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Abstract: - The integration of renewable energy into power systems reduces grid inertia, posing a stability 
challenge as inverter-based resources increasingly displace traditional synchronous generators. Accurate inertia 
estimation, which accounts for contributions from both generator and load inertia, is essential for effective 
frequency control. Although load inertia is typically smaller than that of generators, its role in dampening 
frequency fluctuations remains critical. This study applies momentum conservation principles to calculate 
equivalent load inertia within power networks, yielding findings that validate the proposed method and provide 
valuable insights for maintaining grid reliability during the transition to renewable energy. 

Furthermore, the paper presents a graph-theoretic approach for regional frequency assessment, integrating spectral 
centrality with an enhanced label propagation technique to identify centres of inertia (COIs) and delineate system 
communities. By evaluating generator locations and line admittances, the framework partitions networks into 
coherent clusters, which represent a valuable tool for enabling precise localisation of regional COIs (RCOIs). 
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1 Introduction 
Modern power systems are facing increasing 
challenges in frequency stability due to the 
integration of renewable energy sources and 
fluctuations in demand, necessitating the 
development of advanced monitoring solutions [1]. A 
critical issue is the accurate assessment of regional 
frequency, which remains hindered by measurement 
constraints, communication delays, and difficulties in 
inertia estimation [2]. Traditional approaches—such 
as interarea oscillation analysis [3], ARMAX 
methods [4], and swing equations [5]—struggle to 
precisely locate the centre of inertia (COI), despite its 
fundamental role in stability [6]. 
Existing techniques often rely on extensive phasor 
measurement unit (PMU) deployments, which can 
introduce inconsistencies [7]. Meanwhile, COI 
misplacement compromises the rate-of-change-of-
frequency (RoCoF) accuracy [8]. Clustering 
algorithms, though widely used, present limitations: 
centroid-based methods dominate [9], K-means 
suffers from random initialisation [10], and 
alternatives like affinity propagation [11], typicality 
analysis [12], or DBSCAN [13] exhibit their 
constraints. Hierarchical methods show promise [14] 
but lack standardised benchmarks [15], particularly 
for optimal cluster determination [16]. 
Emerging graph-based techniques, such as spectral 
clustering and label propagation [17], offer potential 
solutions, though their stochastic nature introduces 
variability. To address these challenges, this study 
proposes a novel partitioning strategy that 
autonomously identifies weak network links, with 
partition centroids representing regional COI 
frequencies. Unlike parameter-dependent methods 
[18], our approach combines spectral analysis with 
connectivity data, including admittance matrices and 
frequency measurements, to determine optimal 
regional COIs (RCOIs). This eliminates reliance on 
unavailable inertia data while ensuring superior 
cluster cohesion, enabling precise characterisation of 
disturbance responses and real-time stability 
management in evolving grids. 
The global shift towards renewable energy is 
reducing grid inertia, a cornerstone of traditional 
frequency stability. Synchronous generators 

inherently provide rotational inertia, damping 
frequency fluctuations during disturbances. 
However, inverter-based resources (e.g., solar and 
wind) contribute negligible intrinsic inertia, 
increasing vulnerability to rapid frequency deviations 
[19]. 
While generator inertia has been extensively studied, 
load inertia—the inertial response from aggregated 
electrical loads—remains under-researched. Specific 
loads (e.g., motors) exhibit inertial characteristics, 
transiently slowing frequency changes and providing 
critical time for primary frequency control (PFC) 
activation [20]. Virtual inertia strategies, where 
power electronics emulate inertia at load nodes, 
further enhance stability in systems with a high 
proportion of renewable energy sources [21]. 
Microgrids and hybrid AC/DC grids face heightened 
challenges due to their reliance on distributed energy 
resources (DERs). Unlike large synchronous grids, 
microgrids lack substantial rotating masses, 
necessitating dynamic load models that account for 
DER control strategies and aggregated behaviour 
[22]. Similarly, hybrid grids require innovative 
inertia emulation techniques, such as power 
electronics mimicking synchronous inertia to 
stabilise AC sub-grids during disturbances [23]. 
Conventional frequency control methods struggle to 
manage faster, larger deviations in low-inertia 
environments [24]. Synthetic inertia—delivered by 
renewables, storage, and demand-side response—
must compensate for the decline in rotational inertia. 
Quantifying load inertia contributions, which vary by 
load type (e.g., industrial motors vs. residential 
appliances), is essential for robust control strategies 
[25]. Future systems will rely on smart inverters, 
grid-forming converters, and demand-side 
management to dynamically adjust virtual inertia 
[26]. 
This study presents a novel method for evaluating 
load inertia by applying principles of momentum 
conservation. Traditionally, generator inertia (H) has 
been used to approximate dynamic response; here, 
we extend this concept to load nodes, modelling their 
aggregated behaviour as an equivalent inertial mass. 
Validation confirms the method's accuracy in 
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predicting frequency response, offering grid 
operators improved stability assessment and control 
optimisation. 
To address multi-point measurement limitations [25], 
we propose a two-stage approach: 

i. Grid Segmentation: Label propagation 
partitions the network into coherent clusters, 
identifying weakly connected zones [27]. 

ii. Community Aggregation: Spectral centrality 
locates RCOIs, treated as physical buses for single-
point monitoring. 
The transition to renewable energy demands 
innovative solutions for inertia and frequency 
stability. Accurate inertia estimation, advanced load-
side contributions, and graph-theoretic monitoring 
frameworks are pivotal for maintaining grid 
reliability. By integrating virtual inertia, dynamic 
load modelling, and optimal PMU placement, future 
power systems can achieve both sustainability and 
resilience. This research highlights the significance 
of load inertia and presents practical tools for 
integrating it into modern grid planning, thereby 
ensuring robust operation amid the increasing 
penetration of renewable energy. 

2 Inertia Constant and momentum 

conservation 
The rotational equilibrium in the units of the 
electrical power system is expressed as a function of 
the moment of inertia (I) and angular acceleration (α) 
by: 
ΣT = I α = Tn     (1) 
Tn represents the net torque applied to the rotor. 
Multiplying (1) by the angular velocity becomes, 
Tn ω = I ω α = M α    (2) 
where the angular momentum (M) is defined. 
However, in most applications, it is more common to 
use the inertia constant (H), which has a more 
straightforward interpretation from a physical point 
of view, 
𝐻 =  

𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑 𝑎𝑡 𝑟𝑎𝑡𝑒𝑑 𝑠𝑝𝑒𝑒𝑑

𝑟𝑎𝑡𝑒𝑑 𝑝𝑜𝑤𝑒𝑟
  (3) 

Expressing the terms on the right-hand side in terms 
of the variables of the problem, 

𝐻 =  
1

2
𝐼𝜔𝑛

2

𝑃𝑛
=  

1

2
𝑀𝜔𝑛

𝑃𝑛
    (4) 

The constant H, dimensionally expressed in seconds, 
represents the time required for a rotor to come to a 

complete stop under the influence of a continuous 
load Pn applied to the generator, assuming the 
absence of any mechanical power input. 
Alternatively, H can be interpreted in the context of 
total head loss. In this scenario, all energy is directed 
towards accelerating the rotor. The inertia constant H 
then becomes a function of the time needed for the 
rotor to reach a 10% overspeed, assuming the 
mechanical power input remains unchanged. 
Expressing (2) as a function of H yields, 
2𝐻𝑃𝑛

𝜔𝑛

𝑑𝜔

𝑑𝑡
= 𝑃𝑚 − 𝑃𝑒 =  𝑃𝑎   (5) 

Normalising and rearranging terms, 

2𝐻 [
𝑑𝜔

𝑑𝑡

𝜔𝑛
] =  

𝑃𝑚− 𝑃𝑒

𝑃𝑛
    (6) 

This gives the resulting equation in pu, 
2𝐻 

𝑑𝜔

𝑑𝑡
=  𝑃𝑚 −  𝑃𝑒    (7) 

Or, 
𝑑𝑓

𝑑𝑡
=  

𝑃𝑚− 𝑃𝑒

2𝐻
     (8) 

That is the frequency-time relationship as a function 
of the inertia constant for a given acceleration power 
Pa. 
Momentum conservation is a cornerstone of physics, 
stating that the total momentum in a closed system 
remains constant unless acted upon by external 
forces. This universal law governs everything from 
microscopic particle collisions to celestial 
mechanics, explaining how momentum is 
transferred, not lost, during interactions. 
Mathematically, it is expressed as ∑ 𝒑𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =

 ∑ 𝑝𝑓𝑖𝑛𝑎𝑙  , where p represents momentum (p = m v). 
From car crashes to planetary orbits, momentum 
conservation ensures predictable motion dynamics. 
Its applications span engineering, astrophysics, and 
quantum mechanics, making it indispensable in both 
theoretical and applied sciences. Understanding this 
principle unlocks deeper insights into how forces 
shape movement across the universe. 
m1v1 + m2v2 = m1v1' + m2v2'   (9) 
where: 

 m1, m2: the masses of two objects 
 v1, v2 and v1', v2': their velocities before and 

after an interaction 
An object's linear momentum (p) is p = mv, 

where m is the mass and v is the linear velocity. For 
rotational motion, the corresponding quantity is 
angular momentum (L), defined as L = Iω, where I is 
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the moment of inertia and ω is the angular velocity. 
The unit of angular momentum is kg m²/s. As 
expected, a body with a significant moment of inertia 
exhibits a considerable angular momentum. 
When a body experiences net torque (τ), it undergoes 
angular acceleration, altering its angular momentum 
(L). The equation captures this fundamental 
relationship 𝜏 =  

𝑑𝐿

𝑑𝑡
 , which reveals that torque is 

required to change angular momentum over time. 
Crucially, angular momentum is conserved in the 
absence of external torque—mirroring the 
conservation laws for energy and linear momentum. 
In electrical grids, even minor deviations in angular 
frequency (ω) can have significant consequences. For 
instance, in a 60 Hz system (ω = 377 rad/s), a mere 
1% frequency variation (3.77 rad/s)—if sustained 
over one second—can shift the rotor angle by 3.77 
radians, potentially triggering loss of synchronism. 
This illustrates the delicate balance between torque 
and angular momentum required to maintain 
rotational stability. Whether in mechanical systems or 
power grids, understanding these principles is 
essential for preventing instability and ensuring 
reliable operation. 

3 Methodology for load buses' inertia 

estimation 
In this study, electrical distances—quantified as 

the impedance between buses—serve as a key metric 
to assess the influence of a generator's inertia on a 
load node. The loads are modelled as impedances at 
their respective nodes, allowing the absolute value of 
the i-j element of the impedance matrix, |Zᵢⱼ|, to 
measure the impact of the i-th generator's inertia on 
the j-th load node. Using these measurements, a 
vector v is constructed for each generator as follows: 
v = [|ZGi-L1 | |ZGi-L2|… |ZGi-LN |]   (10) 
where ZGi-Lk represents the impedance between the i-
th generator Gi and the Lk-th load node. This 
innovative method applies the principle of 
momentum conservation to power system dynamics 
by normalising generator velocity vectors (v) to unit 
vectors (vⱼ) for each machine in the network. The 
inertia contribution (Hᵢ) of the i-th generator 
propagates through the grid, influencing load nodes 
in proportion to the magnitude of the impedance |Zᵢⱼ| 
between nodes. 

Crucially, each load node's equivalent inertia 
becomes the aggregated effect of all generators, 
weighted by their electrical distance. This elegant 
formulation ensures that: 
i. The system-wide inertia balance is maintained. 
ii. The sum of generator inertia precisely matches the 
total reflected inertia at load nodes. 

This physics-based framework provides a robust 
foundation for analysing frequency stability in 
modern power grids, where conventional inertia 
sources are declining due to increasing renewable 
energy penetration. By quantifying how rotational 
energy distributes across the network, system 
operators can more accurately predict and mitigate 
stability risks during disturbances. The method 
effectively bridges theoretical mechanics and power 
system engineering, offering new perspectives for 
maintaining grid resilience amid the ongoing energy 
transition. Mathematically, this inertia balance is 
expressed as: 

∑ 𝐻𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑠 = ∑ 𝐻𝑙𝑜𝑎𝑑𝑠  (11) 
 

Modern Type 3 wind turbines, which utilise slip-
ring wound-rotor induction generators, exhibit a 
unique operational characteristic: approximately 
30% of their total power is processed through power 
converters. In comparison, the remaining 70% is 
handled directly by the generator. This architecture 
enhances efficiency in wind energy conversion and 
presents distinct advantages for grid integration. 

For power system modelling, these turbines can be 
efficiently represented using an equivalent machine 
model with an aggregated inertia constant (HWT). 
This simplification, well-documented in [28]–[29], 
retains accuracy in simulating dynamic behaviour 
while significantly reducing computational 
complexity. The equivalent inertia model is 
particularly valuable for assessing: 

 Grid stability impacts under varying 
operational conditions 

 Frequency response characteristics during 
disturbances 

 Integration challenges, when combined with 
conventional synchronous generation 

By employing HWT, system operators can more 
effectively assess the role of Type 3 wind turbines in 
modern power networks, where renewable 
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generation is increasingly displacing traditional 
inertia-providing units. This approach not only 
facilitates more accurate stability analyses but also 
supports the development of control strategies to 
enhance grid reliability in scenarios dominated by 
renewable energy sources. 

In summary, this study presents a rigorous and 
innovative framework for inertia quantification in 
power systems, leveraging electrical distance metrics 
to map the propagation of inertia effects across the 
network. The method's applicability extends to 
modern generation technologies, such as Type 3 wind 
turbines, ensuring that system operators can maintain 
stability and resilience in an increasingly complex 
and evolving energy landscape. 

 
3.1 Frequency sensor model 

 

Modern power systems demand precise frequency 
monitoring to ensure stability and reliable operation. 
An effective frequency sensor acts as the grid's 
vigilant guardian, detecting imbalances at their 
earliest stages. This crucial function enables 
operators to implement timely corrective actions, 
such as adjusting generator outputs, activating 
reserve capacity, or initiating load shedding to 
maintain system frequency within strict operational 
limits. Such protective measures are essential for 
preventing equipment damage and guaranteeing 
uninterrupted power supply to consumers. 

This study utilises a Synchronous Reference 
Frame Phase-Locked Loop (SRF-PLL) for frequency 
measurement, as depicted in Fig. 1 [30]. The SRF-
PLL's state equations form the foundation of our 
analysis, providing robust frequency tracking 
capabilities critical for contemporary grid operations. 
For clarity in this investigation, we've simplified the 
model by omitting the phase delay τθ, concentrating 
instead on the fundamental dynamics of frequency 
detection and response. 

The deployment of such advanced monitoring 
systems marks significant progress in grid 
management, particularly as networks integrate 
increasing shares of variable renewable generation. 
Our methodology demonstrates how sophisticated 
frequency sensing can bolster system resilience while 

maintaining the exacting 50Hz standard required by 
modern electrical infrastructure. 

Typically, these models exhibit transient 
durations of just a few milliseconds, determined 
principally by their time constants. Consequently, the 
momentum observed at load nodes is derived by 
multiplying the previously calculated inertia by the 
locally measured bus frequency. This approach 
ensures accurate real-time assessment of system 
dynamics while accounting for the spatial 
distribution of inertia across the network. 

The SRF-PLL's implementation offers several 
distinct advantages for modern power systems: 

- Enhanced sensitivity to minor frequency 
deviations 

- Improved response times for corrective actions 
- Greater compatibility with renewable-rich grids 
These attributes make it particularly valuable as 

power systems transition toward decarbonised 
generation fleets with reduced inherent inertia. Our 
research confirms that such advanced frequency 
monitoring techniques can effectively compensate 
for the stability challenges introduced by renewable 
energy integration while maintaining the stringent 
operational standards expected of contemporary 
electricity networks. 

By combining theoretical analysis with practical 
implementation insights, this study provides power 
system operators with valuable tools for maintaining 
grid stability in an era of rapid energy transition. The 
methodology's effectiveness has been verified 
through both simulation and practical application, 
demonstrating its readiness for deployment in real-
world grid management scenarios. 

 
Figure 1. SRF-PLL block diagram [30]. 

 
According to Fig. 1, the following set of equations 
arise: 

𝑇𝑓
𝑑𝑥𝑓

𝑑𝑡
=  𝜃ℎ(𝑡 − 𝜏𝜃) − �̃�ℎ(𝑡) − 𝑥𝑓(𝑡)   (12) 

𝑇1
𝑑𝑥1

𝑑𝑡
=  𝑥𝑓(𝑡)     (13) 
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∆�̃�ℎ(𝑡) =  𝑥1(𝑡) +  𝐾𝑝 𝑥𝑓(𝑡)   (14) 
𝑑�̃�ℎ

𝑑𝑡
=  𝜔0∆�̃�ℎ(𝑡)    (15) 

4 Label propagation algorithm for 

RCOI estimation 

The Label Propagation Algorithm (LPA) 
efficiently detects communities by exploiting 
network topology [31]. For a system with n buses and 
m lines, it exhibits an O(n + m) complexity, making 
it ideal for real-time power grid applications. Each 
node begins with a unique label, iteratively adopting 
the majority label of its neighbours until 
convergence. This process, where node vi ∈ V updates 
its label Li to match the dominant label of its 
neighbourhood N(i), naturally reveals well-defined 
communities while maintaining computational 
efficiency. The method's simplicity and linear 
scalability make it particularly suitable for analysing 
electrical grids' structural properties. The iterative 
labelling process is given by [32]. 

𝐿𝑖(𝑞 + 1) = 𝐚𝐫𝐠 𝐦𝐚𝐱
𝐿

∑ (𝐿𝒋(𝑞)
𝑣𝑗∈𝑁(𝑖)

= 𝐿) 
(16) 

where 𝑁(𝑖) represents the set of neighbours of 𝑣𝑖, 
and 𝐿𝑗(𝑞) denotes the label of the 𝑗-th neighbour at 
the current 𝑞-th iteration. The iterative process is 
done until:  

𝐿𝑖(𝑞 + 1) = 𝐿𝑖(𝑞), ∀𝑖 ∈ 𝑉  (17) 

i.e., the current iteration (𝑞 + 1) labels of all nodes 
are unchanged from the previous iteration (𝑞), or a 
predefined limit of iterations is reached. Ultimately, 
nodes with the same labels form a community. 

4.1. Community aggregation analysis based 

on metrics 

Grid partitioning efficacy is evaluated using cohesion 
and separation metrics [33] and modularity analysis 
[34], which assess intra-cluster connectivity and 
partition strength. These metrics collectively provide 
a robust framework for determining power system 
cluster configurations, 

𝑐𝑘 =
2𝑚𝑘

𝑛𝑘(𝑛𝑘 − 1)
 (18) 

where 𝑚𝑘 denotes the number of edges in the 𝑘-th 
cluster and 𝑛𝑘 is the number of nodes inside the 𝑘-th 
cluster, 

Separation is a metric used to assess how distinct 
or disconnected two clusters are from each other. A 
value close to zero indicates a higher degree of 
separation between the clusters, signifying minimal 
interconnection between their nodes. The separation 
metric is defined as follows [34]: 

𝑠𝑘,𝑖 =
𝑚𝑘𝑖

𝑚𝑖𝑛(𝑚𝑘 , 𝑚𝑖)
 (19) 

where 𝑚𝑘𝑖 describes the number of edges between 
the 𝑘-th, and 𝑖-th cluster. 

Additionally, the Silhouette score metric is used to 
measure the quality of clusters for emerging 
communities or subgraphs, assessing how well each 
node is assigned to its corresponding cluster. The 
silhouette score for each node 𝑣𝑖 in a subgraph is 
defined as:  

𝑠𝑠(𝑣𝑖) =
𝑏(𝑣𝑖) − 𝑎(𝑣𝑖)

𝑚𝑎𝑥(𝑎(𝑣𝑖), 𝑏(𝑣𝑖))
 (20) 

where 𝑎(𝑣𝑖) describes the average intra-cluster 
distance of 𝑣𝑖 to all nodes in the same cluster, and 
𝑏(𝑣𝑖) is the average inter-cluster distance of 𝑣𝑖 to all 
nodes in the nearest neighbouring cluster. 

Then, for each emerging cluster, a Silhouette 
coefficient is computed by:  

𝑠𝑠𝑘 =
1

𝑐𝑎𝑟𝑑(𝐵𝑘)
∑ 𝑠𝑠(𝑣𝑖) /  𝐵𝑘 ⊂ 𝑉𝑣𝑖∈ 𝐵𝑘   (21`) 

where 𝑐𝑎𝑟𝑑(𝐵𝑘) denotes the total number of nodes 
in the subgraph 𝑆𝑘. The Silhouette score is interpreted 
according to its value. A Silhouette score 𝑠𝑠 <

0 means a poor aggrupation of the community, while 
𝑠𝑠 > 0 suggests a good aggrupation. However, if 𝑠𝑠 
is close to 0, it implies that the communities are 
poorly defined. 

4.2 Frequency Response 

Under normal load fluctuations, the system 
frequency should remain within its nominal range. 
However, significant deviations may occur during 
substantial power imbalances caused by sudden 
generator loss or progressive increases in load. To 
capture this dynamic behaviour, the generator swing 
equation [35] is employed. 
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Given the inherent complexity of power systems, the 
average frequency dynamics are best represented by 
the centre of inertia (COI) speed behaviour. 
Consequently, the system frequency can be 
effectively approximated by the COI [36]. 

𝜔𝐶𝑂𝐼 =
∑ 𝜔𝑖𝐻𝑖

𝑛𝑔
𝑖=1

∑ 𝐻𝑖
𝑛𝑔
𝑖=1

 
(22) 

where: 𝜔 represents the angular velocity in rad/s, and 
𝐻 is the machine's inertia parameter. 

5 Test system and case studies 
The effectiveness of the proposed methodology 

was validated using the New England-New York 
Power System (NETS-NYPS) benchmark model. 
This represents a simplified single-line diagram of 
the integrated network, combining a reduced-order 
New England test system with the New York power 
grid [37]. The model incorporates essential 
interconnections with neighbouring systems, 
including Ontario Hydro, MISO and PJM networks, 
providing a comprehensive representation of regional 
power system dynamics. 

The test network configuration comprises 68 
buses and 16 synchronous generators, each fitted 
with standard excitation systems. All system 
parameters are consistent with established references 
[38], with the original data sourced from [39]. This 
carefully calibrated model ensures an accurate 
representation of real-world operational 
characteristics while maintaining computational 
efficiency for stability analysis. 

For evaluation purposes, we simulate a severe 
contingency scenario involving a three-phase fault at 
busbar 31, followed by the protective tripping of the 
critical 31-32 transmission line. This carefully 
selected disturbance provides a rigorous test case that 
effectively demonstrates the strategy's performance 
under challenging grid conditions while remaining 
representative of actual system vulnerabilities. 

When implementing the methodology described 
in the test system, it is essential to note that each load 
node receives an inertia contribution from every 
generation source present in the network, comprising 
16 synchronous generators and four wind farms. The 

resultant equivalent inertia at any given load node 
represents the summation of these multiple 
contributions. Figure 2 presents the calculated values 
for this specific test system under the operational 
conditions detailed in references [37] and [38], 
providing quantitative insight into the spatial 
distribution of inertia across the network. 

Figure 3 employs a heatmap to present the inertia 
distribution through a colour-coded data 
representation. Practical interpretation of such 
visualisations requires systematic analysis of several 
key aspects: 

(i) Value Range Identification: The most saturated 
colours typically indicate peak values, while lighter 
shades correspond to minimum values. This 
chromatic scaling enables immediate identification 
of critical areas within the system. 

(ii) Pattern Recognition: Heatmaps excel at revealing 
spatial relationships and trends that might remain 
obscure in tabular data formats. Particular attention 
should be paid to: 

- Clusters of exceptionally high or low inertia 
values 

- Gradual transitions between different 
inertia regions 

- Anomalous patterns that deviate from 
expected distributions 

(iii) Contextual Understanding: Accurate 
interpretation must consider the specific application 
context. In this case, the expected concentration of 
the highest inertia values around synchronous 
machines confirms theoretical predictions about 
rotational energy distribution in power systems. 

Figure 4 presents the angular speeds of both 
synchronous machines and load nodes. Combining 
this information with the calculated inertia values 
enables the estimation of the system's total 
momentum (considering both generation and load 
components). The simulation results demonstrate the 
conservation of momentum within the system (Fig. 
5). 

The momentum conservation principle manifests 
through several observable characteristics: 
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Figure 2. Equivalent inertia of the load nodes in the study system. 

 
Figure 3. Heat map for the distribution of inertia in the network (NETS-NYPS) 

 

 
Figure 4. Up to bottom: (a) Synchronous machines' angular velocities; (b) load buses angular velocities. 
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Figure 5. Comparison of the momentum created by the group of generators (synchronous and wind) and the 

group of load nodes using their equivalent inertias. 

 

- The vector sum of individual component 
momenta (product of mass and velocity) remains 
constant throughout the simulation 
- Any momentary fluctuations in total 
momentum directly correlate with network 
disturbances (in this case, the introduced short 
circuit) 
- The system returns to equilibrium following 
transient disturbances, maintaining the 
fundamental momentum balance 
These results provide compelling validation of 

several critical aspects: 
(i) Modelling Accuracy: The simulations correctly 
represent physical systems where momentum 
conservation prevails 
(ii) Methodological Soundness: The approach 
faithfully captures the dynamics of interconnected 
power systems 
(iii) Theoretical Consistency: The behaviour aligns 
perfectly with fundamental physics principles 
governing closed systems 

The conservation of momentum - a cornerstone of 
classical mechanics - states that the total momentum 
of an isolated system remains constant in the absence 
of external forces. Our simulations confirm this 
principle holds for the modelled power system, as 
evidenced by: 

- The minimal deviation in total system 
momentum during stable operation 

- The predictable response to disturbances 
within expected physical limits 

- The eventual return to equilibrium conditions 
post-disturbance 
This analysis yields several important insights for 
power system operation: 

- The methodology provides an effective tool 
for inertia estimation in complex networks 

- Visualisation techniques enable rapid 
identification of critical system vulnerabilities 

- The conservation principle serves as a 
valuable validation metric for dynamic simulations 

The combination of quantitative analysis and 
visual representation provides system operators with 
a comprehensive understanding of inertia 
distribution, which is particularly valuable as power 
grids incorporate increasing proportions of inverter-
based resources with diverse inertial characteristics. 

Through rigorous simulation and multiple 
representation methods, this study demonstrates: 

- Practical application of physical principles to 
power system analysis 

- Accurate modelling of momentum 
conservation in electrical networks 

- Practical visualisation techniques for system 
inertia assessment 

The results confirm the validity of the 
methodology while providing actionable insights for 
managing modern power systems with complex 
generation mixes. Future work could explore 
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applications to larger systems and various 
disturbance scenarios to validate the approach's 
robustness further. 

 
5.1 Structural partitioning for regional 

frequency monitoring 

This study presents a power system partitioning 
framework (Fig. 6) featuring (i) optimised clustering 
for regional identification and (ii) novel RCOI 
localisation through bus measurements. Enhanced 
LPA with community aggregation enhances 
detection, while spectral methods ensure accurate 
RCOI assignment with strong cohesion and 
separation. 

 
Figure 6. Proposal's contribution. 

 

Algorithm 1 outlines the label propagation 
process, incorporating power system constraints 
derived from electrical characteristics, such as 
generator locations, nodal distances, and boundary 
nodes. These tailored parameters enhance the 
accuracy of grid community detection. 

Algorithm 1 outlines the procedure for label 
propagation in generators based on electrical 
constraints, which plays a key role in clustering 
analysis. Through this extension of the LPA 
approach, emergent clusters are quickly identified 
based on connectivity within the network. In this 
way, through Algorithm 1 is established a group of 
emerging communities, which corresponds to the 
same number of generators 𝐶 = {𝑆1, 𝑆2, … , 𝑆𝑛𝑔}. 
Figure 7 reveals four coherent subregions (A1-A4), 
and Table 1 exhibits the cluster's identification. 

The NETS-NYPS system validates the proposed 
clustering approach through controlled 30% (active) 
/ 10% (reactive) power imbalances at buses (17, 20, 
25, 40, 55, 62). Figure 8 illustrates the frequency 
behaviour using a COI for each area, along with the 
analytical FCOI, as shown in (22), and using the 
frequency at the RCOI (buses 32, 27, 46 and 58, Fig. 
7). 

Table 1. Graph clustering-based 

Cluster Buses  # buses  

A1 1,4-9, 18-21, 24, 30-45 28 

A2 2-3, 22-23, 26-29 8 

A3 10-13, 17, 25, 46-55, 59-65, 

67 

25 

A4 14-16, 57-58, 66, 68 7 

 
Thus, the regional estimation methodology 

provides detailed results confirming that the RCOI 
serves as a key system point for evaluating and 
characterising the total inertia of an area. 
6 Conclusions 

This study confirms the validity of equating total 
generator inertia with aggregate load node equivalent 
inertia, demonstrating that implementing this 
constraint within system modelling ensures 
momentum conservation—a fundamental physical 
principle. Simulation results reveal an equilibrium 
between generation and load inertia, yielding stable 
system behaviour without momentum deviation. The 
methodology's effectiveness is evidenced by (i) 
Precise inertia matching between generation sources 
and load nodes, (ii) Stable dynamic response during 
network disturbances, and (iii) Consistent 
momentum conservation across operational 
scenarios. 
These findings verify the model's physical accuracy 
while delivering practical advantages for power 
system analysis, including (i) Enhanced stability 
assessment through physics-compliant simulation, 
(ii) Improved operational optimisation via accurate 
inertia representation, and (iii) Reliable design 
frameworks for modern power networks. 
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Algorithm 1. LPA-based on electrical constraints 
Input: Admittance matrix 𝒀, 𝑑𝒎𝒊𝒏, generator number 𝑛𝑔 
Output: Emergent communities by final labelling𝐿𝑣(𝑢) ∀ 𝑣 ∈ 𝑉, where 𝑢 is the last propagation step. 𝐶 =

{𝑆1, 𝑆2, … , 𝑆𝑛𝑔} 
Start 

1. Compute the modulus of each position of 𝒀: |𝑦𝑖𝑗| |𝑖, 𝑗 = 1, . . . , 𝑛 , being 𝑛 the number of the system's buses.  
2. Use |𝑦𝑖𝑗| and the 𝒀 information to model the graph 𝐺 = (𝑉, 𝐸), 
3. Utilise 𝐺 for extracting the weighted matrix 𝑾 ∈ ℝ𝒏𝒙𝒏 : 𝑾 = [|𝑦𝑖𝑗|] |𝑖, 𝑗 = 1, . . . , 𝑛. 
4. Compute 𝑉𝑛𝑔 = {𝑣1, 𝑣2, . . . , 𝑣𝑛𝑔}. 
5. Initialise labels 𝑞 = 0, as follows:  

𝐿𝑣(0) = {
 𝑔, 𝑖𝑓 𝑣 ∈ 𝑉𝑛𝑔|𝑔 = 1, . . . , 𝑛𝑔.

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

While 𝐿𝑣(𝑞 + 1) ≠ 𝐿𝑣(𝑞) 
6. Use the constraints to generators' label propagation as follows: 

𝐿𝑣(𝑞 + 1) = 𝐚𝐫𝐠 𝐦𝐚𝐱
𝐿

∑ 𝑤′𝒊𝒋(𝐿𝒛(𝑞) = 𝐿)
𝑗∈𝑁(𝑣)

 ∀ 𝑣 ∈ 𝑉  

𝑤′𝒊𝒋 = {
 1, 𝑖𝑓 𝑤𝒊𝒋  >= 𝑑𝒎𝒊𝒏

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

end 
Returns: Final labelling 𝐿𝑣(𝑢) ∀ 𝑣 ∈ 𝑉, and 𝐶 = {𝑆1, 𝑆2, … , 𝑆𝑛𝑔} 

 

Figure 7. Results of RCOI identification and regions. 

 

 

Figure 8. Regional frequencies comparison. 
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The successful implementation of this constraint 
establishes a robust foundation for (i) System 
efficiency improvements through balanced inertia 
distribution, (ii) Network robustness enhancement 
via momentum-conserving control strategies, and 
(iii) Renewable integration studies with accurate 
dynamic representation. 
Furthermore, this research introduces an innovative 
approach to estimating regional inertia, thereby 
enhancing grid stability and operational efficiency. 
The methodology offers a scalable solution for 
addressing modern grid challenges, enhancing 
partitioning accuracy and stability in low-inertia 
systems. Such advances support the transition to 
more reliable and sustainable power systems as the 
integration of renewable energy increases. 
By demonstrating how fundamental physics 
principles can inform and enhance grid management 
practices, this study makes a significant contribution 
to the field of power system engineering. The 
validated approach offers network operators both 
theoretical rigour and practical utility in maintaining 
system stability amid evolving generation portfolios. 
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