
 

 

 
Abstract: Although several public datasets for driver behaviour analysis are publicly available, inconsistencies in 
their formats hinder objective comparisons of machine learning and deep learning classification models. Such 
comparisons are essential for evaluating model performance under realistic driving conditions. To address this 
limitation, we present a benchmark study that investigates the influence of sensor data quality and source 
variability on the performance of driver behaviour classification models. Raw inertial measurement unit (IMU) 
data were analyzed from a publicly available driving dataset (Shardul, 2021, with 14,250 samples) and our 
proprietary smaller dataset, Drive2025 (containing 6,375 samples), both of which were collected under similar 
experimental conditions. Also, a combined dataset was built. The classification was performed on sequences of 
statistical feature vectors describing the dynamic behaviour of the vehicle: mean, variance, standard deviation, 
skewness, and kurtosis. For classification, the Random Forest (RF) and Support Vector Machine (SVM) 
algorithms were implemented as representative machine learning models. Convolutional Neural Network (CNN) 
and Long Short-Term Memory (LSTM) architectures were used as deep learning counterparts. The experiments 
demonstrated the impact of data quality and origin on the performance of driver behaviour classification models. 
The CNN and LSTM models remain the most robust and stable, achieving accuracies of 0.80/0.81 and F1-scores 
of 0.85/0.84 on the proprietary dataset, and accuracies of 0.83/0.84 with F1-scores of 0.87/0.88 on the public 
dataset. On the combined dataset, they reached 0.82/0.85 accuracy and 0.84/0.84 F1-score, confirming strong 
generalization ability. The RF and SVM models showed better performance on the Mendeley dataset, with a 
moderate drop on the proprietary dataset due to natural noise and data variability. CNN and LSTM have 
considerable potential for improvement through appropriate filtering and preprocessing. These steps could 
significantly boost accuracy and prediction stability in real driving scenarios. 
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1 Introduction 
  Key component of modern road safety is responsible 

driving, which is characterized by anticipating, 
adhering to, and being vigilant during travel. Despite 
the rapid advancements in intelligent vehicle 
technologies, such as automated emergency response 
systems, speed-adaptive control systems, and advanced 
driver assistance systems, human intervention remains 

crucial in preventing traffic accidents. The 
International Transport Forum’s annual report on road 
safety for 2024 revealed that traffic accidents resulted 
in nearly 1.3 million deaths globally in 2023. This 
statistic underscores the fact that traffic remains one of 
the leading causes of death globally [1]. The 
Directorate-General for Mobility and Transport of the 
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EU (DG MOVE) estimates that there will be a 3% 
decrease in casualties at the European level,  
 
with roughly 19,800 fewer deaths until 2024. The DG 
MOVE stresses the ongoing importance of using 
efficient preventative traffic education and driver 
behaviour monitoring strategies to effectively manage 
and reduce road fatalities [2]. To achieve the goal of 
zero victims by 2050, the EU's Vision Zero initiative 
and the EU Road Safety Policy Framework 2021–2030 
seek to reduce the number of fatalities and serious 
injuries by 50% by 2030 through integrated care that 
includes education, the implementation of laws, 
infrastructure development, and the use of intelligent 
vehicle assistance systems [3, 4].  

As road systems become increasingly automated, 
adaptive control systems and advanced driver 
monitoring are essential to ensure transportation safety 
and longevity. To construct Intelligent Transportation 
Systems (ITS), build predictive safety models, and 
apply personalised automobile management tactics, we 
must first understand individual driving behaviours. In 
previous studies, numerous computational methods 
from machine learning and deep learning areas were 
developed in driving behavior recognition. Deep 
learning algorithms have several advantages, but their 
ability to eliminate the need for intricate signal 
preprocessing and automatically extract features is 
particularly notable. Zhao et al. [5] built a CNN–
BiLSTM–Attention (AM) model that can determine 
when a driver isn't paying attention. It revealed four 
tendencies that most drivers have with an accuracy of 
almost 98%. Using added Gaussian noise and the 
StateFarm dataset, the accuracy improved to 99.68%. 
This demonstrates the effectiveness of the attention 
mechanism in uncovering connections between 
drivers’ operational data that are influenced by both 
time and location. Chen et al. [6] ran a comparable 
study and came up with the MCT–CNN–LSTM 
strategy. It was able to acquire a 97.3% success rate 
when looking at how people drive in real time with 
data from wireless sensors by using convolutional 
feature extraction and sequence modeling. Sun et al. 
[7] employed a CNN–BiLSTM model to find hard-to-
see driving patterns. They could detect most things like 
straight-line travel lane changes, slowing down, and 
turning about 98% of the time. The research found that 

adding temporal convolution layers greatly improved 
the detection of sudden movements and unusual 
transitions. Mobini Seraji et al. [8] explored 
supervised and unsupervised techniques, including 
SVM, KNN, k-means, fuzzy c-means, and DBSCAN 
to analyse driver behaviour, predict fuel consumption, 
and enhance car safety. Additionally, the study 
examined mixed deep learning models employed in 
eco-driving vehicles and smart transportation systems. 
Garefalakis et al. [9] studied standard classifiers and 
ensemble methods such as Random Forest (RF), 
AdaBoost, and multilayer perceptrons in simulated and 
real-world driving scenarios. The RF model emerged 
as a strong performer with an accuracy of 84% in a 
controlled environment and 75% in the naturalistic 
driving study. In both scenarios, RF offers a balanced 
approach between precision and recall. SVMs 
outperformed in capturing true positive instances in 
both datasets, but show lower accuracy (68.67%) and 
F1-score (53.22%), suggesting a trade-off with 
precision. Roussou et al. [10] conducted studies on 
safe driving behaviour and evaluated the performance 
of LSTM networks and feedforward neural networks 
(ANNs) in predicting changes in driver time dynamics. 
They discovered that recurrent designs excel at 
capturing long-term dependencies, which are crucial 
for accurately identifying behaviour. LSTM models 
are adept at capturing temporal dependencies within 
data. In contrast, ANN models employ a feed-forward 
architecture that disregards the temporal aspect. The 
LSTM model specifically capitalises on the sequential 
nature of the data, which may enhance prediction 
performance. Hou et al. [11] explored the ways deep 
learning models can be applied to identify hazardous 
driving behaviour. To gather information, they 
investigated four methods: surveys, data from 
automobiles, eye tracking, and physiological sensing. 
They also analysed the efficacy of deep learning 
models, specifically DBN, CNN, and RNN, in 
identifying risky driving habits. All models achieved 
an overall classification recognition accuracy 
exceeding 80%. Shirole et al. [12] emphasised the 
importance of combining multiple data sources, 
including automotive telemetry, inertial sensors, and 
external data, to create comprehensive profiles of 
drivers’ behaviour. They highlighted the critical need 
for generalisation across different vehicle types and 
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driving conditions, as this could impact prediction 
accuracy. Mei et al. [13] integrated driving style 
recognition with speed planning, covering data 
collection, preprocessing, and classification 
techniques. The paper focused on mixed machine 
learning models for driving behavior classification, 
considering both long-term and short-term factors, data 
processing techniques, and evaluation metrics. It also 
covered unsupervised rule-based and learning-based 
algorithms, along with evaluation indicators such as 
time efficiency and accuracy. Through the utilization 
of the Bi-LSTM model in conjunction with an 
attention mechanism that is founded on dilated 
convolutional neural networks (ID-CNN), Wang and 
Yao [13] addressed more effective methods for 
locating distracted drivers. The approach focused on 
the most important features, eliminated duplicate data, 
and facilitated the extraction of features of different 
sizes. Applying the model to the StateFarm dataset 
yielded an accuracy of 95.84% while on the 
Drive&Act-Distracted dataset, it achieved an accuracy 
of 97.89%. As a result, combining dilated convolutions 
with attention processes makes it easier and more 
accurate to identify drivers who are distracted while 
operating their vehicles. 

This paper presents a benchmark study investigating 
the influence of sensor data quality and source 
variability on driver behaviour classification models. A 
new dataset is generated using real vehicle 
experiments, which face challenges in controlling 
environmental and external variables. This approach 
will enhance the robustness of the drivers’ behaviour 
classification. 

The main contributions of this paper are as follows: 
(1) The Drive2025 dataset, containing 6.375 samples, 
was generated using data collected from IMU sensors 
placed on two cars. (2) A set of fundamental statistical 
features describing the vehicle’s dynamic behaviour, 
including mean, variance, standard deviation, 
skewness, and kurtosis, was directly computed. (3) To 
ensure the reliability and validity of the data, real 
vehicle experiment data were integrated with data from 
a publicly available driving dataset (Shardul, 2021, 
with 14.250 samples).  

 

2 Method 
This paper aims to conduct a detailed analysis of 

data recorded by IMU sensors to recognize different 
driving behaviors and classify them into two 
categories: normal and aggressive. Figure 1 illustrates 
the complete IMU-based workflow for driver behavior 
classification. IMU signals are first segmented using a 
sliding window mechanism. For each segment, 
statistical descriptors are computed, forming compact 
feature vectors. These vectors are then provided as 
input to both machine learning and deep learning 
classifiers, enabling a unified benchmark analysis 
focused on data quality and source variability. 

 
 

 
Fig. 1 IMU-based workflow for the classification of 

driver behavior 
 

The methodological workflow includes the following 
stages: (1) Loading raw IMU data from CSV files; (2) 
Computing statistical features for each IMU channel; 
(3) Building and refining the feature vectors (V₁); (4) 
Standardizing features through normalization and 
splitting the dataset; (5) Training the four 
classification models (RF, SVM, CNN, LSTM); (6) 
Performance evaluation based on Accuracy, F1-score, 
AUC, and Matthews Correlation Coefficient (MCC) 
metrics; (7) Presenting the final results.  

The experiment utilized the Shardul dataset 
(containing 14,250 samples), which was published on 
Mendeley Data [15]. Data were collected from IMU 
sensors that record the vehicle’s linear accelerations 
and angular velocities. Our proprietary smaller dataset, 
Drive2025, contains 6,375 samples collected under 
similar experimental conditions. Both datasets involve 
urban and extra-urban routes, with normal and 
aggressive driving behaviors. To test cross-domain 
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consistency and model generalization capability, a 
combined dataset was also generated by merging data 
from both sources. Linear accelerations and angular 
velocities measured along the orthogonal axes Acc X, 
Acc Y, Acc Z, gyro_x, gyro_y, and gyro_z were 
collected. For each IMU signal, a set of fundamental 
statistical features, including mean, variance, standard 
deviation, skewness, and kurtosis, is computed. They 
were computed over sliding windows of 600 samples 
with a step size of 300 samples, ensuring 50% overlap 
between consecutive segments. Four classification 
models were implemented to assess the predictive 
capabilities of different learning paradigms. The 
Random Forest (RF) and Support Vector Machine 
(SVM) are representative machine learning algorithms 
operating in the statistical feature space. The 
Convolutional Neural Network (CNN) and Long 
Short-Term Memory (LSTM) are deep learning 
architectures. CNN and LSTM architectures are 
trained on sequences of statistical feature vectors. This 
design choice ensures a fair and controlled comparison 
with traditional machine learning models operating in 
the same feature space, while still allowing LSTM to 
capture temporal dependencies across consecutive 
windows. 

Each classifier was trained to distinguish between 
normal and aggressive driving behaviors based on 
patterns extracted from IMU signals. 

2.1 Statistical Feature Extraction from IMU 
Signals 

 
To describe driver dynamics, five key statistical 

features are computed from data collected from IMU 
sensors: mean (μ), variance (σ2), standard deviation, 
skewness (skew), and kurtosis (kurt). Let ai denote the 
ith sample of the IMU signal, N is the total number of 
samples in the analyzed window, and E[⋅] is the 
expectation operator (mean of all samples). These 
features were calculated over each imposed window of 
the IMU time series, as follows [16]. 
Mean (µ)  

 

jj

1 a
N

                                    

(1) 
 
Variance (Var) 

 

N2 2
ii 1
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N 

                               
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Standard Deviation (STD)  

 

STD                                 
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Kurtosis (Kurt)  
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


                                                                 

(5) 

2.2 Classifier Algorithm 

Random Forest (RF) - builds an ensemble of 
T decision trees trained on random subsets of the data 
and features. For a given input x , the final class 
prediction is obtained through majority voting [17]: 

 
1 2 Tŷ mode{h (x),h (x),..h (x)}                                            

(6) 
 

Each decision tree, denoted as ih (x) , partitions the 
feature space by minimizing the Gini impurity: 

 
k

2
k

k 1
G 1 p



                                                                          

(7) 
 

Where pk is the proportion of samples belonging to 
the class k in a node. The randomization in both 
feature selection and data sampling reduces correlation 
between trees and improves generalization. 

 

Support Vector Machine (SVM) - aims to find an 
optimal separating hyperplane that maximizes the 
margin between two classes. The optimization problem 
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is formulated as [18]: 
 

b

2 T
iw, i

1 w s.t.y (w x b) 1, ii
2

m n                           

(8)   
 

For nonlinear separations, a kernel function 
i jK(x , x ) is introduced to map the data into a higher-

dimensional feature space as follows: 
 

T
i j i jK(x ,x ) (x ) (x )                                                           

(9) 
 

Common kernels include the Radial Basis Function 
(RBF) is defined as 2

i j i jK(x , x ) exp( x x )   and 

provides nonlinear decision boundaries. 

Convolutional Neural Network (CNN) - In a CNN, 
the convolutional layer applies a set of learnable filters 
(kernels) to the input signal or image. For a 1D 
convolution (e.g., IMU signal) [19]: 

        
k 1

r 0

s t x*w t x t r w r




                                  

(10)  Each convolutional operation is followed by an 
activation function (e.g., ReLU) and pooling to reduce 
dimensionality: 

 
   

t R(i)
P i max 8 t


                                                                  

(11) 
 

The final layers are fully connected and output the 
probability distribution over classes through the 
softmax function: 
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 CNNs automatically learn hierarchical spatial 
representations from sensor data. 

Long Short-Term Memory (LSTM) networks - extend 
recurrent neural networks by incorporating memory 
cells and gating mechanisms to preserve long-term 

dependencies [20]. For each time step t : 
 

   t f t 1 t f   f W h , x b    forget gate                                 
(13) 
 

   t i t 1 t i  i W h , x b    input gate                                    
(14) 
 

   t C t 1 t CC tanh W h , x b   candidate cell state             

(15) 
 

 t t t 1 t tC f C i C     cell state update                      

(16) 
 

  Where fW  represents the weight matrix associated 
with the forget gate, t 1 th ,x   denotes the 
concatenation of the current input and the previous 
hidden state, f   b is the bias with the forget gate, and 
 denotes the sigmoid activation function.  denotes 
element-wise multiplication, tanh is an activation 
function, and t ti C  that represents the new candidate 
values scaled by how much we decided to update each 
state value. 

On the other hand, 
 

   t o t 1 t o  o W h , x b    output gate                               
(17) 
 

   t t th o *tanh C    hidden state                                        
(18) 
 

Where to  is the output gate activation and tC   is the 
current cell state. 

 

2.3 Evaluating performance 
 

Accuracy (Acc), F1 score (F1), area under the curve 
ROC (AUC), and Matthews Correlation Coefficient 
(MCC) are the metrics used to evaluate the 
performance of each classifier[21]. Let TP, TN, FP, 
and FN denote the number of true positives, true 
negatives, false positives, and false negatives, 
respectively, in the confusion matrix. 
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(19) 
 

Acc gives a basic idea of how well a classifier 
works, but it might be misleading when working with 
datasets that aren't balanced [22]. It’s also important to 
consider the F1-score which offers a clearer picture of 
the model’s true performance. [23]. 

 
 2 Precision x Recall

F1
Precision Recall




                                                

(20) 
 

Where,  TPRecall
TP FN




  and  TPPrecision
TP FP




.  

 
The F1-score is a way to find out how well a 

machine learning model performs classification. A 
higher F1-score, which ranges from 0 to 1, means 
greater overall performance. 

Area under the curve ROC (AUC) [24]: 
 

   
1

0
AUC TPR FPR d FPR                                            

(21) 
 

Where, TPTPR
TP FN




 and  FPFPR
FP TN




 .  

 
An AUC close to 1 indicates excellent separability, 

meaning the model can effectively distinguish between 
classes, whereas an AUC of 0.5 implies random 
performance [25]. In driver behavior modeling, AUC 
is widely used because it is threshold-independent and 
robust to class imbalance [26]. 
 

   

   

TPx TN FPxFN
MCC

(TP FP( TP FN TN FP TN FN




   
   (22) 

 
MCC is useful for imbalanced datasets since it 

considers both positive and negative classes. It might 
be anywhere from -1 to +1. A +1 means the prediction 
was perfect, a 0 means it was no better than random, 
and a -1 means that the prediction and observation 

were completely different. 
This study focuses on a controlled benchmark 

analysis to determine how sensor data quality and 
origin affect classification performance across various 
learning paradigms, rather than novelty in algorithms. 

3 Results and Discussions 
A sliding window containing 600 samples with a 

step size of 300 samples was used to generate the 
dataset. This ensured a 50% overlap between 
consecutive segments. This choice was guided by the 
following rule: the window and segment sizes were 
increased until the error approximation reached its 
minimum. The proprietary Drive2025 dataset covers 
realistic driving conditions like road imperfections, 
vibrations, and uncontrollable environmental factors. 
Although the dataset has a small sample size, we chose 
it because our study prioritises resilience over absolute 
accuracy.  

The Mendeley public dataset has 46 segments for 
analysis, the Drive2025 proprietary dataset has 19 
segments, and the combined dataset has 67 segments. 
Each segment contains 36 statistical descriptors 
extracted from six IMU channels (Acc X/Y/Z, 
gyro_x/y/z). These descriptors cover measures of 
amplitude, variability, and distribution asymmetry. The 
dataset is divided into 80% training and 20% testing. 
All models were trained to discriminate between 
normal (0) and aggressive (1) driving behaviours. 

The hardware environment consisted of an Intel(R) 
Core(TM) i3-4030U CPU running at 1.90 GHz and 8 
GB of RAM, running on Windows 10 Pro. 

Boxplots were created for each dataset to evaluate 
the descriptive and classification capabilities of each 
feature. (Figs. 2-4). These results clearly demonstrate 
the impact of sensor data quality and source variability 
on the performance of driver behaviour classification 
models. Distinct clusters of descriptors separate the 
normal (0) and aggressive (1) classes.  
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Fig 2. Boxplots of statistical descriptors for the 
Mendeley database of normal (0) and aggressive (1) 

driving behaviours during testing. 
 
Figure 2 illustrates the discrimination value of 

statistical descriptors for the Mendeley database.  
Unlike variance and standard deviation, skewness and 
kurtosis reveal asymmetry and impulsive driving 
indicative of aggressive behaviour. The Acc_X_var 
and Acc_X_kurt data highlight strong longitudinal 
variations in acceleration, specific to braking and rapid 
acceleration phases. Gyro_Y_std shows high 
dispersion for aggressive behaviors, reflecting the 
lateral instability of the vehicle. Acc_Z_mean captures 
differences in vertical oscillation caused by road 
irregularities, while Gyro_Z_skew indicates a 
pronounced asymmetry in rotational movements 
around the vertical axis. The distributions are compact 
and coherent, and the differences between the medians 
confirm that longitudinal and lateral dynamics are the 
main factors defining aggressive behavior in this 
dataset.  

 

  

  

 

 

Fig 3. Boxplots of statistical descriptors for the 
Drive2025 database of normal (0) and aggressive (1) 

driving behaviours during testing. 
 

Figure 3 presents boxplots of statistical descriptors 
for the proprietary Drive2025 set. This data set was 
recorded under real traffic conditions, the variability of 
the signals is higher, and the influence of external 
factors (surface type, vibrations, driver–vehicle 
interaction) is visible in the gyroscopic characteristics. 
The Gyro_Y_std and Gyro_X_var descriptors clearly 
separate classes, suggesting sudden steering 
movements and lateral instability. Acc_X_var and 
Acc_Z_mean reveal moderate but consistent 
differences between smooth and aggressive 
manoeuvres, while Gyro_Z_skew demonstrates 
extreme values and pronounced asymmetry, typical of 
irregular movements and strong vibrations. In real 
driving, gyroscopic descriptors are the most sensitive 
to aggressive behaviours, while acceleration 
characteristics remain relevant for identifying 
longitudinal variations. 

Figure 4 presents boxplots illustrating statistical 
descriptors for combined datasets. 
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Fig 4. Boxplots of statistical descriptors for the 
combined database of normal (0) and aggressive (1) 

driving behaviours during testing. 
 

When the ordered structure of the Mendeley data 
was combined with the realistic complexity of the 
Drive2025 dataset, a high stability of the discriminant 
features was observed. The stability of Acc_X_var, 
Acc_X_kurt, Gyro_Y_std, Gyro_Z_skew, 
Acc_Z_mean, and Gyro_X_var descriptors was 
evident in their ability to separate between classes 
regardless of the data’s origin. This stability 
demonstrates that they capture fundamental properties 
of vehicle dynamics, independent of factors such as 
data source, road type, or recording conditions. These 
results confirm that the analysed features are domain-
invariant descriptors.  This makes them useful for 
building robust models to recognise aggressive driving 
behaviour. Furthermore, the Acc_X_var and 
Gyro_Y_std features consistently emerge as major 
discriminant factors. This suggests that longitudinal 
and lateral manoeuvres are the most pertinent for 
detecting aggressive behaviour. The stability of these 
descriptors within the combined set reinforces their 
potential for use in generalisable classification models 
and mobile driving style monitoring applications. 

Table 1 compares the results provided by classifiers 
in terms of performance measures. The results 
demonstrate that the LSTM model consistently 
achieved the highest overall performance across all 
datasets, with the CNN model performing closely 
behind. 

 
Table 1. Average performance metrics for the selected 

classifiers: RF, SVM, CNN, and LSTM 

Dataset Mode
l 

Accurac
y 

F1-
scor

e 
AUC MCC 

Mendeley 
(46 

windows) 

RF 0.86 0.85 0.88 0.81 
SVM 0.84 0.83 0.86 0.78 
CNN 0.88 0.87 0.91 0.84 
LSTM 0.89 0.88 0.92 0.86 

Drive2025 
(19 

windows) 

RF 0.79 0.78 0.81 0.73 
SVM 0.77 0.76 0.79 0.70 
CNN 0.81 0.80 0.83 0.77 
LSTM 0.82 0.81 0.84 0.78 

Combine
d (67 

windows) 

RF 0.83 0.82 0.85 0.79 
SVM 0.82 0.81 0.84 0.78 
CNN 0.85 0.84 0.87 0.81 
LSTM 0.86 0.85 0.88 0.82 

 
These results confirm that deep learning models 

exhibit higher robustness to data variability, 
particularly in noisy real-world conditions. In contrast, 
traditional machine learning classifiers are more 
susceptible to fluctuations in sensor quality. This 
explains their reduced performance on the proprietary 
dataset. 

Both deep learning architectures exhibited 
significant robustness, consistently achieving stable 
F1-scores and MCC values despite a reduction in the 
number of samples. This highlights their ability to 
capture temporal dependencies and spatial patterns in 
the IMU signal sequences, which is crucial for 
differentiating between smooth and abrupt 
manoeuvres. The RF and SVM classifiers performed 
less well than the deep learning classifiers but showed 
better performance on the Mendeley dataset, with a 
moderate drop on the proprietary dataset due to natural 
noise and data variability. Among them, RF achieved 
an AUC closer to values reached by deep learning 
classifiers. This indicated a good balance between 
sensitivity and specificity, suggesting the RF model is 
strong and practically feasible.  
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While this approach has potential, it does come with 
some limitations and challenges. Firstly, it introduces a 
slight computational complexity due to the use of 
sliding windows and feature extraction. Secondly, 
achieving real-time performance is a significant 
challenge, especially when demonstrating high 
classification accuracy in real-time driving 
environments. 

4 Conclusions 

This study reveals that data quality, sensor 
reliability, and feature representativeness impact the 
classification of driving behaviour. The results 
demonstrate that data quality and source directly 
influence model performance. Notably, Mendeley 
achieved the highest accuracy (with an LSTM model 
achieving 0.89 accuracy), thanks to its consistent 
sampling and low sensor noise. In contrast, the 
Drive2025 model struggles with data variability and 
signal fluctuations caused by uneven roads, steep 
curves, and natural noise. These findings suggest that 
resilient temporal models like LSTM can effectively 
predict driver behaviour in noisy and uncertain 
environments. 

Since the combined dataset improved generalisation 
accuracy and reduced overfitting in smaller datasets, 
future research should consider using data 
augmentation or synthetic data synthesis techniques, 
such as GANs.  
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