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Abstract: Although several public datasets for driver behaviour analysis are publicly available, inconsistencies in
their formats hinder objective comparisons of machine learning and deep learning classification models. Such
comparisons are essential for evaluating model performance under realistic driving conditions. To address this
limitation, we present a benchmark study that investigates the influence of sensor data quality and source
variability on the performance of driver behaviour classification models. Raw inertial measurement unit (IMU)
data were analyzed from a publicly available driving dataset (Shardul, 2021, with 14,250 samples) and our
proprietary smaller dataset, Drive2025 (containing 6,375 samples), both of which were collected under similar
experimental conditions. Also, a combined dataset was built. The classification was performed on sequences of
statistical feature vectors describing the dynamic behaviour of the vehicle: mean, variance, standard deviation,
skewness, and kurtosis. For classification, the Random Forest (RF) and Support Vector Machine (SVM)
algorithms were implemented as representative machine learning models. Convolutional Neural Network (CNN)
and Long Short-Term Memory (LSTM) architectures were used as deep learning counterparts. The experiments
demonstrated the impact of data quality and origin on the performance of driver behaviour classification models.
The CNN and LSTM models remain the most robust and stable, achieving accuracies of 0.80/0.81 and F1-scores
of 0.85/0.84 on the proprietary dataset, and accuracies of 0.83/0.84 with F1-scores of 0.87/0.88 on the public
dataset. On the combined dataset, they reached 0.82/0.85 accuracy and 0.84/0.84 Fl-score, confirming strong
generalization ability. The RF and SVM models showed better performance on the Mendeley dataset, with a
moderate drop on the proprietary dataset due to natural noise and data variability. CNN and LSTM have
considerable potential for improvement through appropriate filtering and preprocessing. These steps could
significantly boost accuracy and prediction stability in real driving scenarios.
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1 Introduction

Key component of modern road safety is responsible ~ crucial —in  preventing traffic accidents. The
Adriving, which is characterized by anticipating, International Transport Forum’s annual report on road
adhering to, and being vigilant during travel. Despite  safety for 2024 revealed that traffic accidents resulted
the rapid advancements in intelligent vehicle in nearly 1.3 million deaths globally in 2023. This
technologies, such as automated emergency response statistic underscores the fact that traffic remains one of
systems, speed-adaptive control systems, and advanced  the leading causes of death globally [1]. The
driver assistance systems, human intervention remains  Directorate-General for Mobility and Transport of the
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EU (DG MOVE) estimates that there will be a 3%
decrease in casualties at the European level,

with roughly 19,800 fewer deaths until 2024. The DG
MOVE stresses the ongoing importance of using
efficient preventative traffic education and driver
behaviour monitoring strategies to effectively manage
and reduce road fatalities [2]. To achieve the goal of
zero victims by 2050, the EU's Vision Zero initiative
and the EU Road Safety Policy Framework 2021-2030
seek to reduce the number of fatalities and serious
injuries by 50% by 2030 through integrated care that
includes education, the implementation of laws,
infrastructure development, and the use of intelligent
vehicle assistance systems [3, 4].

As road systems become increasingly automated,
adaptive control systems and advanced driver
monitoring are essential to ensure transportation safety
and longevity. To construct Intelligent Transportation
Systems (ITS), build predictive safety models, and
apply personalised automobile management tactics, we
must first understand individual driving behaviours. In
previous studies, numerous computational methods
from machine learning and deep learning areas were
developed in driving behavior recognition. Deep
learning algorithms have several advantages, but their
ability to eliminate the need for intricate signal
preprocessing and automatically extract features is
particularly notable. Zhao et al. [5] built a CNN-—
BiLSTM—Attention (AM) model that can determine
when a driver isn't paying attention. It revealed four
tendencies that most drivers have with an accuracy of
almost 98%. Using added Gaussian noise and the
StateFarm dataset, the accuracy improved to 99.68%.
This demonstrates the effectiveness of the attention
mechanism in uncovering connections between
drivers’ operational data that are influenced by both
time and location. Chen et al. [6] ran a comparable
study and came up with the MCT-CNN-LSTM
strategy. It was able to acquire a 97.3% success rate
when looking at how people drive in real time with
data from wireless sensors by using convolutional
feature extraction and sequence modeling. Sun et al.
[7] employed a CNN-BiLSTM model to find hard-to-
see driving patterns. They could detect most things like
straight-line travel lane changes, slowing down, and
turning about 98% of the time. The research found that
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adding temporal convolution layers greatly improved
the detection of sudden movements and unusual
transitions. Mobini Seraji et al. [8] explored
supervised and unsupervised techniques, including
SVM, KNN, k-means, fuzzy c-means, and DBSCAN
to analyse driver behaviour, predict fuel consumption,
and enhance car safety. Additionally, the study
examined mixed deep learning models employed in
eco-driving vehicles and smart transportation systems.
Garefalakis et al. [9] studied standard classifiers and
ensemble methods such as Random Forest (RF),
AdaBoost, and multilayer perceptrons in simulated and
real-world driving scenarios. The RF model emerged
as a strong performer with an accuracy of 84% in a
controlled environment and 75% in the naturalistic
driving study. In both scenarios, RF offers a balanced
approach between precision and recall. SVMs
outperformed in capturing true positive instances in
both datasets, but show lower accuracy (68.67%) and
Fl-score (53.22%), suggesting a trade-off with
precision. Roussou et al. [10] conducted studies on
safe driving behaviour and evaluated the performance
of LSTM networks and feedforward neural networks
(ANNSs) in predicting changes in driver time dynamics.
They discovered that recurrent designs excel at
capturing long-term dependencies, which are crucial
for accurately identifying behaviour. LSTM models
are adept at capturing temporal dependencies within
data. In contrast, ANN models employ a feed-forward
architecture that disregards the temporal aspect. The
LSTM model specifically capitalises on the sequential
nature of the data, which may enhance prediction
performance. Hou et al. [11] explored the ways deep
learning models can be applied to identify hazardous
driving behaviour. To gather information, they
investigated four methods: surveys, data from
automobiles, eye tracking, and physiological sensing.
They also analysed the efficacy of deep learning
models, specifically DBN, CNN, and RNN, in
identifying risky driving habits. All models achieved
an overall classification recognition accuracy
exceeding 80%. Shirole et al. [12] emphasised the
importance of combining multiple data sources,
including automotive telemetry, inertial sensors, and
external data, to create comprehensive profiles of
drivers’ behaviour. They highlighted the critical need
for generalisation across different vehicle types and
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driving conditions, as this could impact prediction
accuracy. Mei et al. [13] integrated driving style
recognition with speed planning, covering data
collection, preprocessing, and classification
techniques. The paper focused on mixed machine
learning models for driving behavior classification,
considering both long-term and short-term factors, data
processing techniques, and evaluation metrics. It also
covered unsupervised rule-based and learning-based
algorithms, along with evaluation indicators such as
time efficiency and accuracy. Through the utilization
of the Bi-LSTM model in conjunction with an
attention mechanism that is founded on dilated
convolutional neural networks (ID-CNN), Wang and
Yao [13] addressed more effective methods for
locating distracted drivers. The approach focused on
the most important features, eliminated duplicate data,
and facilitated the extraction of features of different
sizes. Applying the model to the StateFarm dataset
yielded an accuracy of 95.84% while on the
Drive&Act-Distracted dataset, it achieved an accuracy
0f 97.89%. As a result, combining dilated convolutions
with attention processes makes it easier and more
accurate to identify drivers who are distracted while
operating their vehicles.

This paper presents a benchmark study investigating
the influence of sensor data quality and source
variability on driver behaviour classification models. A
new dataset is generated using real vehicle
experiments, which face challenges in controlling
environmental and external variables. This approach
will enhance the robustness of the drivers’ behaviour
classification.

The main contributions of this paper are as follows:
(1) The Drive2025 dataset, containing 6.375 samples,
was generated using data collected from IMU sensors
placed on two cars. (2) A set of fundamental statistical
features describing the vehicle’s dynamic behaviour,
including mean, variance, standard deviation,
skewness, and kurtosis, was directly computed. (3) To
ensure the reliability and validity of the data, real
vehicle experiment data were integrated with data from
a publicly available driving dataset (Shardul, 2021,
with 14.250 samples).
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2 Method

This paper aims to conduct a detailed analysis of
data recorded by IMU sensors to recognize different
driving behaviors and classify them into two
categories: normal and aggressive. Figure 1 illustrates
the complete IMU-based workflow for driver behavior
classification. IMU signals are first segmented using a
sliding window mechanism. For each segment,
statistical descriptors are computed, forming compact
feature vectors. These vectors are then provided as
input to both machine learning and deep learning
classifiers, enabling a unified benchmark analysis
focused on data quality and source variability.
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Fig. 1 IMU-based workflow for the classification of
driver behavior

The methodological workflow includes the following
stages: (1) Loading raw IMU data from CSV files; (2)
Computing statistical features for each IMU channel;
(3) Building and refining the feature vectors (V1); (4)
Standardizing features through normalization and
splitting the dataset; (5) Training the four
classification models (RF, SVM, CNN, LSTM); (6)
Performance evaluation based on Accuracy, Fl-score,
AUC, and Matthews Correlation Coefficient (MCC)
metrics; (7) Presenting the final results.

The experiment utilized the Shardul dataset
(containing 14,250 samples), which was published on
Mendeley Data [15]. Data were collected from IMU
sensors that record the vehicle’s linear accelerations
and angular velocities. Our proprietary smaller dataset,
Drive2025, contains 6,375 samples collected under
similar experimental conditions. Both datasets involve
urban and extra-urban routes, with normal and
aggressive driving behaviors. To test cross-domain
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consistency and model generalization capability, a
combined dataset was also generated by merging data
from both sources. Linear accelerations and angular
velocities measured along the orthogonal axes Acc X,
Acc Y, Acc Z, gyro x, gyro y, and gyro z were
collected. For each IMU signal, a set of fundamental
statistical features, including mean, variance, standard
deviation, skewness, and kurtosis, is computed. They
were computed over sliding windows of 600 samples
with a step size of 300 samples, ensuring 50% overlap
between consecutive segments. Four classification
models were implemented to assess the predictive
capabilities of different learning paradigms. The
Random Forest (RF) and Support Vector Machine
(SVM) are representative machine learning algorithms
operating in the statistical feature space. The
Convolutional Neural Network (CNN) and Long
Short-Term Memory (LSTM) are deep learning
architectures. CNN and LSTM architectures are
trained on sequences of statistical feature vectors. This
design choice ensures a fair and controlled comparison
with traditional machine learning models operating in
the same feature space, while still allowing LSTM to
capture temporal dependencies across consecutive
windows.

Each classifier was trained to distinguish between
normal and aggressive driving behaviors based on
patterns extracted from IMU signals.

2.1 Statistical Feature Extraction from IMU
Signals

To describe driver dynamics, five key statistical
features are computed from data collected from IMU
sensors: mean (u), variance (o?), standard deviation,
skewness (skew), and kurtosis (kurt). Let a; denote the
i sample of the IMU signal, N is the total number of
samples in the analyzed window, and E[‘] is the
expectation operator (mean of all samples). These
features were calculated over each imposed window of
the IMU time series, as follows [16].

Mean (L)

”:%zjai
(D)

Variance (Var)
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2.2 Classifier Algorithm

Random Forest (RF) - builds an ensemble of
T decision trees trained on random subsets of the data
and features. For a given input x, the final class
prediction is obtained through majority voting [17]:

y =modeth, (x), h, (x),..hy (x)}
(6)

Each decision tree, denoted as h,(x), partitions the
feature space by minimizing the Gini impurity:

Where px is the proportion of samples belonging to
the class k in a node. The randomization in both
feature selection and data sampling reduces correlation
between trees and improves generalization.

Support Vector Machine (SVM) - aims to find an
optimal separating hyperplane that maximizes the
margin between two classes. The optimization problem
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is formulated as [18]:

rangl%"wr sty (W'x, +b) >1,Vi
(8)

For nonlinear separations, a kernel function
K(x;,x;) is introduced to map the data into a higher-

dimensional feature space as follows:

K(XivXj) :¢(Xi)T¢(Xj)
9)

Common kernels include the Radial Basis Function
(RBF) is defined as K(x,x;)= exp(—Y"xi - X, ||)2 and
provides nonlinear decision boundaries.

Convolutional Neural Network (CNN) - In a CNN,
the convolutional layer applies a set of learnable filters

(kernels) to the input signal or image. For a 1D
convolution (e.g., IMU signal) [19]:

s(t):(x*w)(t):kz_l:x(t+r)mv(r)

(10) Each convolutional operation is followed by an
activation function (e.g., ReLU) and pooling to reduce
dimensionality:

P(l) = tglfil()i()g(t)
(1)
The final layers are fully connected and output the

probability distribution over classes through the
softmax function:

e k
P(y=klx)=—=¢—
e
j=1
(12)
CNNs automatically learn hierarchical spatial

representations from sensor data.

Long Short-Term Memory (LSTM) networks - extend
recurrent neural networks by incorporating memory
cells and gating mechanisms to preserve long-term
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dependencies [20]. For each time step t:

f, = cs(Wf [h_j,x, [+b; ) (forget gate)
(13)

1 :G(Wi[ht_l,xt]+bi ) (inputgate)
(14)

C = tanh(WC [hH , Xy ]+ b ) (candidatecellstate )
(15)

C,=f,0 C_, +i,0 C, (cellstateupdate)
(16)

Where W; represents the weight matrix associated
with  the [h_,,x, | denotes  the

concatenation of the current input and the previous
hidden state, b; is the bias with the forget gate, and

forget gate,

G denotes the sigmoid activation function. [ denotes
element-wise multiplication, tanh is an activation
function, and i, 0 C, that represents the new candidate

values scaled by how much we decided to update each
state value.
On the other hand,

0, =G(Wo[ht,1,xt]+bo ) (output gate)
(17)

h, =o, *tanh(C, ) (hiddenstate)
(18)

Where o, is the output gate activation and C, is the

current cell state.

2.3 Evaluating performance

Accuracy (Acc), F1 score (F1), area under the curve
ROC (AUC), and Matthews Correlation Coefficient
(MCC) are the metrics used to evaluate the
performance of each classifier[21]. Let TP, TN, FP,
and FN denote the number of true positives, true
negatives, false positives, and false negatives,
respectively, in the confusion matrix.
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o TPHTN
TP +FN +TN +FP
(19)

Acc gives a basic idea of how well a classifier
works, but it might be misleading when working with
datasets that aren't balanced [22]. It’s also important to
consider the F1-score which offers a clearer picture of
the model’s true performance. [23].

Z(Precision X Recall)

Fl= —
Precision + Recall
(20)
Where, Recall = _Tr and Precision = P .
TP +FN TP +FP

The Fl-score is a way to find out how well a
machine learning model performs classification. A
higher Fl-score, which ranges from 0 to 1, means
greater overall performance.

Area under the curve ROC (AUC) [24]:

AUC = '[;TPR(FPR)d(FPR)
@2y

Where, TPR:l and FPR:L .
TP+FN FP+TN

An AUC close to 1 indicates excellent separability,
meaning the model can effectively distinguish between
classes, whereas an AUC of 0.5 implies random
performance [25]. In driver behavior modeling, AUC
is widely used because it is threshold-independent and
robust to class imbalance [26].

(TPx TN)—(FPxFN)

MCC =
\/(TP +FP((TP +FN)(TN+FP)(TN +FN)

(22)

MCC is useful for imbalanced datasets since it
considers both positive and negative classes. It might
be anywhere from -1 to +1. A +1 means the prediction
was perfect, a 0 means it was no better than random,
and a -1 means that the prediction and observation
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were completely different.

This study focuses on a controlled benchmark
analysis to determine how sensor data quality and
origin affect classification performance across various
learning paradigms, rather than novelty in algorithms.

3 Results and Discussions

A sliding window containing 600 samples with a
step size of 300 samples was used to generate the
dataset. This ensured a 50% overlap between
consecutive segments. This choice was guided by the
following rule: the window and segment sizes were
increased until the error approximation reached its
minimum. The proprietary Drive2025 dataset covers
realistic driving conditions like road imperfections,
vibrations, and uncontrollable environmental factors.
Although the dataset has a small sample size, we chose
it because our study prioritises resilience over absolute
accuracy.

The Mendeley public dataset has 46 segments for
analysis, the Drive2025 proprietary dataset has 19
segments, and the combined dataset has 67 segments.
Each segment contains 36 statistical descriptors
extracted from six IMU channels (Acc X/Y/Z,
gyro x/y/z). These descriptors cover measures of
amplitude, variability, and distribution asymmetry. The
dataset is divided into 80% training and 20% testing.
All models were trained to discriminate between
normal (0) and aggressive (1) driving behaviours.

The hardware environment consisted of an Intel(R)
Core(TM) i3-4030U CPU running at 1.90 GHz and 8
GB of RAM, running on Windows 10 Pro.

Boxplots were created for each dataset to evaluate
the descriptive and classification capabilities of each
feature. (Figs. 2-4). These results clearly demonstrate
the impact of sensor data quality and source variability
on the performance of driver behaviour classification
models. Distinct clusters of descriptors separate the
normal (0) and aggressive (1) classes.
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Fig 2. Boxplots of statistical descriptors for the
Mendeley database of normal (0) and aggressive (1)
driving behaviours during testing.

Figure 2 illustrates the discrimination value of
statistical descriptors for the Mendeley database.
Unlike variance and standard deviation, skewness and
kurtosis reveal asymmetry and impulsive driving
indicative of aggressive behaviour. The Acc X var
and Acc X kurt data highlight strong longitudinal
variations in acceleration, specific to braking and rapid
acceleration phases. Gyro Y std shows high
dispersion for aggressive behaviors, reflecting the
lateral instability of the vehicle. Acc Z mean captures
differences in vertical oscillation caused by road
irregularities, while Gyro Z skew indicates a
pronounced asymmetry in rotational movements
around the vertical axis. The distributions are compact
and coherent, and the differences between the medians
confirm that longitudinal and lateral dynamics are the
main factors defining aggressive behavior in this
dataset.
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Fig 3. Boxplots of statistical descriptors for the
Drive2025 database of normal (0) and aggressive (1)
driving behaviours during testing.

Figure 3 presents boxplots of statistical descriptors
for the proprietary Drive2025 set. This data set was
recorded under real traffic conditions, the variability of
the signals is higher, and the influence of external
factors (surface type, vibrations, driver—vehicle
interaction) is visible in the gyroscopic characteristics.
The Gyro Y std and Gyro X var descriptors clearly
separate  classes, suggesting sudden steering
movements and lateral instability. Acc X var and

Acc_Z mean reveal moderate but consistent
differences between smooth and  aggressive
manoeuvres, while Gyro Z skew demonstrates

extreme values and pronounced asymmetry, typical of
irregular movements and strong vibrations. In real
driving, gyroscopic descriptors are the most sensitive
to aggressive behaviours, while acceleration
characteristics remain relevant for identifying
longitudinal variations.

Figure 4 presents boxplots illustrating statistical
descriptors for combined datasets.
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Table 1 compares the results provided by classifiers
in terms of performance measures. The results
demonstrate that the LSTM model consistently
achieved the highest overall performance across all
datasets, with the CNN model performing closely
behind.

Table 1. Average performance metrics for the selected
classifiers: RF, SVM, CNN, and LSTM
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Fig 4. Boxplots of statistical descriptors for the
combined database of normal (0) and aggressive (1)
driving behaviours during testing.

When the ordered structure of the Mendeley data
was combined with the realistic complexity of the
Drive2025 dataset, a high stability of the discriminant
features was observed. The stability of Acc X war,
Acc X kurt, Gyro Y std, Gyro_Z skew,
Acc Z mean, and Gyro X var descriptors was
evident in their ability to separate between classes
regardless of the data’s origin. This stability
demonstrates that they capture fundamental properties
of vehicle dynamics, independent of factors such as
data source, road type, or recording conditions. These
results confirm that the analysed features are domain-
invariant descriptors. This makes them useful for
building robust models to recognise aggressive driving
behaviour. Furthermore, the Acc X var and
Gyro Y std features consistently emerge as major
discriminant factors. This suggests that longitudinal
and lateral manoeuvres are the most pertinent for
detecting aggressive behaviour. The stability of these
descriptors within the combined set reinforces their
potential for use in generalisable classification models
and mobile driving style monitoring applications.
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Dataset M(l)de Acc;’lrac scor | AUC | MCC
e

RF 0.86 0.85 | 0.88 | 0.81

Me“f;ley SVM | 0.84 0.83 | 0.86 |0.78

win(dows) CNN | 0.88 0.87 | 091 |0.84

LSTM | 0.89 0.88 | 0.92 | 0.86

) RF 0.79 0.78 | 0.81 |0.73

D“V;’;"ZS SVM | 0.77 0.76 | 0.79 |0.70

win(dows) CNN | 0.81 0.80 | 0.83 |0.77

LSTM | 0.82 0.81 | 0.84 |0.78

 |RF 0.83 082 | 0.85 |0.79

C‘(’i“zz’;“e SVM | 0.82 081 |0.84 |0.78

windows) |-CNN_ 085 084 |0.87 |08l

LSTM | 0.86 0.85 | 0.88 | 0.82

These results confirm that deep learning models
exhibit higher robustness to data variability,
particularly in noisy real-world conditions. In contrast,
traditional machine learning classifiers are more
susceptible to fluctuations in sensor quality. This
explains their reduced performance on the proprietary
dataset.

Both deep learning architectures exhibited
significant robustness, consistently achieving stable
Fl1-scores and MCC values despite a reduction in the
number of samples. This highlights their ability to
capture temporal dependencies and spatial patterns in
the IMU signal sequences, which is crucial for
differentiating  between  smooth and  abrupt
manoeuvres. The RF and SVM classifiers performed
less well than the deep learning classifiers but showed
better performance on the Mendeley dataset, with a
moderate drop on the proprietary dataset due to natural
noise and data variability. Among them, RF achieved
an AUC closer to values reached by deep learning
classifiers. This indicated a good balance between
sensitivity and specificity, suggesting the RF model is
strong and practically feasible.
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While this approach has potential, it does come with
some limitations and challenges. Firstly, it introduces a
slight computational complexity due to the use of
sliding windows and feature extraction. Secondly,
achieving real-time performance is a significant

challenge, especially when demonstrating high
classification accuracy in real-time  driving
environments.

4 Conclusions

This study reveals that data quality, sensor

reliability, and feature representativeness impact the
classification of driving behaviour. The results
demonstrate that data quality and source directly
influence model performance. Notably, Mendeley
achieved the highest accuracy (with an LSTM model
achieving 0.89 accuracy), thanks to its consistent
sampling and low sensor noise. In contrast, the
Drive2025 model struggles with data variability and
signal fluctuations caused by uneven roads, steep
curves, and natural noise. These findings suggest that
resilient temporal models like LSTM can effectively
predict driver behaviour in noisy and uncertain
environments.

Since the combined dataset improved generalisation
accuracy and reduced overfitting in smaller datasets,
future research should consider wusing data
augmentation or synthetic data synthesis techniques,
such as GANSs.
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