaced view angles five degrees 

apart. Figure 17 shows six samples of each object 

viewed at sixty-degree increments. The original 

images were cropped to minimize the black 

background and were resized to 128 × 128-pixel. 

To synthesize the image bank for training and test 

images for this experiment, each image was 

subsequently rescaled to create five different range 

(distance) scales equally distributed between ten 

percent below and above the nominal range, thus 

creating 360 images of each object. 

Thirty images of one object consisting of six 

consecutive view angles, comprising a contiguous 

twenty-five- degree angular sector and five 

distances, constitute the target class set of images. 

Likewise, 1800 images of the five remaining objects 

represent the non-target class of images. Fifty 

percent of the target class images are randomly 

selected to form the training set of images, from 

which the EMF and the SDF filters are constructed. 

The remaining target class images are used as non-

trained-on target class test images. 

The synthesized EMF and SDF filters are used to 

assign a binary label, namely target or non-target, to 

each of the thirty test images consisting of fifteen 

non-trained-on target class and fifteen non-target 

class images, which are randomly selected from the 

1800-image non-target class image set described 

above. The assigned labels are subsequently 

compared to the actual class disposition of each test 

image. The detection and misclassification rates are, 

respectively, the percentage of target class test 

images that are correctly classified, and the 

percentage of non-target class test images that are 

erroneously classified as target class. 

The experiment described above was performed 

many times, each time using one of the ALOI 

objects of Figure 17 in a designated twenty-five-

degree angular sector as representing the target class 

and repeating the experiment multiple times by 

selecting different combinations of the target-class 

images as trainers, and the remaining as the non-

trained-on target class test images. The EMF and 

SDF filter performance results were averaged across 

all instantiations of the experiment. The experiments 

comprised choosing one ALOI object in a 

designated contiguous twenty-five-degree angular 

sector as target across all six objects and across 

many angular sectors. Figure 18 shows the 

performance results of the EMF and the SDF 

classifiers in the experiment described above. It is 

seen that in this experiment the SDF outperforms the 

EMF for low misclassification rates. However, the 

EMF achieves higher detections rates at lower 

misclassification rates compared to the SDF 

classifier. The performance of the MF, which is not 

shown here, was much inferior to both the EMF and 

the SDF. 

The set of experiments explained above was 

repeated, where in each instantiation of the 

experiment one-third of the target-class images were 

utilized as trainers and the remaining two-third as 

non-trained on target class test images. The 

performance results of the EMF and SDF classifiers 

for this experiment are also shown in Figure 18. It is 

shown that when the number of training images was 

reduced from fifteen to ten, the EMF clearly 

outperforms the SDF. 

The limited experimental results presented here 

show that in application areas where the number of 
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training images are small, and where deep learning 

convolutional neural network-based classifier 

solutions may not be viable, the EMF classifier 

could present a viable solution. 

 
FIGURE 17: Samples of ALOI images of objects-

136, 138, 148, 151, 154, 160 used for training and 

testing of image classifiers based on EMF and SDF.  

 
FIGURE 18: Comparison between EMF and SDF 

performance. Numbers in the legend denote number 

of training images in each instantiation of the 

experiment.  

 

7. Conclusions 

An efficient algorithm for the synthesis of an 

adaptive and robust distortion tolerant correlation 

filter for autonomous vision system applications has 

been presented. The enhanced matched filter (EMF) 

is obtained by pixel-wise addition of the 

appropriately compensated target class training set 

of images associated with the prescribed target states 

and view conditions. The EMF replaces the training 

set of images, for detecting and locating the target of 

interest in new sensor images, thereby reducing the 

operation phase memory requirement and 

computational complexity. The efficient 

construction mechanism allows the EMF to be 

adaptively improved as new episodes of the target of 

interest are detected, and this makes EMF unique 

among the wide array of distortion tolerant 

correlation filters reported in the literature. The 

mathematical formulas for computing the expected 

values of the EMF and the matched filter (MF) 

thresholds have been developed. Computed values 

of the EMF and the MF thresholds based on 

analytical formulas have been compared to 

empirical results. Performance comparisons 

between the EMF and MF using analytical 

formulations as well as synthetic and real images 

have been presented. Performance comparisons 

between the EMF and the SDF classifier have also 

been presented. 

Future work will include investigation of the effects 

of dynamic adaptation of the EMF and sensor noise 

on the filter performance. Development and 

implementation of algorithms for optimal 

partitioning of the large-scale training set of images 

into multiple smaller-scale clusters of trainers with 

constrained zones of effectiveness will also be 

investigated. A properly devised cluster of trainers 

fashioned from a larger trainer set characterizes the 

target of interest subject to constrained states and 

view conditions. The EMF based on a particular 

cluster of trainers has a zone of effectiveness which 

corresponds to the respective target states and view 

conditions. The zone of effectiveness of a suitably 

designed set of EMFs comprising multiple filters is 

equivalent to the target states and view conditions 

encompassed by the large-scale set of trainers.  
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Appendix A 

The enhanced matched filter and the corresponding 

threshold are computed in accordance with the 

procedure outlined below. 

Input: Training image set 𝑔𝑞(𝑚, 𝑛). 

Output: The EMF comprising the filter template and 

corresponding threshold ℎ𝐸𝑀𝐹(𝑚, 𝑛), 𝑇𝐸𝑀𝐹 . 

1. Normalize each trainer image such that for each 

image the sum of pixel intensities is zero and the 

sum of squares of pixel intensities is one. 

2. For the normalized images of step-one, obtain 

the peak cross correlations among all image 

pairs. Identify the anchor trainer. This is the 

normalized trainer with the greatest minimum 

peak cross-correlation with respect to all the 

other normalized trainers. If more than one such 

trainer exists, pick one of them randomly and 

designate it as the anchor trainer.  

3. Spatially shift each normalized trainer such that 

its peak cross correlation with respect to the 

anchor trainer is at pixel-(1,1) and renormalize 

the spatially shifted images in accordance with 

Step-1. 

4. Add all the spatially shifted trainers, including 

the anchor trainer, and renormalize to obtain 

ℎ𝐸𝑀𝐹 . 

5. The minimum peak cross correlation of the ℎ𝐸𝑀𝐹  

with respect to all normalized trainers is 𝑇𝐸𝑀𝐹  

 

Appendix B 

In the analysis of Section 3.2 the following integral 

is encountered. 

𝐼𝑁,𝑃 =  ∫ (1 − 𝑥𝑁)𝑃𝑑𝑥
1

0

                       (B-1). 

Where, N, P are positive integers. As far as the 

author can ascertain, the closed-form expression for 

the integral in (B-1) has not been listed in any of the 

standard integral tables. The integral can be 

evaluated in closed form as shown below. 

𝐼𝑁,𝑃 = ∫ (1 − 𝑥𝑁)𝑃−1𝑑𝑥
1

0

−∫𝑥𝑥𝑁−1(1 − 𝑥𝑁)𝑃−1𝑑𝑥

1

0

(B − 2). 

Applying integration by parts to the second integral 

in (B-2), after simplification, one arrives at the 

following. 

𝐼𝑁,𝑃 = ∫ (1 − 𝑥𝑁)𝑃−1𝑑𝑥 −
1

𝑃𝑁
𝐼𝑁,𝑃            (B − 3).

1

0

 

𝐼𝑁,𝑃 =
1

1 +
1
𝑁𝑃

  ∫(1 − 𝑥𝑁)𝑃−1𝑑𝑥                 (B − 4)

1

0

. 

𝐼𝑁,𝑃 =
𝑁𝑃

1 + 𝑁𝑃
 𝐼𝑁,(𝑃−1)                                      (B − 5). 

The reduction formula of (B-5) is repeatedly applied 

until one arrives at 
,1

I
N

 for the integral at the right-

hand side. This leads to a closed-form expression for 

the integral in (B-1). 

𝐼𝑁,1 = 
𝑁

𝑁 + 1
                                                             (B-6). 
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𝐼𝑁,𝑃 =
𝑁𝑃𝑃!

∏ (1 + 𝑝𝑁)𝑃
𝑝=1

                                             (B − 7).  
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