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Abstract: - A general purpose design code for interplanetary missions is presented. The code, based on the 
MatLab environment, allows to deal with both impulsive propulsion (using the patched conics approach) and 
low continuous thrust. In the latter case, the solver developed specifically for this program is based on an 
indirect method. More general standard solvers, based on direct methods, like the FALCON.m code can, 
however, be used. The present paper shows a comparison between different approaches and methods, to 
evaluate the reliability and accuracy of the proposed code in different applications, by using a number of 
examples. Finally, some extensions of the code, which are planned for the future, are mentioned. 
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1 Introduction 
To design an interplanetary mission, it is necessary 
to make some preliminary choices, some of them 
related to the duration of the mission and the launch 
window. Once the starting and arrival dates have 
been stated, the next step is to find a trajectory that 
satisfies the requirements of the mission (e.g. 
minimum-time trajectory, minimum-propellant 
trajectory, etc.). 

The computation of the trajectory can be 
performed at different accuracy levels: as an initial 
approximation, the planetary orbits may be assumed 
to be circular and coplanar and the problem may be 
modelled as a two-body problem; then, more 
accurate ephemerides of the solar system can be 
used and the presence of the various bodies of the 
solar system can be accounted for. To further 
improve the accuracy, other effects like the pressure 
of the solar radiation on the spacecraft can be also 
considered. 

The more simplified is the approach used, the 
greater is the number of alternatives which may 
realistically be considered: the study usually starts 
with very simplified computations to proceed 
towards more and more accurate solutions to refine 
the final design choices. 

Furthermore, the approach differs depending on 
the type of propulsion that is accounted for: while in 
the case of impulsive propulsion the ‘patched conics 
approach’ can be used and the trajectory can be 
solved in closed form, in the case of low-continuous 

thrust the trajectory cannot be obtained in closed 
form and it must be computed together with the 
thrust profile, resorting to optimization techniques. 

There are different approaches to solve an 
optimal control problem (the direct method, the 
indirect method or the stochastic methods) and 
sometimes they can be combined to obtain a more 
accurate solution. 

In general, the optimization procedure consists of 
defining the best control law, aiming at minimizing 
an objective (or cost) function, that could be the 
total speed increment ∆V required for the mission in 
case of impulsive propulsion or the propellant 
consumption in case of low-thrust missions. 

In the present paper, a general-purpose design 
code for interplanetary mission design is presented. 
The results are compared with the ones obtained 
from the optimal control software FALCON.m 
developed at the Institute of Flight System 
Dynamics of Munich [1]. In the current version of 
the tool, the numerical solver used by the latter is 
IPOPT (Interior Point OPTimizer) [2]. 
 
2 Problem Formulation 
As mentioned above, to design an optimal 
interplanetary mission means to find the best control 
law able to minimize an objective function and this 
objective function is strictly related to the type of 
propulsion system. 

In the case of impulsive propulsion, it is possible 
to use the square of the hyperbolic excess speed 
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needed to start the interplanetary travel, usually 
referred to as C3, or directly the total speed 
increment ∆V. 

Considering a low-thrust propulsion system, an 
additional choice needs to be made: is the specific 
impulse kept constant (CSI system) or is allowed to 
vary during the space travel to reduce the propellant 
consumption (VSI system)? The performance index 
can be expressed as: 
 � = 	� �	��																											�	�
 �for	CSI�	                   (1) 

 � = �� 	� ����																								�for	VSI��	�
                    (2) 

 
where � is the acceleration (i.e., the ratio between 
the thrust T and the spacecraft mass m) profile. 

It is possible to demonstrate that minimizing the 
cost function J means to minimize the propellant 
consumption. In fact J is strictly related to the 
parameter � by the following formula: 
 � = 	��� = ��/��                                               (3) 
 
where � is the specific mass of the generator. 

In the case of VSI, it is possible to show that 
minimizing γ leads also to a minimum value of the 
sum of the propellant and the generator mass, i.e. to 
a maximization of the payload. Consequently, for a 
low-thrust system the performance index can be 
written as: � = ����                                                                     (4) 

 
Further details are given in [3-8]. 

Once the propulsion system has been chosen and 
J has been stated, a graphical overview of the 
various alternatives can be obtained. The cost is 
computed as a function of the starting and arrival 
dates so that a reasonable trade-off can be reached. 
A contour plot of the surface J(Ts, Ta) can thus be 
plotted. 

As an alternative, instead of the arrival time Ta, it 
is possible to refer to the travel time T. 

A grid is stated in the (Ts, Ta) plane – or in the 
(Ts, T) plane –, and the cost is computed at each 
point of the grid. The contour plot of the surface so 
obtained is represented and the relevant design 
decisions can be taken. 

In the case of impulsive propulsion this contour 
plot is commonly called “pork-chop” plot [9] and an 
example is shown in Fig. 1:  the cost function is C3 
and the interplanetary travel is from Earth to Mars. 
The Ts interval is from August 2035 to December 
2038 (i.e. from 400 days before to 1200 days after 
the 2035 opposition) with an interval of 2 days (800 
values of Ts are thus considered). The T interval is 
between 40 and 600 days (280 values). As a 
consequence, the total number of missions that have 
been computed is 224.000 and the computer time on 
a Windows PC using a purposely written Matlab 
code is about 45 hours. The surface has 4 minima in 
the zone plotted, and the contour lines value of C3 
span from 12 to 1500 km2/s2; higher values are not 
reported. 

 

 
Fig. 1. Contour plot of the surface C3(Ts, T) for an Earth-Mars mission in the 2035 and 2037 launch opportunities. 
C3 is expressed in km2/s2. 
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The plot has been obtained computing the 

planetary orbits following the JPL ephemerides 
[10]. 

Identifying the zones around the minima is an 
important result. For instance, if a launch in the 
2035 opportunity (one of the most favourable) has 
to be performed, it is clear that the travel time 
allowing to perform the mission in the optimal 
conditions is about 200 days, but it is possible to 
reduce the travel time to about 160 days with a very 
small increase of cost: quite an important 
achievement. The following launch opportunity is 
much worse, both in terms of the possibility of 
reducing the travel time and in terms of cost. 

The contour plot C3(Ts, Ta), quite similar to that 
of the figure, is usually referred to as a ‘pork-chop 
plot’. 

The plot in the figure considers only the 
hyperbolic excess speed to start the interplanetary 
trajectory, and thus it is unique: no other plot for 
that span of Ts exist. However, it doesn’t tell the 
whole story, since the actual ∆V required for 
performing the mission is not considered. To 
consider the whole mission is possible, but several 
design choices must be stated in advance:  
• whether a direct launch is performed or, more 

likely, a parking orbit is used, 
• what are the relevant orbit parameter, 
• whether at the arrival an aerocapture or 

aerobraking manoeuvre is performed or, if an 

orbit insertion at arrival is stated, 
• what are the orbit parameters, etc.  

A total mission ∆V-plot can thus be obtained, but 
such a plot is not general and can be computed only 
after the mission has been already partially stated. 

The case of low thrust missions is more 
complicated, since the process to obtain the 
trajectory and the thrust profile is much more 
computationally intensive. A contour plot of the 
surface J(Ts, T) can nevertheless be obtained in a 
fairly straightforward way, through any of the 
indirect or direct methods currently used.  

A point which complicates the study in this case 
is that, when the whole mission is considered (orbit-
to-orbit computation, since low thrust devices 
cannot start from the planetary surface), the 
interplanetary phase of the travel is preceded by a 
spiral phase about the starting planet – and followed 
by one around the arrival planet if no aerodynamic 
manoeuvre is done. Since these phases have a 
duration which can be comparable with that of the 
interplanetary phase, the relative duration of the 
three phases must be optimized. The computation 
must thus start by computing the surface J(Ts, T) for 
the interplanetary cruise. The planetocentric phases 
must then be computed. And the two (or three) 
phases must be combined so that the orbit to orbit 
J(Ts, T) contour plot is obtained. 
 

 
Fig. 2.  Earth-Mars J-plot for the same starting date interval as that of Fig. 1 – NEP with an ideal thruster with no 
limitation to the specific impulse. The values of J are expressed in m2/s3. 
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An example of this orbit-to-orbit J

in Fig. 2. It deals with the same time intervals 
shown in Fig. 1 but this time the starting and arrival 
orbits have been stated. 

The plot has been computed assuming Nuclear 
Electric Propulsion (NEP) and an ide
no limitations on the specific impulse. The starting 
circular Earth orbit has an altitude of 800 km, and 
the arrival orbit about Mars is much elliptical, with a 
periareion at 320 km and an apoareion at 35,000 
km. 

The spiral phases to leave the starting planet and 
to approach the arrival ones should be optimized 
using specific codes. In the following, for these 
parts of the space travel, the assumption introduced 
by Edelbaum and based on the smallness of the 
angle between the tangent to the trajectory and the 
normal to the line connecting the spacecraft and the 
centre of the planet is used [6, 11-12]

The first difference between the two figures is 
that in Fig. 2 no closed contour lines exist, showing 
that the surface has no minima. The energy required 
for the mission decreases monotonically with 
increasing mission time, showing that it is possible 
to build very efficient slow cargo ships.
of the type reported above is obtained, a first choice 

Fig. 
 

The central part allows the user to ch
whether the spacecraft is propelled by an impulsive 

orbit J-plot is shown 
in Fig. 2. It deals with the same time intervals 
shown in Fig. 1 but this time the starting and arrival 

The plot has been computed assuming Nuclear 
Electric Propulsion (NEP) and an ideal thruster with 
no limitations on the specific impulse. The starting 
circular Earth orbit has an altitude of 800 km, and 
the arrival orbit about Mars is much elliptical, with a 
periareion at 320 km and an apoareion at 35,000 

the starting planet and 
to approach the arrival ones should be optimized 
using specific codes. In the following, for these 
parts of the space travel, the assumption introduced 
by Edelbaum and based on the smallness of the 

trajectory and the 
normal to the line connecting the spacecraft and the 

]. 
The first difference between the two figures is 

that in Fig. 2 no closed contour lines exist, showing 
energy required 

for the mission decreases monotonically with 
increasing mission time, showing that it is possible 
to build very efficient slow cargo ships. Once a plot 
of the type reported above is obtained, a first choice 

can be made regarding the startin
and the energy requirements of the mission. At this 
point it is possible to proceed to refine the study, by 
introducing the perturbations due to the other 
planets of the Solar systems (n
if needed, also the perturbati
of the light from the Sun.  

 
3 Implementation 
3.1  General code structure
The formulation described in section 2 was used to 
implement a code, based
environment, called IRMA (InteRplanetary Mission 
Analysis). To make the code more user friendly, it is 
provided of a number of Graph
(GUIs). The initial GUI is shown in Fig. 3.
upper left part allows the user to define the starting 
and the arrival planet and also, in the case of 
impulsive propulsion, a possible planet supplying 
gravity assist. The user can also chose whether the 
planetary orbits are assumed to be circular or 
elliptical, and in the latter case he must state the 
launch opportunity by supplying the year of the 
relevant planetary opposition.
 

Fig. 3.  Initial GUI of the MatLab IRMA code. 

The central part allows the user to choose 
whether the spacecraft is propelled by an impulsive 

of low thrust system and, in the second case, to 
choose between NEP, SEP 

can be made regarding the starting and arrival dates 
and the energy requirements of the mission. At this 
point it is possible to proceed to refine the study, by 
introducing the perturbations due to the other 
planets of the Solar systems (n-body problem) and, 
if needed, also the perturbation due to the pressure 

 

General code structure 
The formulation described in section 2 was used to 
implement a code, based on the MatLab 

, called IRMA (InteRplanetary Mission 
e code more user friendly, it is 

provided of a number of Graphic User Interfaces 
(GUIs). The initial GUI is shown in Fig. 3. The 

part allows the user to define the starting 
and the arrival planet and also, in the case of 

possible planet supplying 
gravity assist. The user can also chose whether the 

ts are assumed to be circular or 
elliptical, and in the latter case he must state the 
launch opportunity by supplying the year of the 
relevant planetary opposition. 

 

of low thrust system and, in the second case, to 
een NEP, SEP – and in this case it is 
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possible to state whether to account for the 
interruption of the thrust when the spacecraft is in 
the shadow of the planet during planetocentric 
phases – or solar sail. 

In addition, the user can decide to account for the 
limitations of the specific impulse due to the 
thrusters, and in this case also the specific mass of 
the generator must be stated. 

Finally, the lower part allows to choose between 
4 options: 
• Computing and plotting the maps. In this case a 

further GUI (shown in the figure immediately 
at the right of the previous one) is opened, 
allowing to choose the Ts and T intervals. In 
case of low thrust propulsion here only the 
interplanetary part of the mission is accounted 
for. 

• Studying a single mission. A new window is 
opened, to supply all the required data (not 
shown in the figure), like the exact starting 
date, the travel time, etc. Also here, only the 
interplanetary part of the mission is computed 
for low thrust propulsion. A GUI to supply the 
relevant starting and arrival data is shown at the 
right of the previous one. 

• Plotting the diagrams previously computed, 
tailoring the scales and the other graphical 
choices to suit the user’s choices (the relevant 
GUI is at the extreme right of the figure). 

• Computing the J-plot or studying a single 
mission, but taking into account also the 
planetocentric phases. The same window 
allows to compute the mission taking into 
account the general n-body problem. 

 
3.2 Some mathematical details 

The positions of the planets are obtained from 
the JPL ephemerides as described in [10]. The 
ephemerides are pre-computed, and then are loaded 
by the relevant routines when required. 

For the case of low thrust, the problem to be 
solved is finding the elliptical orbit, passing through 
points r₁ and r₂ (obtained from the ephemerides) in 
two instants separated by time T. It is a well known 
mathematical problem, known as the Gauss 
problem. It involves the solution of a nonlinear set 
of equations and here the approach based on the 
Newton-Raphson technique for solving nonlinear 
equations described by Shefer [13] is used. 

If the trajectory includes a gravity assist 
manoeuvre, the interplanetary journey is subdivided 
into two parts, and a number of solutions obtained 
with different flyby times are computed. Then for 
each one of them the hyperbolic excess speed when 
starting and ending the flyby are computed, and the 

solution in which the two velocities are equal is 
chosen. This doesn’t allow to compute motorized 
flybys, but this is considered a small drawback. 

In case of low continuous thrust, the indirect 
method described in [11] is used. The specific 
impulse is assumed as variable, at first with no 
limitations. The state space formulation of the 
problem, based on 12 first order ODEs is: 

"#
##
##
##
#$
##
##
##
##
%&'( = − *+

��+� + -� + .��/ + 0( 12�+� + -� + .�

&'3 = − *-
��+� + -� + .��/ + 03 12�+� + -� + .�

&'4 = − *.
��+� + -� + .��/ + 04 12�+� + -� + .�

&'5( = −* 0(�−2+� + -� + .�� − 303+- − 304+.��+� + -� + .��8
&'53 = −*−30(+- + 03�+� − 2-� + .�� − 304-.��+� + -� + .��8
&'54 = −*−30(+. − 303-. + 04�+� + -� − 2.��

��+� + -� + .��8

9													 

"#
##
#$
##
##
%+' = &(
-' = &3
.' = &4
0'( = &5(
0'3 = &53
0'4 = &54				.

9    (5) 

where in case of NEP q is the ratio between the 
thrust and the mass of the spacecraft, while in case 
of SEP 

( )ERfm /

1

r
T

q = . (6) 

and f(|r|/ RE) is a function expressing the decrease 
of the power supplied by the solar arrays with 
increasing distance from the Sun. 

In the simplest case the power decreases with the 
square of the distance, but more elaborate laws 
aimed at accounting for the increase of the 
efficiency of the solar arrays with the increase of the 
distance from the Sun – due to the decrease of the 
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temperature – can be found in the literature [14-16]. 
Once the boundary conditions on position and 

velocity are stated, an initial approximated solution 
is computed to start the iteration procedure solved 
by the BVP5C Matlab routine, based on the four-
stage Lobatto IIIa formula and implemented as an 
implicit Runge-Kutta formula [17]. 

The objective function to minimize is given by  

� = 	12< 0���	�1
�0

. (7) 
 

If an upper limit on the specific impulse is set, 
the following assumption is made: the available 
power increases and it is maintained at his 
maximum value until the specific impulse exceeds 
the upper limit. At this point the specific impulse 
remains constant and the power decreases to 
maintain the thrust at the same value as it would 
have been obtained if no limitations were present. 

This implies that no coast arcs are introduced 
(the thruster is never switched off) but at the same 
time the operations are made not at the optimal 
power level. Operating in this way a non-optimal 
solution is obtained, but one which is often quite 
close to the optimal one. 

To show how much the present solver allows to 
obtain results close to the optimal one in the various 
cases, in the following examples the results 
obtained using the IRMA solver are compared with 
the optimal results obtained by the FALCON.m 
code.  

In particular, FALCON.m uses direct 
discretization methods combined with gradient 
based numerical optimization and automatic 
analytic differentiation to solve the problem. The 
numerical optimization algorithm is provided by 
IPOPT. The formulation of the problem is different 
in case of unlimited and limited specific impulse.  

In both cases the chosen performance index to 
minimize is � = 	���� , but in the first case the 

problem consists of finding the optimal control law 
for the control vector > = ?0(, 03, 04A (the same 
performed by IRMA) while in the latter case the 
control vector is given by > = [C, DE�]. 

Further mathematical details are given in [18-
19]. 

It is important to remark that if the simplified 
assumption made by IRMA is introduced, the term 
J looses the meaning of performance index. In fact, 
once the thrust law that is optimal for the unlimited 
operations has been obtained, the goal of the 
computation is to find a new value of the power and 

a new value of the parameter J that is proportional 
to the propellant consumption able to maintain the 
desired thrust profile. 
 
4 Examples 
4.2 Long-stay mission to Mars 

Consider a long-stay mission to Mars performed 
in the 2037-2040 launch opportunities with 
chemical propulsion. It is a minimal mission, with 
aero-braking both at the arrival to Mars and at the 
return to Earth, similar to that described in the 
NASA reference architecture 5.0 [20]. 

The pork-chop plots and the dates for the 
forward and backward journeys, looking for a 
compromise between minimum energy and short 
travel time, are first obtained. The ‘best’ choices are 
reported in Tab. 1. 

 
Tab. 1. Long-stay Mars mission. Starting times of the 
outbound and inbound travel (in days, referred to the 
opposition), and corresponding values of C3 (in 
km2/s2), and ∆∆∆∆V (in m/s). 
 

 Ts T C3 ∆V 
Outbound -84 175 17.97 3,976.5 
Inbound -148 193 16.54 1,713.6 
 
The starting orbit is a LEO at 400 km altitude, 

while the orbit around Mars is a highly elliptical 
orbit with a periareion an 320 km and an apoareion 
at 34,000 km. 

 
 

Fig. 4. Trajectories for the outbound and the inbound 
legs of the mission.  
 

The trajectories are reported in Fig. 4. Assuming 
it is a split mission (the cargo and the return vehicle 
are sent separately from the crew), the mass budget 
of the crew ship and the return ship are reported in 
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Tab. 2. The values were computed using the ∆V 
reported in Tab. 1, assuming cryogenic propellants. 
 
Tab. 2. Mass budget of the crew ship and the return 
ship (in t).  
 
 Dry+payload Propellant Total 
Outbound 16 24.2 40.2 
Inbound 18 8.8 26.8 

 
From Tab. 1 it is clear that the 2037 launch 

opportunity is not a very favourable one (much 
worse than the 2035 launch opportunity, but better 
than the 2040 one). The results obtained are similar 
but not identical to those reported in [20], owing to 
some different design choices. 
 
4.2 NEP Long-stay mission to Mars 

Consider now a mission similar to the previous 
one, but performed using Nuclear Electric 
Propulsion. (NEP). The electric thrusters are 
assumed to be of the VASIMR type [21], fed with 
liquid argon. The maximum specific impulse is 
assumed to be 8000 s. 

The overall efficiency of the thrusters plus the 
power conditioning is assumed to be 0.6, so that the 
effective value of the specific mass of the generator 
is α = 10 kg/kW (that of the generator alone is 6 
kg/kW, a fairly optimistic value, but one that can be 
assumed for a not too far future).  

The ship starts from an 800 km Earth orbit and at 
arrival it enters in an elliptical Mars orbit of the 
same type than that seen in the previous example. 
All manoeuvres are performed using the electric 
thrusters, and the only aerodynamic manoeuvres are 
the Entry, Descent and Landing (EDL). 

First the J-plots for both the outbound and the 
inbound travels are plotted, and then the 
computation is repeated to take into account the 
spiral planetocentric parts of the trajectory. A trade-
off between the value of J and the travel duration is 
performed, assuming a total travel time of 190 days 
for the outbound and 210 days for the inbound. The 
results are reported in Tab. 3. 

 
Tab. 3. Long-stay NEP Mars mission. Dates of the 
outbound and inbound travel (in days) referred to the 
2037 opposition, and corresponding values of J, 
expressed in m2/s3. Also the ratio between the 
propellant mass and the initial mass is reported. 
 

 Ts T J mp/mi 
Outbound -78 190 24.694 0.497 
Inbound -99 210 21.388 0.462 

The trajectories are reported in Fig. 5, together 
with the dates of the various parts of the journey. 

The computations were performed using IRMA. 
If some limitations on the admissible values of 

the specific impulse are introduced, a bang-bang 
control law arises from the optimal control theory 
and a coasting part of the trajectory is so introduced. 

Nevertheless, in IRMA it is possible to approximate 
the optimal solution with a sub-optimal one assuming 
that the thrust is kept at the same values computed in 
the case of unlimited specific impulse, by increasing 
the maximum power available and by reducing it 
when the specific impulse exceeds the admissible 
values without ever switching off the thruster. 

The results so obtained are are reported in Tab. 4 
and are compared with the optimal ones computed 
using the FALCON.m and the comparison is done 
on the interplanetary part of the trajectory, assuming 
Is max = 8000 s. 

The time histories of the acceleration, the 
specific impulse, the thrust and the exhaust power 
are plotted in Fig.6 and Fig.7. 

From Tab. 4, it is clear that, in the case of 
unlimited specific impulse, the solution found by 
IRMA is ‘more optimal’ than that found by 
FALCON.m by 2.7% in the outbound journey, 
while is ‘less optimal’ by 2.56% in the return 
journey. Clearly this must be attributed to the 
approximations with which both codes obtain the 
optimal solution. 

 

 
Fig. 5. Trajectories for the outbound and the inbound 
legs of the mission.  

 
The strategy used by IRMA (reducing the power) 

cause an increase of propellant by 1.92% against the 
0.97% obtained from strategy used by FALCON.m 
(switching of the thruster) in the outbound travel. 
The same values are 1.83% and 0.77% in the return 
journey. The difference is quite small, particularly if 
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it is considered that the limitation of the specific 
impulse affects almost half of the travel time. 

 
Tab. 4. Long stay NEP Mars mission. Comparison 
with FALCON.m results for unlimited specific 
impulse mission (mp/mi*) and limited specific impulse 
mission (mp/mi). 
 
 Outbound Inbound 
 mp/mi * mp/mi mp/mi *  mp/mi 
IRMA 0.3483 0.3550 0.3439 0.3502 
FALCON.m 0.3576 0.3611 0.3351 0.3377 
ε (%) ─2.67 ─1.72 2.56 3.57 

 

 
Fig. 6. Comparison of the results obtained from 
IRMA and FALCON.m. Time histories of a): 
acceleration, b): specific impulse, c): thrust, d): 
exhaust power. 

 

 
Fig. 7. Same as Fig. 6 , but for the return journey 
 
It must be expressly noted that in both cases 

parameter  J cannot be any more computed using 
Eq. (2), while retaining the meaning of a parameter 
proportional to the square of mp/mi.  
 
4.3 NEP very fast space ship to Mars 

Consider a fast spacecraft used to carry people to 
Mars. Assume that a very advanced technology is 
available, likely a fusion nuclear generator and a 
variable specific impulse thruster capable of a very 

high value specific impulse (the former is not of 
great use without the second).  

The specific mass of the generator is assumed to 
be α=0.014 kg/kW =14×10⁻⁶ kg/W, a value that at 
present belongs more to science fiction than to 
actual possibilities. This example is shown to state 
that very fast interplanetary journeys do not require 
questionable breakthrough like warp drives or 
propellantless propulsion, but simply a gradual 
development of present technologies. This value of 
α requires new materials and technologies, but not 
unpredictable theoretical developments. 

Also the electric thrusters are assumed to be 
more developed than present ones, having an 
improved efficiency η = 0.7, and a higher maximum 
specific impulse Is max = 15,000 s. The overall 
specific mass is thus α = 0.02 kg/kW.  

The passenger ship starts from an 800 km LEO, 
and arrive in an equally circular 300 km LMO. 

The launch opportunity is assumed to be that of 
2069 and the total travel time is 40 days. The 
optimal durations of the various phases of the Earth-
Mars journey are: 

• First phase: T1 = 0.7 days, J1 = 264.0 m2/s3  
• Second phase: T2 = 39 days, J2 = 6713.2 m2/s3  
• Third phase: T3 = 0.3 days, J3 = 92.9 m2/s3  
• Total: T = 40 days, J = 7070.1 m2/s3, γ = 0.376. 

The trajectory is reported in Fig. 8. 
The values of J and of the propellant, generator 

and propellant+generator mass fractions are reported 
in Tab. 5, computed only with reference to the 
interplanetary part of the journey (owing to the very 
fast transfer, the planetocentric parts are almost 
negligible in comparison with the interplanetary part) 

If there is no limitation to the specific impulse, 
the results obtained using the two solvers are almost 
coincident.  

On the contrary, if the specific impulse is limited 
to 15,000 s the two strategies yield quite different 
results. The strategy used by the IRMA solver, 
reducing the power while maintaining always the 
thruster on, leads to a larger propellant consumption. 
The strategy used by the FALCON.m solver, is much 
more convenient for what the propellant 
consumption is concerned: the value of γ is almost 
halved. 

As shown in Fig. 9, where the time history of the 
acceleration, the specific impulse, the thrust and the 
exhaust power are plotted, the strategy used in 
FALCON.m leads to quite short propulsive phases at 
the beginning and at the end of the interplanetary 
transfer, with a very long coast phase between them. 
In a way, it is possible to state that the bang-bang 
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strategy tends to a sort of impulsive strategy. As 
obvious, the propellant fraction is much smaller, but 
the generator mass is higher. The total of the two is 
anyway smaller, since the FALCON.m strategy 
yields an optimal solution. 

 

 
Fig. 8. [Trajectory of an extremely fast NEP spaceship 
covering the Earth-Mars distance in 47 days in the 
2050 launch opportunity.] 

 
Tab. 5. Very fast NEP Mars spacecraft: comparison 
between the values of J and mass breakdown (referred 
to the interplanetary cruise only), computed using 
IRMA and FALCON.m. 

 
  Is unlimited Ismax =15,000 s 

IR
M

A
 J (m2/s3) 867.52 6713.18 

γ = mp/mi 0.1317 0.3664 
mw/mi 0.1144 0.0396 
(mp+mw)/mi 0.2461 0.4060 

F
A

LC
O

N
.m

 J (m2/s3) 867.8 3920.0 
γ = mp/mi 0.1317 0.2800 
mw/mi 0.1144 0.0804 
(mp+mw)/mi 0.2461 0.3601 

 
In this case, other considerations, not linked with 

the optimization, may be important in the choice. For 
instance, the propellant is much cheaper than the 
generator, and this may suggest to use a strategy 
involving a lower power. Considerations about the 
life of the thruster and the possible need of en-route 
maintenance may suggest to use a bang-bang strategy 
with long coasting arcs. 

With both strategies, the journey is performed 
always in constant specific impulse conditions, since 
the optimal specific impulse is much higher than that 
allowed by the thruster. If it were possible to travel in 
optimal specific impulse conditions, J2 would have 
been less almost an order of magnitude smaller: 
867.5 m2/s3. 

This is a demonstration of the fact that if the 
generator has an outstanding performance, also the 
thruster must be much more advanced. 

Also the planetocentric phases need to be 
computed with a more accurate optimization method: 
the thrust is too high for the simplifications here 
accepted to yield a sufficient precision. At any rate, 
even in these conditions, the fuel consumption is 
extremely low. 

A total payload of 40 t is assumed, including the 
transit habitat and the crew. The spacecraft will 
consist of the transit habitat, and one propulsion unit 
made of a generator, the plasma thrusters, and the 
propellant (liquid argon) tank. 

The optimal mass breakdown, taking into 
account the whole journey, planetocentric parts 
included, is the following: 

 
 IRMA FALCON.m 
Payload+structure mass 40 t 40 t 
Initial mass 68.44 t 63.75 t 
Propellant mass 25.73 t 18.64 t 
Power generator mass 2.71 t 5.11 t  
Power of the generator 0.194 GW 0.365 GW 

 

 
Fig. 9. Comparison of the results obtained from 
IRMA and FALCON.m. Time histories of a): 
acceleration, b): Specific impulse, c). Thrust, d): 
exhaust power. 

 
No propellant for the return journey is 

considered, since it is assumed to be carried to Mars 
by a cargo ship, or to be produced on the planet. 

The vehicle can be sent to LEO assembled and 
fuelled by a single heavy lift launcher. 
 
4.4 NEP probe to Pluto 

Consider finally a robotic probe, which has to 
enter a low orbit around Pluto to deliver a lander 
(and possibly a rover) on that dwarf planet. 

A launch opportunity to Pluto occurs almost 
every year, but there is much difference from one 
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opportunity and another one due to the very 
elliptical and inclined orbit of Pluto. In this example 
the launch opportunity of 2060 is considered. 

The performance of the generator and the 
thruster are summarized as:  
• αgen = 3.5 kg/kW 
• η = 0.7 
• Is max = 10,000 s 
• α = 5 kg/kW.  

The durations of the 3 phases and the values of J 
are: 

• First phase: T1 = 77.5 days, J1 = 3.593 m2/s3  
• Second phase: T2 = 2166.5 days, J2 = 79.34 m2/s3  
• Third phase: T3 = 5.9 days, J3 = 0.304 m2/s3  
• Total: T = 2250 days, J  = 83.237 m2/s3, γ = 0.645 

The journey is performed almost always in 
constant specific impulse conditions, since the 
optimal specific impulse is much higher than that 

allowed by the thruster. If it were possible to travel in 
optimal specific impulse conditions, J2 would have 
been less than half: 34.115 m2/s3. 

The results concerning the interplanetary travel 
are shown in Tab 6. 

Assuming a dry plus payload mass of 10 t, the 
propellant mass would be 51.41 t, the generator 
mass of 18.22 t, for a total mass of 79.63 t. 

The projection of the trajectory on the ecliptic 
plane is plotted in Fig. 10 (the trajectory actually 
departs much from the ecliptic plane, due to the 
inclination of Pluto orbit). 

In case of unlimited specific impulse the results 
are very close to each other. In case of limited 
specific impulse, the strategy of reducing the power 
seems to be more convenient than that of switching 
it off altogether.  

 

Fig. 10. Trajectory for the Pluto NEP probe. A): overall trajectory, b): trajectory close to Earth, c) Trajectory close 
to Neptune (note the approximations in the graphic representation). 
 

This can be attributed to the fact that, as shown 
below, the FALCON.m solver finds a solution in 
which there are two coasting arcs, with a powered 
phase in between them. Further investigations 
should be performed to see whether this is actually a 

global minimum (and the results obtained by IRMA 
suggest this is not the case) or just a local minimum. 

The time history of the acceleration and of the 
specific impulse during the interplanetary phase are 
plotted in Fig.11. 
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With a reasonable value of α  it is thus possible 
to put a satellite in orbit around Pluto (and to land a 

rover on the planet) in just slightly more than 6 
years, with a single launch of a heavy-lift rocket. 

 
Tab. 6. NEP probe to Pluto: comparison between the 
values of J and mass breakdown (referred to the 
interplanetary cruise only), computed using IRMA 
and FALCON.m. 

 
  Is unlimited Ismax =10,000 s 

IR
M

A
 J (m2/s3) 34.115 79.34 

γ = mp/mi 0.413 0.6298 
mw/mi 0.2424 0.1697 
(mp+mw)/mi 0.6554 0.7995 

F
A

L
C

O
N

.m
 J (m2/s3) 33.5229 104.083 

γ = mp/mi 0.4094 0.7214 
mw/mi 0.2418 0.1692 

(mp+mw)/mi 0.6512 0.8907 

 

 
Fig. 11. Comparison of the results obtained from 
IRMA and FALCON.m. Time histories of a): 
acceleration and b): Specific impulse. 
 

The optimal mass breakdown, taking into 
account the whole journey, planetocentric parts 
included, is the following: 

 
 IRMA FALCON.m 
Payload+structure mass 10 t 10 t 
Initial mass 53.97 t 105.49 t 
Propellant mass 34.81 t 77.64 t 
Power generator mass 9.16 t 17.85 t  
Power of the generator 2.61 MW 5.10 MW 
 
5 Future developments of the code 

The IRMA code is a part of a self-funded, long 
term project at the Mechanical and Aerospace 
Engineering Dept. of Politecnico di Torino. 

The following additions are being implemented 
(some of them are already running in a preliminary 
form): 

• Including propellantless propulsion. The cost 
parameter will be a parameter related to the mass 
of the propulsion system. For solar sails the sail 
area can be used, while for other, hypothetical, 
devices which use power to produce the thrust, it 
will include also the mass of the power 
generator. 

• Implementing an utility to optimize two-ways 
travels, performed within a single launch 
opportunity, like short stay missions to Mars. 
This utility has already been implemented as a 
stand-alone code [22], and it will be soon 
integrated into IRMA. 

• Going beyond the 2-body problem. This will be 
active only in the Single Mission or the Total 
Mission mode, since it would increase too much 
the computer time to perform the computation of 
a contour diagram. 

• Including the perturbation to the trajectory due to 
the light pressure of the Sun. Since it is a small 
perturbation, it makes sense only if accounted for 
together with the presence of the gravitational 
attraction of many planets, and thus it will be 
available only in the same modes of the previous 
point. 

• Implementation of the possibility of using a 
bang-bang strategy in all the computations 
performed by the code, and not only when 
computing single missions. This will be done by 
allowing to use the FALCON.m solver in any 
stage of the computation.  

• Implementing an utility for computing directly 
the time included between two dates, to convert 
dates from Gregorian to Julian calendar or to a 
Martian calendar (or viceversa). 
Other developments will be included if the users 

of the code will suggest further aspects of the design 
of interplanetary missions worth being included. 
 
5 Conclusion 
The present paper describes the IRMA 
(InteRplanetary Mission Analysis) code developed 
by the authors. Its first aim is obtaining the contour 
plot of a suitable cost function (which depends on 
the propulsion type) as a function of the starting 
date and the travel duration. This plot allows to 
chose the starting and arrival time representing the 
best compromise between the journey duration and 
its cost. 

Once the interplanetary part of the travel has 
been studied, the planetocentric departure and 
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arrival phases can be included in the computation, 
so that an orbit-to-orbit analysis can be performed. 

Finally, a detailed analysis of the chosen journey 
can be obtained and later refined abandoning the 
two-body approximation and including further 
effects like the Sun light pressure. 

The code has an internal solver, based on the 
Newton-Raphson method for impulsive thrust and 
on an indirect method for low thrust, but can resort 
also to external solvers, like the FALCON.m code 
based on a direct method. A comparison between 
different approaches and methods, can thus be 
made, to evaluate the reliability and accuracy of the 
various approaches in different applications.  
 
References: 
[1] M. Rieck, M. Bittner, B. Grüter, and J. Diepolder. 

FALCON.m User Guide. Institute of Flight System 
Dynamics, Technical University of Munich, 2016. 
url: www.falcon-m.com. 

[2] A. Wächter and L. T. Biegler. On the  Implementation 
of a Primal-Dual Interior Point Filter Line Search 
Algorithm for Large-Scale Nonlinear Programming. 
In: Mathematical Programming Vol. 106. No. 1 
(2006) 

[3] S. Kemble, Interplanetary mission analysis and 
design, Springer Science & Business Media, 2006. 

[4] J. Z. Ben-Asher. Optimal Control Theory  with 
Aerospace Applications, AIAA Education Series. 
Reston, VA, USA: American Institute of 
Aeronautics and Astronautics, 2010. isbn: 978-
1600867323. 

[5] J. T. Betts. Practical Methods for Optimal Control 
and Estimation Using Nonlinear Programming. 
Second edition, Advances in Design and Control. 
Philadelphia: SIAM, Society for Industrial and 
Applied Mathematics, 2009. 

[6] P. Marec, Optimal Space Trajectories, Elsevier, 
New York, 1979 

[7 ] Langmuir, D. B. (1959). Low-thrust flight: Constant 
exhaust velocity, in field-free space. Space 
technology. 

[8] Irving, J. H. (1959). Low thrust flight: variable 
exhaust velocity, in gravitational fields. Space 
Technology, 10. 

[9] G. R. Hintz, Orbital mechanics and astrodynamics: 
techniques and tools for space missions,. Springer, 
2015. 

[10] E. M. Standish, The JPL planetary and lunar 
ephemerides, DE402/LE402. In Bulletin of the 
American Astronomical Society (Vol. 27, p. 1203), 
1995. 

[11] P.W. Keaton, Low Thrust Rocket Trajectories, LA-
10625-MS, Los Alamos, 2002. 

[12] G. Genta, P. F. Maffione, Low Thrust Interplanetary 
Transfers: Second Approximation Computation of 
Planetocentric Phases, Advances in Aerospace 
Science and technology, CSA,  

[13] A. Shefer, New method of Orbit Determination from 
Two Position Vectors Based on Solving Gauss's 
Equations, Solar System Research, Vol. 44, No. 3, 
pp. 252-266. 

[14] C. Circi, Mars and Mercury missions using solar 

sails and solar electric propulsion, Journal of 
Guidance, Control, and Dynamics, Vol. 27(3), 
2004, pp. 496--498. 

[15] S. N. Williams and V. L. Coverstone-Carroll 
Benefits of solar electric propulsion for the next 

generation of planetary exploration missions, The 
Journal of the Astronautical Sciences, Vol. 45(2), 
1997, pp. 143--160. 

[16] M. Kim, Continuous Low-Thrust Trajectory 

Optimization: Techniques and Applications, 
Virginia Polytechnic Institute and State 
University,Blacksburg, Virginia, 2005.1 

[17] Shampine, L.F., M.W. Reichelt, and J. Kierzenka, 
Solving Boundary Value Problems for Ordinary 
Differential Equations in MATLAB with bvp4c, 
http://www.mathworks.com/bvp_tutorial. 

[18] Mengali, G., & Quarta, A. A. (2005). Fuel-optimal, 
power-limited rendezvous with variable thruster 
efficiency, Journal of Guidance, Control, and 
Dynamics, 28(6), 1194-1199. 

[19] Casalino, L., Colasurdo, G. Optimization of 
variable-specific-impulse interplanetary trajecto-
ries, Journal of Guidance Control and Dynamics, 
27(4), 678-684, 2004. 

[20] B.G. Drake ed., Mars Architecture Steering Group, 
Human Exploration of Mars, Design Reference 
Architecture 5.0 (and addendums), NASA Johnson 
Space Center, 2009. 

[21] Diaz, F. R. C.(2000). The VASIMR rocket, Scientific 
American, 283(5), 90-97. 

[22] G. Genta, P. F. Maffione, Fast Human Mars 
Missions: what are the actual requirements, 10th 
IAA Symposium on the Future of Space 
Exploration: Towards the Moon Village and 
Beyond, Torino, June 2017. 

[23] J. D. Anderson. Fundamentals of Aerodynamics, 
Fifth edition. McGraw-Hill Series in Aeronautical 
and Aerospace Engineering. New York: McGraw-
Hill, 2011. 

[24] G. Genta, Next Stop Mars: The Why, How and When 
of Human Missions, Springer, New York, 2017. 

[25] G. Genta, P. F. Maffione, Sub-optimal Low-thrust 
Trajectories for Human Mars Exploration, Atti dell’ 
Accademia delle Scienze di Torino, Memorie Sc. 
Fis, 38-39 (2014-2015), pp 87-126. 

[26] G. Genta, P. F. Maffione, Optimal Low-Thrust 
Trajectories for Nuclear and Solar Electric 
Propulsion, Acta Astronautica, Vol. 118, p. 251-
261, 2016. 

[27] G. Genta, P. F. Maffione, Fast low thrust 
trajectories for the exploration of the outer solar 
system, 9th IAA Symposium on The Future of 

Giancarlo Genta, P. Federica Maffione
International Journal of Signal Processing 

http://iaras.org/iaras/journals/ijsp

ISSN: 2367-8984 65 Volume 2, 2017



Space Exploration: Towards New Global 
Programmes, Torino, July, 2015. 

[28] G. Genta, P. F. Maffione, Quick interplanetary 
trajectories in presence of a space elevator, 9th IAA 
Symposium on The Future of Space Exploration: 
Towards New Global Programmes, Torino, July, 
2015. 

[29] G. Mengali, A. Quarta. (2008). Optimal trade 
studies of interplanetary electric propulsion 
missions, Acta Astronautica, 62(12), 657-667. 

 
Symbols and achronyms: 
m mass of the spacecraft 
r  distance of the spacecraft from the Sun 
C3 square of the hyperbolic excess speed 
J objective function 

RE nominal radius of Earth orbit (1AU) 
S sail area 
T travel time 
T thrust 
Ta arrival time 
Ts starting time 
µ gravitational parameter of the Sun 
∆V speed increment 
CSI Constant Specific Impulse 
LEO Low Earth Orbit 
LMO Low Mars Orbit 
NEP Nuclear Electric Propulsion 
SEP Solar Electric Propulsion 
VSI Variable Specific Impulse 
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