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Abstract: - Curved linear antennas of arbitrary shape can be considered as a special case of quantum thin 
conducting wire traps of their free electrons and a numerical method is proposed for the calculation of their 
current distribution. In a case of low energy excitation with a proper frequency, only the fundamental mode 
with its lowest Eigen-value appears and the respective Eigen-function is its current distribution along it. In a 
previous paper Papageorgiou et al., proposed a numerical method of calculating the radiation pattern of any 
arbitrary shape linear thin antenna, with a known current distribution of its free electrons along with it. Also in 
a recent paper Papageorgiou et al., introduced the Resonant Transmission Line (RTL) method for numerically 
tackling the problem of linear quantum wires with arbitrary curvature. This method is also applied here in order 
to calculate the fundamental Eigenvalue and its respective Eigenfunction of any arbitrary shape curved linear 
thin antenna. The analysis reveals a strict dependency of the energy Eigen-values to the curvature magnitude 
with significant lowering of the first harmonic beyond a threshold value which severely affects excitability of 
the respective Eigen-function. The proposed method is applied in the study of a very sensitive antenna made of 
constant curvature circular arcs. 
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1 Introduction 
In a recent series of publications Stockhofe and 
Schmelcher [3] as well as Zambetaki et al., [4] and 
J. K. Pedersen et al., [5] proposed a treatment of the 
Schrodinger equation in a curvilinear coordinate 
system for one dimensional quantum waveguides. 
Linear thin conducting antennae can be considered 
as one dimensional quantum traps acting as 
electromagnetic waveguide resonator, i.e. their free 
electrons form standing waves trapped inside their 
one dimensional curved linear space. This 
consideration can be used in order to define the 
fundamental mode of distribution of the standing 
wave currents, of any arbitrary shape linear 
antennae under a proper frequency excitation.  

Given the currents on the linear antennae their 
radiation patterns can be calculated according to [1] 
Papageorgiou et al., already used in [2], this 
recently introduced case of the Schrodinger equation 
on a curved one dimensional path, in the light of the 
proposed Resonant Transmission Line (RTL) 
simulation and the related numerical method. By a 
segmentation process it was shown how to apply 
this method in the case of any linear curved 

quantum wire of any arbitrary varying curvature. 
The numerical calculation of Eigen-values is 
simplified using the resonance condition of the 
equivalent RTL and for each Eigen-value the 
respective Eigen-function can be also calculated 
numerically. We will show that for special shaped 
linear antennas made of a series of circular arcs of 
the same curvature, the fundamental “Energy” of 
excitation can be reduced significantly increasing 
their sensitivity with possible applications in mobile 
communication.  
 

2 Description of the resonance RTL 
method 
A generic equivalence of the Schrodinger problem 
or the general Sturm-Liouville problem in one 
dimension has been established in [2], and [6], 
which is valid not only for ODE problems but also 
for PDEs in separable coordinate systems.  

To this aim, we consider the representation of a 
non homogeneous lossless transmission line defined 
along its geometric length s, with V(s) and I(s) its 
voltage and current values respectively, and X(s), 
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Y(s) its “reactance” and “admittance” per length 
unit. The general PDE representation of such a line 
is given as 

( ) / ( ) ( )

( ) / ( ) ( )

V s s jX s I s

I s s jY s V s

   
    

  (1) 

It is very easy to show that the set (1) is 
equivalent to the generic Sturm-Liouville equation  

1
( )/ / ( ) ( ) ( ) / ( ) ( )

( )
j y s s s jX s y s V s s jX s I s
Y s

 
          
 

     (2) 

This is the exact same form of the corresponding 
Schrödinger operator under the identification of the 
current I(s) with the wave-function y(s) and the 

voltage V(s) with the expression
1

( ) /
( )

j y s s
Y s

  .  

Considering an infinitesimal length transmission 
line δs where both admittance and reactance can be 
taken as constant, the description becomes identical 
to a homogeneous transmission line of length δs, 
which is equivalent with the so called T-circuit 
shown in fig(1). The respective impedances of the 
T-circuit are then given as 

( ) tanh( ( ) / 2)

( ) / sinh( ( ) )
B

P

Z Z s s s

Z Z s s s

 
 

 
  

  (3) 

In (3) we identify the local transmission factor as 

( ) ( ) ( )s j X s Y s  and the characteristic 

impedance as ( )( ) ( ) / ( )( )
X sZ s j s Y sY s    . 

For ( ) 1s s    we can always approximate this, 
with a proper choice of the step δs, as 

2( ) ( ) ( ) / 2 ( ) / (2 ( ))

( ) ( ) / ( ( ) ) 1 / ( ( ) )
B

P

Z s Z s s s j s s Y s

Z s Z s s s jY s s

   
  

    


   
 (4) 

A successive set of such T-circuits can be used to 
approximate a transmission line with continuously 
varying parameters of reactance and admittance.  In 
any real non homogeneous transmission line, both  

( )s  as well as Y(s) are functions of the excitation 
frequency associated with the energy parameter E.  

The energy parameter values, for which the whole 
line becomes tuned so as to achieve maximal power 
transmission, are the resonant values which stand 
for the RTL Eigen-values and the corresponding 

current values along the line are the RTL’s Eigen-
functions. From the well known properties of 
transmission lines, for any such resonant line, the 
total reactance’s calculated from the left and right 
terminals towards any intermediate point must equal 
each other with opposite signs. Hence, the resonant 
values of frequencies or energies can be found from 
the roots of the function (5) with L1, L2 the total 
lengths towards any central point, i.e. L1,+L2=L and 
L the overall length of the equivalent transmission 
line. 

1 2

1 1

(0 ) ( ) 0

( ) / ( )

left right

n n B P n B P B

Z L Z L L

Z Z Z Z Z Z Z Z 

   

     
(5) 

Given the terminal impedances, the left and right 
the overall reactance can be calculated, for any E 
value. Having found the Eigen-values from the roots 
of (5), it is equally possible to extract the exact 
shape of the Eigen-functions from the current 
values. From the general theory of the transmission 
line equation we know that a solution via a transfer 
matrix can always be written in the form of a 

dynamical system 1
ˆ

 nnn T xx , where ],[ nnn IVx
, the voltage-current vector and Tn a matrix of the 
form  

cosh( ( ) ) ( ) sinh( ( ) )ˆ
sinh( ( ) ) / ( ) cosh( ( ) )

1 ( ) ( ( ) )

( ( ) ) / ( ) 1

n

s s Z s s s
T

s s Z s s s

Z s s s

s s Z s

   
   

 
 

   
    

  
   

    (6) 

In (6) we used 

1 1( ) / 2n n n ns s s and s s s      Thus 

starting from any terminal point 0 0 0[ , ]V Ix  and 

using the (6) the [ , ] 1, 2,...n n nV I for n N x  

can be calculated, i.e. the values of 

/n n n n ny I and y s j Y V       are calculated.  

 

3 Thin curved linear antennae as 
quantum traps  
 

Under any external electric field acting on a 
quantum or conducting thin wire, free electrons will 
be affected by the wire’s curvature and some 
deviation from the original values of the Eigen-
values of the straight line of equal length thin wire 
and from its respective set of its Eigen-functions 
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should be expected. To analyze the situation we 
assume a parametric representation of the curve on 
which the wire lies given by three scalar functions 
of an abstract parameter s as x(t), y(t) and z(t) which 
can be split into N sections by an arbitrary choice of 
t1, …, tN (n=1,2,….  n,…  Ν) such that 

2 2 2
n n nx y z l       with Δl a 

sufficiently small length with 

1( ) ( )n n nx x t x t    and similarly for Δyn, Δzn.  

Any individual section will then have its own 
curvature σ given by the relation (7) 

2 2 2
2

2 2 2 3

( ) ( ) ( )

( )

yz zy zx xz xy yx

x y z
     


 

        

  
(7) 

In (7), simple and double dots stand for the 1st and 
2nd derivatives with respect to the parameter t and 
their evaluation is taking place in the middle point 
of each section 1( ) / 2n nt t  . We can easily prove 

that the parameter t can always be replaced by the 
length s along the curved thin wire given by 

2 2 2

0

t

s x y z dt                                                                  

This means that for any set of consecutive   
parameter values tn the respective values of sn and σn 
can be numerically calculated. Thus at the present 
paper the curvature σ can be considered as function 
of the length parameter s. 
 

The Schrödinger equation for a curved one 
dimensional (thin) wire developed along its 
parametric length s with Ls 0 is given by: 

2
2 2 2

2
2 2

( )
( ) / ( / 2 ) ( ),

4

( )
, ( ) / ( )
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s
or y s s y s



 

 
      

 
 

      
 



      (8) 

In (8), the standard curvature can be given by the 

local radius R(s) via )(/1)( sRs   This, 
homogeneous, linear 2nd order ODE can be solved 
with the aid of the Resonant Transmission Line 
(RTL) technique previously introduced by 
Papageorgiou et.al in [7] and used already in a 
variety of other 2nd order ODEs and PDEs. 
Following the analysis there, equation (1) reduces to 

the case of a transmission line with 
2( ) 1, ( ) ( ) / 4s s s      which give the local 

propagation constant at each point as 

 4/)()( 22 ss               (9) 

We take every small part of the curved wire of 
length δs as equivalent to a T-circuit of impedances 
ZB and ZP with reference to figure 1, being given as   

 

2( ) ( ) / 2

( ) /

B

P

Z s j s s

Z s j s

 



  


 
       (10) 

 

We also take the terminal impedances of the 
equivalent line at the boundaries s =0 and L to be 
infinite or zero so as to make y(s)=I(s) or 

( ) / ( )y s s jV s     zero at these points.  

We now consider a varying curvature which 
introduces an equivalent effective potential of 
geometric origin and we compute the resulting 
Eigenvalues and eigenfunctions. To this purpose, we 
divide the wire in small parts of very small length δs 
along which we may take the curvature to be 
practically constant. Each such element is then 
equivalent to the T-circuit parameterized as in (2) 
and (3). The whole wire is then equivalent to a 
lossless non homogeneous transmission line made 
by the succession of T-circuits terminated at zero or 
infinite impedances.  

We then have the freedom to choose any arbitrary 
intermediate point and calculate the respective “left” 
and “right” impedances as functions of the energy ε. 
Eigen-values will correspond to the roots of the 
function ( ) ( )left rightZ Z  , where the subscripts 

stand for the left and right boundary points of the 
linear wire where the calculation of successive 
impedances starts. The respective Eigen-functions 
are numerically obtained in any set of successive 
points on the linear wire {s1,s2,…,sN} for each and 
any Eigen-value from the values of the respective 
currents of the T-circuits through the application of 
a Transfer Matrix on a set of initial conditions in the 
form 
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Initial values are taken for the point s=0 as V0 =1 
and I0 = 0 for (0) 0y  , or V0=0 and I0=1 for 

0[ ( ) / ] 0sy s s    . For infinitesimal 

displacements, (11) can always be approximated as  

 

2
1

1

2 2

1 1

1
,

1

( ) / 4

( ) / 2

n nn

n n

n

n n n n

U Uj s

I Ij s

s

s s s and s s s

 


  







 

    
     

    

  

   

       (12) 

The trajectory obtained this way contains the 
representation of the Eigen-function from the 
current values [I1, I2,…IN] and the Voltage values 
[V1, V2,…VN] at the chosen points of the curved 
wire. 

From quantum mechanical properties it is known 
that the square of   y(sn)= In , represents the 
expected probability of the free electron to be placed 
at the point sn . Thus for a large number of free 
electrons of the curved wire the squared values of 
the set  [I1, I2,…IN] are giving the electric charge at 
the set of points [s1, s2,…sN] and the imaginary part 
of the set of the product values  [I1V1, I2V2,…INVN] 
are giving the electric current values of the free 
electrons inside the conducting linear wire. 

The Boundary conditions for the linear wires is 
that the electric currents on the boundary points s=0 
and s= L are zero, thus at the boundaries

,( ) [ ( ) / ] 0s L Ry s y s s     . This means that 

either .[ ( ) / ] 0s R Ly s s    or ,[ ( )] 0s R Ly s   . 

We then naturally anticipate that under an external 
excitation there will be a tendency of (trillions) of 
free electrons to be present at these points 
proportionally to their electric current mode i.e. 
these are representing the Eigen-functions of the 
real electric currents in the linear curved wire 
considered that as an electromagnetic waveguide.  

We performed a numerical exploration of the 
effects of curvature in one dimensional wire model 
of a curved planar wire of a circular arc of an angle 
ξ and length L=1, i.e. of constant curvature  . 
Since the first harmonic with the lower energy 

Eigen-value appears to be the most important for 
any energy transfer mechanism, as well as for the 
maximal concentration of the free electron density, 
we concentrate on this case. For the first electric 
current harmonic we expect to have 

0[ ( ) / ] 0sy s s    and 1[ ( )] 0sy s    at the 

terminal points (0, 1) and a single maximum in the 
middle point (for the symmetric curved linear 
antenna).  

According to the previous theory for this linear 
wire trap (or linear antenna) 

 2 2 2/ 4 ( / 4)          , thus we can 

use the procedures and the equation 
(0 1 / 2 ) ( 1 / 2 ) 0le ft r ig h tZ Z L    in 

order to define the Eigen-value ε(ξ). For each 
defined value of ε we can generate the Eigen-
function of the electric currents. Results of our 
simulations are shown in figure 2 where the Eigen-
value of the first harmonic is plotted as a function of 
the arc ξ . 

The fundamental Eigen-functions of the electric 
currents of linear antennae for ξ1=0.99π, and 
ξ2=1.1π, where the respective fundamental Eigen-
values are ε1=0.049101155060641 and ε2= 

19.221044297508335 are shown in figures 3 and 4. 
We notice that for ξ<π, the fundamental Eigen-
function is representing a standing wave of wave 
length λ=2, while for ξ>π the standing wave has a 
wave length λ=2/3. If we limit ξ<π , the “best” 
linear antenna with λ=2 should be the one with the 
smaller Eigen-value. Thus a “good” linear antenna 
is anticipated to be the one with a small Eigen-value 
i.e. of arc angle ξ<π and the “worst” is the linear 
antenna of a straight line where for ξ=0,  
ε=π2/4≃2.4674. The relevant MATAB codes for the 
fundamental Eigen-values and Eigen-functions are 
shown in Appendix  I. 

 
4  Radiation pattern calculation 

Given the electric current on a curved linear planar 
circular arc antenna of constant curvature σ=ξ and 
length L=1, excited by a frequency f=C/(2L) 
(C=3·108 ) its  radiation pattern can be calculated 
according to [1] by the formula 

2

0 0

( , ) ( , ) cos( )( , ) ( )sin( )
E EI I

P
         

 
   
 

 where φ,θ are respectively the angles in spherical 
coordinates of the radiation vector ( , )P    (i.e. 
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angle φ in plane (x,y) with the axis x and angle θ 
with the axis z as shown in fig (5).  

As an example we are going to calculate 
numerically the radiation pattern for a curved planar 
linear antenna is shown in fig(5) placed on the plane 
z=1. This antenna is an arc of radius equal to 1.0 cm 
and of an angle 0.99π, thus of a length 
0.99π≃3.11cm. The functions ( , ) ( , )E MI I   
can be calculated numerically, for the given planar 
curved arc antenna using the analysis described in 
[1]. For the circular antenna of fig (5) its coordinates 
are given as functions of a variable angle 0<ψ< 
0.99π, and r=1 x and y are given by the relations 
x(ψ)= sin( ψ) , y(ψ) =cos(ψ), also the following 
relations are true 

0

0

( , ) ( , ) exp( ) ( )

1
( , ) ( , ) exp( ) ( )

L

E

L

I I x y j x j y dx dy

I I x y j x j y dx dy

     

     


     

    





 

where 

0 0

0 0

sin( ) cos( ) sin( ) sin( )

( , ) sin( ) cos( ) / ( )

120 1 /120 1 0.99

MI x y I Z j

L

       

  

     

 

 

   

 

Using these equations the numerical MATLAB 
function (wirerad) calculating the function 

( , )P      is given in appendix II. In figures (6) 

and (7) specific radiation pattern curves are shown. 
Similarly radiation patterns for any other planar thin 
antenna made by a successive set of arcs of the same 
curvature can be calculated by the proposed method. 
We should take into consideration that the 
connected arcs should have also derivative 
continuity and its angle sum should be less than π, 
in order to support the fundamental mode of which 
its wavelength is double the length of the thin arc 
antenna [6]. 
 

5 Conclusion 
By the previous analysis it becomes evident that the 
curvature effect results in a kind of amplification of 
the free electron concentration in certain properly 
designed curved linear antennas made by a set of 
successive circular arcs of an overall angle less than 

π radians. Furthermore in order to achieve a very 
low Eigen-value the overall angle should be less but 
close to the angle π in radians. Thus the straight 
linear antenna of zero curvature has a higher Eigen-
value for the fundamental mode in comparison to 
these arc antennas.  

We anticipate that the resulting lowering of the 
energy Eigen-value is possible suggestive of the fact 
that lower external energy source can excite more 
easily the fundamental mode. Thus it is possible 
antennas made of successive circular arcs of the 
same curvature  to replace linear antennas or 
antennas made of straight line parts in 
communication mobile and aerial applications. 
These kinds of very sensitive arc antennas can be 
very useful in 5G mobile communication networks.  
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Appendix 

function y=wire22(e) 

% eigenvalue root finder for a curved wire of 
%length 1, with a constant curvature s %extending 
in an angle cr=(angle in rad) V=0 %in one end and 
I=0 at the other end of the wire 
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global cr 

N=2000; 

N1=N/2; 

dz=1/N; 

s=cr; 

z1=10^10; 

for n=1:N1 

cc=-s^2/4-e; 

zb=j*cc*dz/2; 

zp=j/dz; 

z1=(z1+zb)*zp/(z1+zb+zp)+zb; 

end 

z2=0; 

for n=1:N1; 

cc=-s^2/4-e; 

zb=j*cc*dz/2; 

zp=j/dz; 

z2=(z2+zb)*zp/(z2+zb+zp)+zb; 

end 

y=imag(z1+z2); 

 

 

function fz=wirezero22 

% calculates the eigenvalues of the curved 
%symmetric wire of length=1  using the function 
wire22  

global cr fy fz  

N=2000;  

fz=0; 

for n=1:1001;x(n)=(n-1)*2.5/100; 

    y(n)=wire22(x(n)); 

end  

L=0; 

for n=1:1000; yy(n)=y(n)*y(n+1); 

 if yy(n)<0 && y(n)>0;L=L+1; 

       fz(L)= fzero(@wire22,[x(n),x(n+1)]); 

    end 

end 

 fy=fz; 

 

function y=wire32(e) 

%eigenfunction of the current for a given 
%eigenvalue on a wire of angle cr and length 1 

global cr 

  

N=2000; 

dz=1/N;  

s=cr;  

iv=[0;1]; 

f(1)=0; 

xx(1)=1;  

for n=1:N; 

    x=N*dz-(n-1/2)*dz; 

    xx(n+1)=x; 

    cc=-s^2/4-e;  

    A=[1 -j*cc*dz;j*dz 1]; 

    iv=A*iv; 

    f(n+1)=iv(2)*iv(1);     
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end 

f=imag(f); 

f=(f/max(f)); 

plot(xx,f);grid on 

 

function P=wirerad(q,w) 

% The radius of the circular antenna r=1; the arc 
length is r*cr=cr 

% the wavelength of the wave is 2*cr and its 
wavenumber k=2*pi/(2*cr)=pi/cr 

% thus k*r=k=pi/cr 

global cr 

  

N=100; D=1/N; kr=pi/cr; 

for n=1:N+1;a=(n-
1)*cr/N;x(n)=a;y(n)=sin(w)*cos(q)*cos(a)+sin(w)*s
in(q)*sin(a);z(n)=sin(w)*sin(q)*cos(a)-
sin(w)*cos(q)*sin(a); 

end 

for n=1:N+1;a=(n-
1)*cr/N;A(n)=sin(a)*exp(j*y(n)*kr)*y(n)/cos(w)*D
;B(n)=sin(a)*exp(j*y(n)*kr)*z(n)*D; 

end 

AA=sum(A); BB=sum(B); 

K1=abs(AA^2)+abs(BB^2); 

P=K1*(cos(w)/sin(w))^2 

 

 

Fig. 1 Schematic diagram of the representative 
T-circuit. 

 

 

Fig.2 Fundamental Eigen-value as function of the 
arc angle in radians of a circular arc antenna. 

 

Fig 3. Fundamental standing wave on a circular arc 
antenna of angle 0.99π 
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4. Fundamental standing wave on a circular arc 
antenna of angle 1.1π 

 

Fig 5. A linear circular arc antenna of arc angle 
0.99π 

 

Fig 6. Radiation for variable φ and θ=π/2,π/4,0 

 

Fig 7. Radiation for variable θ and φ=π/2 
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