
    

Abstract: - The present article is a quasi-Part II of [12] and examines the relation between the Spectral Density 

of Excitation to the Spectral Density of response -beyond the analyses of [12]- in the case of the system “Railway 

Vehicle-Railway Track”. It begins with the Historical Perspective, it includes some principles of Periodic, Non-

Periodic Functions, Fourier Series and Probabilities Theory and examines in more detail the relationship between 

Excitation-Response Spectral Densities and specifically for the case of the Track vertical Defects and the Transfer 

Function of the Track Recording Car/Vehicle. It is based on the Mathematical Modelling of the Railway System 

“Vehicle-Track”.     

 

Key-Words: Excitation, Response, Spectral, Density, Railways, Track, Vehicle, Random, Functions, stationary, 

ergodic. 

Received: March 3, 2025. Revised: August 9, 2025. Accepted: September 9, 2025. Published: October 8, 2025. 

 

1 Introduction 

The present article is a quasi-Part II of the article 

“Railway System ‘Vehicle-Track’: Relation Between 

the Spectral Density of Excitation vs Response” [12]. 

It focuses on the properties of the Spectral Density of 

a random signal, and, especially why the Power 

Spectral Density of the real vertical defects along the 

Track can be accurately calculated by the Spectral 

Density of the recordings of the measurements of the 

Track defects via the Transfer Function of the 

Recording Vehicle.  
Statistics play a significant role in spectral 

analysis in this case, because most signals have a 

noisy or random aspect. If the underlying statistical 

attributes of a signal were known exactly or could be 

determined without error from a finite interval of the 

signal, then spectral analysis would be an exact 

science. Finally, the practical reality documents that 

-indeed- an estimate of the spectrum can be made 

from even a single finite segment of an infinite signal 

[[16], 1, 2].  

We should remember that [12]: in Railways “the 

Train circulation is a random dynamic phenomenon 

and, according to the different frequencies imposed 

by the loads, and the corresponding response of track 

superstructure. The dynamic component of the load 

of the vehicle on the track depends on the mechanical 

properties (stiffness, damping) of the system 

“vehicle-track”, which acts as an excitation on the 

vehicle’s motion (Figures 4, 5) and, vice-versa, the 

vehicle’s motion acts as an excitation on the track. 

The most simplified approach of this motion (vehicle 

on Track) is simulated by a SDOF [ = Single Degree 

Of Freedom] system (Figure 5)”.  

The dynamic component of the acting load is 

primarily caused by the motion of the vehicle’s Non-

Suspended (Unsprung) Masses, which are excited by 

the track geometry and the vertical defects, and, to a 

smaller degree, by the effect of the Suspended 

(sprung) Masses. In order to evaluate the real defects 

of the Track and their influence on the acting forces 

we use Track Recording cars whose reliability was 

presented recently ([10], [11]).   

In order to calculate the magnitude of this 

dynamic component of the acting Load we use a 

theoretical analysis based on the Fourier Transforma-

tion, which approaches the phenomenon as the Loads 

-owed to forced random oscillations in systems with 

 
Railway System ‘Vehicle-Track’: Simulation, Mathematical Modelling 

and Spectral Densities of Excitation and Response (Part II) 

 
KONSTANTINOS SP. GIANNAKOS 

Civil Engineer, dipl. NTUA, PhD AUTh; Fellow/Life-Member of the Amer. Soc. Civ. Eng. (ASCE) 
f. adjunct Professor, University of Thessaly, Civil Engineering Dpt. 

Ambassador of WSEAS [ = World Scientific and Engineering Academy and Society] 
108 Neoreion str., Piraeus 18534 

GREECE 

Konstantinos Sp. Giannakos
International Journal of Mechanical Engineering 

http://www.iaras.org/iaras/journals/ijme

ISSN: 2367-8968 56 Volume 10, 2025

mailto:kongiann@otenet.gr
mailto:kyannak@gmail.com
https://uth.academia.edu/;%20http:/giannakoskonstantinos.com/wp
https://uth.academia.edu/;%20http:/giannakoskonstantinos.com/wp


damping- appear. In the following, we will present 

this procedure. The forms of the excitations are 

random by nature and not deterministic. 

To reply the question “why should we use the 

Fourier Transform?” we should examine the 

Historical perspective of the development of the 

Spectral Analysis. 

 

2 Historical Perspective of the Deve-

lopment of the Spectral Analysis  

In the sixth century BC, Pythagoras developed a 

relationship between the periodicity of pure sine 

vibrations of musical notes produced by a string of 

fixed tension and a number representing the length of 

the string (Figure 1). He believed that the essence of 

harmony was inherent in numbers. Pythagoras 

extended this empirical relationship to describe the 

harmonic motion of heavenly bodies, describing it as 

the “music of the spheres”. 

 

Figure 1. A music string vibrating in a sinusoidal 

form. This is an example of a “periodic function” (see 

§ 3). The point i is a random point on the axis of x; it 

could represent the beginning of the observations (i,0 

= 0,0).  

The mathematical basis for modern spectral 

estimation has its origins in the seventeenth-century 

work of the scientist Sir Isaac Newton (1671 AD). He 

observed that sunlight passing through a glass prism 

was expanded into a band of many colors and gave 

the name spectrum. Spectrum is a variant of the Latin 

word “specter,” meaning image or ghostly apparition. 

The adjective associated with spectrum is spectral. 

Thus, spectral estimation, rather than spectrum 

estimation, is the preferred terminology. Newton 

presented in his major work Principia (1687 AD) the 

first mathematical treatment of the periodicity of 

wave motion that Pythagoras (6th century BC) had 

empirically observed. 

The solution to the wave equation for the 

vibrating musical string was developed by Daniel 

Bernoulli (1738 AD), a mathematician who 

discovered the general solution for the displacement 

u(x, t) of the string at time ti and position xi (the 

endpoints of the string are at x = 0 and x = π) in the 

wave equation to be (Eqn. 2.1): 

 ( ) ( )0

1

, sin cos sink k

k

u x t A kx A kct B kct


=

= + +  

where c is a physical quantity characteristic of the 

material of the string which represents the velocity of 

the traveling waves on the string. The term A0 is 

normally zero (since it is dependent on the choice of 

the position of the axes) and we will assume this here. 

The mathematician L. Euler (1755 AD) demonstrated 

that the coefficients Ak and Bk in the series given by 

Eqn. (2.1), which -approximately half a century later- 

would be called the Fourier series and, were found as 

solutions to  

 

  

 

                                                                         (2.2) 

 

 

 

for which t0 = π/2kc. The French engineer Jean 

Baptiste Joseph Fourier in his thesis Analytical 

Theory of Heat (1822 AD) extended the wave 

equation results by asserting that any arbitrary 

function u(x), even one with a finite number of 

discontinuities, could be represented as an infinite 

summation of sine and cosine terms: 

  

                                                                           (2.3) 

 

The mathematics of taking a function u(x), or its 

samples, and determining its Ak and Bk coefficients 

has become known as harmonic analysis, due to the 

harmonic indexing of the frequencies in the sine and 

cosine terms [[16], 3-4]. However, it is possible to 

represent non-periodic (random) functions using any 

class of periodic ones. In Fourier analysis, the 

periodic functions used are sine and cosine functions. 

They have the important properties that an 

approximation consisting of a given number of terms 

achieves -the minimum mean square error between 

the signal and the approximation-, and also that they 

are orthogonal, so the coefficients may be determined 

independently of one another [[15], 17]. 

Furthermore, the analytic techniques developed 

by Fourier are particularly important in three 

applications:(a) for studying periodic solutions to 

physical problems described by differential equa-

tions, especially partial differential equations -for 

example, the study of wave motion of plucked strings 

or the transmission of electromagnetic waves in 

waveguides or cables; (b) as an operational device for 

solving differential equations -for example, ordinary 

differential equations with constant coefficients may 

be converted into algebraic equations by Fourier 
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transformation; (c) for approximating non-periodic 

functions, which is our scope in this article [[15], 16]. 

The critical result from the Fourier theory is that: 

any random function even one with a finite number 

of discontinuities, could be represented as an 

infinite summation of sine and cosine terms. 

This infers that any random (excitation and/or 

response) function can be analyzed in an infinite 

summation of harmonic oscillations. Many real-

world signals can be characterized as being random 

(from the observer's viewpoint). Briefly speaking, 

this means that the variation of a random signal 

outside the observed interval cannot be determined 

exactly but can only be specified in statistical terms 

of averages [[26], 2]; the measurement(s) of the rail 

running table geometry gives/give continuous 

measured values and belong to a continuous in time-

space “signal”, namely the excitation applied to the 

running wheel. “The essence of the spectral analysis 

problem is captured by the following informal 

fonnulation: ‘From a finite record of a stationary 

data sequence, estimate how the total power is 

distributed over frequency’” [[26], 1].  

 

3 Periodic, Non-Periodic Functions 

and Fourier Series and Integral  

When we speak of a wave-like structure we usually 

have in mind -by intuition- something like the pattern 

of ocean waves, that is a pattern which, more or less, 

repeats itself after certain intervals. This idea may be 

expressed more precisely in terms of what is called a 

“periodic function” (Figure 1): Suppose that a pattern 

of faults of a Railway Track happened to repeat itself 

perfectly at intervals of, say, p meters or more 

precisely, that the section of the surface of the runway 

( = rail running table or surface) with some vertical 

plane repeated itself perfectly at intervals of p meters. 

Then if we measure distance along a horizontal line 

in the vertical plane, and let f(x) denote the height of 

the surface (measured from some fixed level) at a 

point whose distance is x meters (we speak in 

millimeters in reality) -from some fixed origin-, we 

express the repetitive nature of the pattern by means 

of the equation: 

  

                                                                    (3.1.) 

valid for all x, and k may take any integral value 0, 

±1, ±2,…… Generally, if a function f(x) satisfies an 

equation of the above form it is said to be periodic, 

and if p is the smallest number such that equation 

(3.1) holds for all x, p is called the period of the 

function. If there is no value of p (other than zero) 

such that (3.1) holds for all x, the function is called 

non-periodic. The most familiar periodic functions 

which we encounter are the sine and cosine functions, 

since, of course, A•sinωx and A•cosωx are both 

periodic, each with period p =(2π/ω) [Figure 1]. The 

quantity ω=2π/p is called the angular frequency of 

sinωx (or cosωx) and the constant A is called the 

amplitude. The theory of periodic functions states 

that any “well behaved” periodic function can be 

expressed as a (possibly infinite) sum of sine and 

cosine functions, thus according to Fourier’s 

theorem any function f(x), with period p may be 

written as a Fourier series: 

  

                                                                     (3.2a) 

 

where ao, a1, a2,.., bo, b1, b2,..., are constants which 

may be determined from the form of f(x). The various 

terms which appear in the summation on the right-

hand side of Eqn. (3.2) may be described in the 

following way. The first term (corresponding to r = 

0) is simply a constant. The second term (with r = 1) 

represents cosine and sine waves with the basic 

period p, the next term (r = 2) represents cosine and 

sine waves with period p/2, the next term (r = 3) 

represents cosine and sine waves with period p/3, and 

so on. Noting that any cosine and sine wave whose 

period is an integral fraction of p will also repeat 

itself after intervals of p units, we see immediately 

that each of the terms in the summation repeat their 

values after intervals of p units, and therefore the sum 

is periodic with period p. This argument does not, of 

course, prove Fourier’s theorem, but merely indicates 

its plausibility [[21], 3-5]. 

Eqn. (3.2a) can be written also under the form: 

  

                                                                 (3.2b) 

 

 

 

 

                                                                   (3.2c) 

 

 

 

and ωr=2πr/p, r=0, ±1, ±2,…… 

One way of looking at a non-periodic function is 

to regard it as a periodic function with an infinite 

period. Reasoning in this way, we might suppose that 

non-periodic functions could also be represented as a 

sum of the form of Eqn. (3.2) if we let p→∞. In other 

words, we might attempt to approximate to a non-

periodic function by a sequence of periodic functions 

with longer and, even more, longer periods. It turns 

out that as the values of the previous coefficients ai 

and bi are reduced the distance among the frequencies 

2πr/p, 2π(r+1)/p, of neighboring terms in Eqn. (3.2) 
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→0; in the limit the summation becomes an integral. 

A non-periodic function could be written (decompo-

sed) as: 

  

                                                                     (3.3a) 

 

where g(ω) and k(ω) are functions whose forms may 

be determined from the form of f(x), under the 

precondition that f(x) is “absolutely integrable”, that 

is if: 

  

 

 

Eqn. (3.3a) can be written also under the form: 

 

                                                                  (3.3b) 

 

 

 

 

                                                                   (3.3c) 

 

 

The function p(ω) is called the Fourier transform of 

f(x) and is of fundamental importance in spectral 

analysis. 

The essential difference between the decomposi-

tion of periodic and of non-periodic functions is that, 

while a periodic function can be expressed as a sum 

of cosines and sines terms, over a discrete set of 

frequencies ω0, ω1, ω2, ω3, …, a non-periodic function 

can be expressed only in terms of cosines and sines 

which cover the whole continuous range of frequ-

encies, that is from 0 to ∞ [[21], 5-6]. 

 

4 Probability Theory: Basic Elements  
 

4.1 Definitions 

First of all, in the following when we will use the 

term “experiment(s)” we mean an operation of 

establishing certain conditions which may produce 

one of several possible outcomes or results. This use 

of the term “‘experiment” is more general than its 

customary interpretation, and it certainly includes 

what would normally be regarded as “experiments” 

(such as measuring pressures or stresses, the defects 

of the Railway Track, but also temperatures, 

currents, voltages, etc.).  

The subject of probability theory is concerned 

with those experiments which involve “random 

phenomena”, i.e. experiments whose outcomes 

cannot be predicted with certainty. Although we 

cannot say definitely then, whether or not a particular 

event will occur, we may have reason to believe that 

some events are “more likely” to occur than others. 

The question now arises: how likely is the occurrence 

of a particular event? We attempt to answer this 

question by associating “probabilities” with each 

event [cf. [[21], 28-30]]. For comprehensive 

axiomatic approach to probability and random 

variables and distribution functions, the interested 

reader can read [[21], 31-47]. 

 

4.2 Distribution Functions, Means, Variances, 

Moments 

Let us consider the case of a discrete valued function 

X with n values resulted from an experiment (measu-

rement) and that X took the value x1 n1 times, the 

value x2 n2 times, …, and the value xk nk times; where 

n+n1+n2+…+nk = n. The arithmetic mean of these n 

values of X is: 

  

                                                                      (4.1) 

 

and is called a random sample of n measurements on 

X. The sample variance -which is the usual quantity 

to calculate the “spread” of the values of the sample 

is: 

  

                                                                      (4.2) 

 

which is the mean square deviation of the n measure-

ments around their arithmetic mean value (Eqn. 4.4) 

and has the dimension of x2; to obtain a measure of 

the “spread” we consider the square root of s2: 

 

                                                                      (4.3) 

 

and it is called the sample standard deviation. 

If we suppose that we let n as the number of 

repetitions of the measurements and that n→∞, we 

should expect that as n increases, then:  

 

  

 

If we replace ni/n by pi in Eqns (4.1) and (4.2) then: 

  

                                                                     (4.4) 

 

 

                                                                     (4.5) 

 

and the square root of the variance σ2 is also named 

the standard deviation of the distribution. At this 

point we should define that given a random variable 

X the distribution function X (or sometimes named 

cumulative distribution function), F(x) is given by: 

                                                                      (4.6) 
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In the case of a continuous random variable X with 

probability density function f(x) the relevant Eqns 

(4.4) and (4.5) become: 

  

                                                                      (4.7) 

 

                                                                     

                                                                      (4.8) 

 

The quantities μ and σ2 are extremely useful in 

providing a rough summary and estimation of the 

form of a probability distribution (discrete or 

continuous), representing, loosely speaking, the 

“central value” μ, that is the mean value, and σ2 the 

variance of the distribution about this mean value. 

However, it should be clear that we could never hope 

to describe fully the function f(x) or the sequence pi 

merely in terms of the two number μ and σ2. Indeed, 

we could construct many distributions all of which 

have the same values of μ and σ2, but with their 

shapes differing in other issues. To distinguish 

between such distributions, we now introduce a 

further sequence of constants, called the moments: 

The rth moment around        : 

  

                         , if X is discrete, and     (4.9a) 

  

                                , if X is continuous (4.9b) 

The first two moments (corresponding to r=1, 2) add 

nothing to the information provided by μ and σ2, since 

substituting r=1, 2, in Eqns (4.7)-(4.9a and b), we 

obtain the μ and σ2. 

We may similarly define moments for a random 

sample of n measurements: 

                                                                 

                                                                      (4.10) 

 

And the rth moment around the mean       :  

 

                                                                      (4.11) 

 

and, 

 

                                                                    (4.12) 

Which is very useful in numerical calculations of 

sample variances (e.g. in measurements). 

For continuous variables the mean μ̅ is defined by: 

  

                                                               (4.13) 

 

and also: 

 

                                                                    (4.14) 

 

In place of the standard deviation, σ, we sometimes 

use as an alternative measure of spread the mean 

deviation, defined by (in the continuous case), 

  

                                                              (4.15) 

 

Chebyshev’s inequality [see [13]] can be derived 

easily. 

 

4.3 Bivariate Distributions - Covariance 

The probability distributions discussed till now are of 

one variable, but there are cases where the 

measurements require several random variables for 

their description and analysis.  Most of the new requi-

rements involved may be analyzed by considering the 

case of bivariate distributions, i.e. distributions 

relating to two random variables, X, Y.  

In this case, the random variables (X, Y) are 

restricted to a discrete set of possible values, xi, yj, 

i=1,2,...; j=1,2,.... The set of numbers,  

pij=p[X=xi, Y=yj]                                       (4.16) 

is called the discrete bivariate probability distribu-

tion of (X, Y), and in all cases satisfies, 

 

                                                   for all i, j   (4.17). 

 

and in continuous case, when (X, Y) are continuous 

variables we define the bivariate probability density 

f(x, y) by (Eqn. 4.18): 

  

  

 

in all cases f(x,y) satisfies the equations: 

 

                                                                 , for all x,y.  

 

and Moments: 

 

                                                                 discrete 

                                                                      (4.18a) 

  

                                                                          

 

for continuous case (Eqns 4.19), and in particular, 

the covariance (when r = s = 1) [[21], [[3], 12]]: 

 

  

  

 

for discrete case and for continuous (Eqns. 4.18b): 
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4.4 The Variance and Covariance Functions 

of a Stochastic Process 

At the beginning of the present paragraph, we should 

quote [12] for General Random Excitation (§3) and 

Stationary Ergodic Processes (§4), in stochastic 

processes. Stochastic (random) process loosely 

means that the measured signal (or sample) looks 

different every time, when an experiment is repeated. 

However, the process that generates the signal is still 

the same [[3], 1].  

For each t, X(t) is a random variable and has a 

range of possible values, some of which may be more 

likely to take place than others. Accordingly, for each 

t, X(t) will have some probability distribution. If X(t) 

is a discrete random variable i.e. if its possible values 

form a discrete set {xi}, its properties will be 

described by a discrete probability distribution, Pt(xi). 

However, in the more usual situation X(t) will be a 

continuous random variable (with a continuous range 

of possible values), and its properties will then be 

described by its probability density function, ft(x). 

Consequently, unless the contrary is explicitly stated, 

we will assume that, for each t, X(t) is a continuous 

random variable with probability density function 

ft(x) defined for all x, so that, for example, the mean 

and variance of X(t) will be given by (Eqn. 4.19): 

  

 

 

and, 

 

  

                                                                 (4.20) 

where, both μ(t) and σ2(t) are functions of t. 

Definition: The process X(t) is said to be stationary 

up to order m if, for any admissible t1, t2,,..., tn, and 

any k, all the joint moments up to order m of E[{X(t1), 

X(t2),..., X(tn)} exist and equal the corresponding 

joint moments up to order m of {X(t1 +k), X(t2+k),..., 

X(tn +k)} [[21], 105]. 

Complete stationarity is, however, a severe 

requirement, and we therefore relax this by 

introducing the notion of “stationarity up to order 

m”, which is a weaker condition but nevertheless 

describes roughly the same type of physical 

behaviour. 

Consequently,  

                                                                         (4.21)  

 

( ) ( ) ( )1 2

1 2{ } { } .....{ } nmm m

nE X t k X t k X t k = + + +   

for any k, and all positive integers m1, m2,..., mn, 

satisfying m1+m2+...+mn<m. In particular, setting 

m2=m3=...=mn=0, we have that, for any t and all 

m1<m, and putting k = -t we derive (Eqn. 4.22): 

  

 

Also, for any t, s and all m1, m2 satisfying m1 + m2 ≤ 

m, we have: 

 

  

                                                        (4.23) 

that is a function of (s-t) only. 

The following special cases are valid: 

(i)-Stationarity up to order 1 (m=1): this implies 

that only E[X(t)] = μ is a constant independent of t.  

     (ii)- Stationarity up to order 2 (m=2), then the 

following are valid: 

-E[X(t)] = μ is a constant independent of t.  

-E[X2(t)] = μ′2 is constant independent of t. 

-var[X(t)]=μ′2-μ
2 = σ2, also constant independent 

of t. 

And for any t, s: 

-E[X(t), X(s)]= function of (t-s) only, conse-

quently, cov[X(t), X(s)]=E[X(t) X(s)]-μ2 = function of 

(t-s) only.   

To summarize, if a process is stationary up to 

order 2, then: 

(a) it has the same mean value, μ, at all time-

instants; 

(b) it has the same variance, σ2, at all time-

instants; and, 

(c) the covariance between the values at any two 

time-instants, s, t, depends only on (s—t), the time-

interval between the time-instants, and not on the 

location of the points (instants) along the time-axis. 

At this point we should clarify that “Stationary” 

indicates that the statistical property/ies of a signal 

are constant in time. The properties of a stochastic 

signal are fully described by the joint probability 

density function of the observations (measurements). 

This density would give all information about the 

signal, if it could be estimated from the observations 

(measurements). Unfortunately, that is generally not 

possible without very much additional knowledge 

about the process that generated the observations 

(measurements). General characteristics that can 

always be estimated are the power spectral density 

that describes the frequency content of a signal and 

the autocovariance function that indicates how fast a 

signal can change in time. Estimation of spectrum or 

autocovariance is the main purpose of time series 

identification. This knowledge is sufficient for an 

( ) ( ) ( ) ( )11 cov , ,X YX Y x y f x y dx dy  
 +

− −

= = −  −    

( ) ( ) ( ) ( )tmean X t E X t x f x dx t
+

−

= =   =       

( ) ( ) ( )

( )( ) ( ) ( )

2

2 2

var { }

t

X t E X t t

x t f x dx t



 
+

−

 = − =    

= −   =

( ) ( ) ( )1 2

1 2{ } { } .....{ } nmm m

nE X t X t X t  = 

( ) ( )1 1{ } { 0 }
m m

E X t E X c indepedent of t   = =   

( ) ( ) ( ) ( )1 2 1 2{ } { } { 0 } { }

( )

m m m m
E X t X s E X X s t

f s t

   = − =   

= −
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exact description of the joint probability density 

function of normally distributed observations 

(measurements). For observations with other 

densities, it is also useful information. A time series 

is a stochastic signal with chronologically ordered 

observations at regular intervals. Time series appear 

in physical data, in economic or financial data, and in 

environmental, meteorologic and hydrologic data. 

Observations are made every second, every hour, 

day, week, month, year or every, e.g., 0,25 m [[3], 1].  

 

4.5 The Autocovariance and Autocorrelation 

Functions  

In a X(t) stationary function up to order 2, then: 

(i)-for continuous processes: 

  

   

From previously presented analysis we know that this 

quantity depends only on the value of τ and is 

independent of t, and we arrive at: 

 

                                                                      (4.24) 

 

For a continuous parameter process R(τ) is defined 

for all values of r and is called the autocovariance 

function of X(t). For each τ, the function R(τ) 

measures the covariance between pairs of values of 

the same process separated by a time-interval of 

length τ, the quantity τ usually being termed the “lag”. 

Now we can write for each τ [[21], [[3], 13]: 

 
                                      (4.25a) 

 

where:  
                                                                         (4.26)  

  
The function ρ(τ) is called autocorrelation function of 

X(t) and can be written: 

 
                                                                       (4.25b) 

 

Hence, each pair τ, ρ(τ) represents the correlation 

coefficient between pairs of values of X(t) separated 

by an interval of length τ. By engineer’s intuition, we 

may interpret ρ(τ) as a measure of the “similarity” 

between a realization of X(t) and the same realization 

shifted to the left by τ units.  

As τ increases we would expect the correlation 

between X(t) and X(t +τ) to decrease. If τ is large then 

in general the process will, loosely speaking, have 

“forgotten” at time (t + τ) the value it assumed at time 

t. Consequently, we would expect both R(τ) and ρ(τ) 

to decay to zero as |τ| →∞. The typical form of an 

autocorrelation function is shown in Figure 2. 

  

 

 

 

 

 

 

 

Figure 2. Typical auto-correlation function for 

stationary process with zero mean value (cf. [[13],  

136], [12]). 

(ii)-for discrete processes: 

The autocovariance function R(τ) may be written 

(Eqn. 4.26): 

                                                    , τ=0, ±1, ±2,..  

and the autocorrelation function will be (Figure 3): 

ρ(τ)=R(τ)/R(0), τ=0, ±1, ±2,... 

 

 

 

 

 

Figure 3. Auto-correlation function of a discrete 

process [cf. [[21], 109]. 

(iii)-for stationary processes: 

If we use the definition of the covariance of a 

stationary process x(t), namely the variance of the 

process in two time-instants t and t + τ (Eqn. (3.5.) 

where the mean value is represented either as μ or as 

x̅ )  (Eqn. 4.27): 

cov{ ( ), ( )} [{ ( ) }{ ( ) }x t x t E x t x t   + = − + −  

 

5 Mathematical Modelling of the 

Railway System “Vehicle-Track”  

A more-or-less complete model of the system 

“Railway-Vehicle” and “Railway Track” is depicted 

in Figure 4; in the present article we will approach 

the issue described in the title of this paragraph with 

the simplified model of Figure 5.  

We try to evaluate the influence of the 

longitudinal vertical defects along the Railway Track 

on the vertical oscillations of a wheel based on this 

simplified model (Figure 5, a simplified model), but 

the development of the calculations are -in principle- 

as in the real model [cf. [7]]. The simulation of this 

model has: mNSM the Non-Suspended (Unsprung)  

( ) ( ) ( ) ( )cov , { }{ }X t X t E X t X t   + = − + −      

( ) ( ) ( ){ }{R E X t X t   = − + −  

( ) ( )
( )

( )0
x

R
t

R


  =   =

( ) 2 20 { ( ) } var{ ( )}R E X t X t  = − = = 

( ) ( )
( ) ( )

( ) ( )
1/2

cov ,

var{ }var
x

X t X t
t

X t X t


 



+  =   =
+  

( )  { }{t tR E X X   += − −
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Figure 4. Schematic mapping of a vehicle/car on 

a Raiway Track: mNSM the Non-Suspended Masses 

(under the primary suspension) of the vehicle (the not 

depicted secondary suspension is between the bogie-

frame and the car-body); mTRACK the mass of the track 

that participates in the motion of the Non-Suspended 

Masses (mNSM); mSM the Suspended Masses of the 

vehicle/car-body (above the primary suspension); Γ 

damping constant of the track; hTRACK the total 

dynamic stiffness coefficient of the track; n the fault 

ordinate of the rail running table, and y the deflection 

of the track. The dynamic component is owed to the 

NSM and the SM; [cf. [12]].    

 

Figure 5. Simplified model of a rolling wheel 

(without the carbody) on the rail running table; the 

symbols of the coefficients are explained in the 

Legend of Figure 4 [cf. [8]].  

Masses of the vehicle, mTRACK the mass of the 

track that participates in the motion, mSM the 

Suspended (Sprung) Masses of the vehicle that are 

cited above the primary suspension of the vehicle, Γ 

damping constant of the track, hTRACK the total 

dynamic stiffness coefficient of the track (for its 

calculation see [13]), n the fault ordinate of the rail 

running table and y the total deflection of the track 

[8].   
The equation for the interaction between the 

vehicle’s axle and the track-panel becomes [[24], [9]]: 

( )

( )

2

2

2

2

NSM TRACK TRACK

NSM NSM SM

d y dy
m m h y

dtdt

d n
m m m g

dt

+  +   +  =

= −  + + 

 (5.1) 

In Figure 5 the rail running table depicts a 

longitudinal vertical fault/defect of the rail surface. In 

the above equation, the oscillation of the axle is 

damped after its passage over the defect. Viscous 

damping, due to the ballast, enters the above equation 

under the condition that it is proportional to the 

variation of the deflection dy/dt. To simplify the 

investigation, if we ignore the track mass (for its 

calculation see [13]) in relation to the much larger 

Vehicle’s Non-Suspended Mass and bearing in mind 

that y + n is the total subsidence of the wheel during 

its motion (since the y and n are added algebraically), 

we can approach the problem of the random 

excitation, from a cosine defect (provided that V<< 

Vcritical = 500 km/h): 

 cos cos 2
V t

a t a  


 
=  =   

 
               (5.2) 

Where V the speed of the vehicle, T = 2π/ω →                   

ωt = 2π/(Τt) = 2π•V•t/λ, where λ the length of the defect, 

run by the wheel in: 

 T T V
V


=  =    (5.3) 

If we set:  

   

 

where the quantity                  represents 

the subsidence due to the static loads only, and z 

random (see [7]) due to the dynamic loads. Eqn. (5.1) 

becomes: 

           (5.4a) 

              

SM NSM

TRACK

m m
g

h

+


2 2

2 2NSM TRACK NSM

d z dz d n
m h z m

dtdt dt
+  +  = −  

2 2

2 2

SM NSM

TRACK

m m dy dz d y d z
y z g and

h dt dt dt dt

+
= +   = =
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                                                                           (5.4b) 

 

Since, in this case, we are examining the dynamic 

loads only, in order to approach their effect, we could 

narrow the study of equation (5.4b), by changing the 

variable: 

   

Equation (5.4) becomes: 

                                                        (5.5a)  

          

 (5.5b) 

 

Where, u is the trajectory of the wheel over the 
vertical fault in the longitudinal profile of the rail.   

If we apply the Fourier transform to Eqn. (5.4a) 
(see relevantly [23] for solving the second order 
differential equation with the Fourier transform): 
 

 

   

                                                                            (5.6) 

 

H(ω) is a complex transfer function, called 

frequency response function [23], that makes it 

possible to pass from the defect/fault n to the 

subsidence Z. If we apply the Fourier transform to 

equation (5.5a): 

( ) ( ) ( ) ( ) ( ) ( )
2 0

0TRACKi U i Z h i Z      +    +   =    

 ( )
( )

( )
( )

2 2 2
2

2 4
, TRACK

NSM

U h
G G

Z m

 
 

 

+ 
= =


           (5.7) 

G(ω) is a complex transfer function, the frequency 

response function, that makes it possible to pass from 

Z to Z + n. 

If we name U the Fourier transform of u, N the 

Fourier transform of n, p = 2π•i•ν = iω the variable 

of frequency and Δ̂Q the Fourier transform of ΔQ and 

apply the Fourier transform at equation (5.5b): 

  

   

 

                  

 (5.8a) 

  

                                                                (5.8b) 

B(ω) is a complex transfer function, the frequency 

response function, that makes it possible to pass from 

the fault n to the u = n + z. Practically it is verified 

also by the equation: 

                                                                           (5.8c) 

 

passing from n to Z through H(ω) and afterwards from 

Z to n + Z through G(ω). This is a formula that 

characterizes the transfer function between the wheel 

trajectory and the fault in the longitudinal level and 

enables, thereafter, the calculation of the transfer 

function between the dynamic load and the track 

vertical defect (fault). The transfer function of the 

second derivative of (Z + n) in relation to time: 

( )2

2

d Z n

dt

+
, that is the acceleration γ, will be 

calculated below (and is equal to ω•Β(ω)). The 

increase of the vertical load on the track due to the 

Non-Suspended Masses, according to the principle 

force = mass x acceleration, is given by: 

                   (5.9) 

If we apply the Fourier transform to Eqn (5.9): 

( ) ( )2 2 ˆˆ
NSM NSM Z nQ m p U m p f + =   =        (5.10a) 

 (5.10b) 

The transfer function B(ω) allows us to calculate 

the effect of a spectrum of sinusoidal faults, like the 

undulatory wear. If we replace ω/ωn = ρ, where ωn = 

the circular eigenfrequency (or natural cyclic 

frequency) of the oscillation, and: 

 2 2
, , 2 ,TRACK

n n

NSM NSM n

h V

m m

 
   

 


= = = =   

where, ζ is the damping coefficient. Equation 

(10b) is transformed: 

                 (5.11) 

 

 

6 Spectral Density in Random Pro-

cesses: Mathematical Calculations  

We saw [[12], §3] that periodic and certain types of 

non-periodic functions could be expressed as sums or 

integrals of sine and cosine terms with different 

amplitudes and frequencies. The importance of this 

so-called “spectral representation”’ of a function lies 

2 2

2 2
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in the fact that if the function represents some 

physical process, the total energy dissipated by the 

process in any time interval is equal to the sum of the 

amounts of energy dissipated by each of the sine and 

cosine terms. The energy carried by a sine or cosine 

term is proportional to the square of the amplitude. 

Consequently, in the case of periodic processes, the 

contribution of a term of the form (ar•cosωrx + 

br•sinωrx) to the total energy of the process is 

proportional to (ar
2 +br

2) = |Ar|
2. If, therefore, we plot 

the squared amplitudes |Ar|
2 against the frequencies 

ωr, the graph we obtain shows the relative 

contribution of the various sine and cosine terms to 

the total energy. For the moment, we will call this 

type of graph simply an ‘‘energy spectrum”, while, in 

fact, it would be more precise to describe it as a 

“power spectrum” [[21], 8-9], as we will analyze 

below.  

The Power spectral density function Sx is of great 

importance to the analysis of stochastic processes. 

Figure 6 illustrates characteristic cases of spectral 

density of random functions. 

In the theory of stochastic systems, the spectra are 

linked to Fourier transforms. For deterministic 

systems the spectra and the Fourier transformation 

are used to represent a function as superposition of 

exponential functions. For random systems (or 

signals) the concept of spectrum has two interpre-

tations.  

a.-The first one includes transforms of averages, 

and is essentially deterministic.  

b.-The second one includes the representation of 

the (random) process as a superposition of 

exponential functions (namely of a sum of 

infinite sine and cosine functions) with 

random coefficients.  

 

 

 

 

 

 

Figure 6. Spectral Density or Power Spectrum Sx(Ω) 

and mean square value (average value x̅2) (cf. [[13], 

138]). 

The power spectrum or spectral density of a 

stochastic system that is described by a function x(t) 

is the Fourier transform of the system’s normalized 

(see Eqn. 4.25a) autocorrelation Φx(t) = ρ(τ) [[[26], 

4], [[21], 216], [[13], 175-176]]. The knowledge of 

the power spectrum of {X} is important if we wish to 

compute optimal predictors for random processes 

[[21], 26]. S(Ω) represents the distribution of sequ-

ence energy as a function of frequency [[26], 4]. 
If x(t) represents the excitation and since a 

stochastic process, at least theoretically, can last 

indefinitely, it is not a prerequisite that the following 

equation will apply:                                          (6.1) 

even if the mean value x̅ = 0.       

There is greater possibility that Φx(Δt) will be 

finite, that is the absolute value of Φx(Δt), which is 

the area below the curve (Figure 6). From the 

continuity of curve x(t), and for small Δt, it can be 

concluded that both x(t) and x(t+Δt) have the same 

sign and therefore Φx(Δt) must increase with time. 

There is no predictable behaviour or relationship in a 

random process between x(t) and x(t+Δt) for great 

values of Δt. Φx(Δt) → 0 for great values of Δt, 

because contradictive values may arise in this case. 

Let us consider a non-periodic auto-correlation 

function Φx(Δt) that satisfies the equation (5.1). 

When this equation is valid it allows unlimited use of 

the Fourier integral (with no restrictions) for the 

mapping of any function x(t). To calculate this 

function we can apply the integral for the calculation 

of the coefficients of the Fourier series [[13], 121, 

Eqn. 393],  

 

                                                                           (6.2) 

 

which is the frequency spectrum of the excitation for 

non-random processes ([[4], 121-122], [[4], pp. 319]) 

and we get: 

 

 

                                                                      (6.3.a) 

where:  

 

                                                                     (6.3.b) 

 

Sx(ω) is the spectral density function. Furthermore, 

Sx(ω) is the Fourier transform of the function Φx(Δt) 

since Φx(Δt) is the inverse Fourier transform of Sx(ω).  

It should be noted that, if Φx(Δt) is defined as Φx(Δt) 

= E[x(t1)·x(t1+Δt)], then the factor 1/2π before the 

integral does not exist in the Eqn. (5.3.a) but in (5.3.b) 

(see [[2], 269]).   

The Wiener-Khinchin theorem [[13], 237] is 

derived from (3.9) and (4.3.a) of [12]: 

 

                                                                          (6.4) 

 

The shaded area below the spectral density function 

(Figure 6) represents the mean square value of the 

process. 
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Using complex numbers in (5.3.b) and the Euler 

equation for complex numbers, since the imaginary 

part is eliminated, because Φx(Δt) is symmetrical and 

sin(ωΔt) is anti-symmetrical with respect to Δt = 0 

and as a result the areas below the anti-symmetrical 

integral cancel one another out [[2], 271], we get: 

  

  

  
   

  

 

 

                                                                           (6.5) 

 

It can be easily proved that: 

 

                                                                            (6.6) 

 

The spectral density function is real, it does not 

contain an imaginary part and is symmetrical around 

position ω = 0, as the autocorrelation function also 

is. The Spectral Density is the Fourier Transform of 

the autocovariance function [[[21], 210-215, 216, 

219]; [[15], 7]]. 

The excitation (rail irregularities), in reality, is 

random and neither periodic nor analytically defined, 

like the Eqn. (4). It can be defined by its 

autocorrelation function in space and its spectral 

density [[[1], 58], [[7], 700], [19]]. If f(x) is a signal 

with determined total energy and F(ν) its Fourier 

transform, from Parseval’s modulus theorem [27], the 

total energy is [23]: 

                                      

(6.7a) 

where, F(ν) = Α(ν)•eiφ(ν) and the power spectral 

density: 

 ( ) ( ) ( )
2 2S F A  = =                             (6.8) 

Reference [23] solves equation (14a) as: 

                                   (6.7b) 

 

The square of the modulus F(ω) is called the 

energy spectrum of the signal because F2(ω)•Δ(ω) 

represents the amount of energy in any ΔΩ segment 

of the frequency spectrum, and the integral of  F2(ω) 

over (-∞, +∞) gives the total energy of the signal. An 

input signal -like the running rail table- creates 

through the vehicle an output signal: the wheel 

trajectory. The output spectral density and the input 

spectral density of the excitation are related through 

equation [[5], [13]]: 

( ) ( ) ( )
2

out inS H i S  =                       (6.8a) 

In order to relate the temporal spectrum with the 

spectrum in space we use the following equation: 

                                       

                                                          (6.8b) 

 

 where λ is the wavelength of the defect. This means 

that circular frequency in space Ω is the wave 

number k of the equation of oscillation, and [23]: 

                                                    (6.9) 

 

 

where is the symbol for the application of the 

Fourier transform of f and f ̂ the function after the 

transform. This is a property of the Fourier transform. 

 

7  Variance and the Spectrum of the 

(Real) Vertical Defects of the Track: 

Mathematical Analysis  

The Variance or mean square value σ2(x) of the 

function is given by (6.3a) (cf. [20], [25]) 

 ( ) ( )2 21

2
x S d x  



+

−

=   =                        (7.1) 

and σ(x) is the standard deviation of the function. 

The Power Spectral density and the variance of a 

function are depicted in Figure 6. 

From equation (7.1 17) we derive: 

                                                                  (7.2a) 

  

                                                       (7.2b) 

where n is the random variable of the defect (input), z 

the subsidence of the wheel (output) and ΔQ the 

dynamic component of the Load that is added to the 

Static Load of the wheel due to the Non-Suspended 

Masses (output also). 

From these equations and the analytic form of the 

spectrum of the vertical defects/faults, we can 

calculate the mean square value of the dynamic 

component of the Load due to the Non-Suspended 

Masses that is added to the Static Load of the wheel  

From the power spectral density and the variance 

functions (the Spectral Density is the Fourier 
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Transform of the autocovariance function) and their 

definitions [13]: 

               

                                                               (7.3) 

 

 

 

 

 

 

and using the Eqns. (7.3 19), (5.9) and (5.10b)  11-

12b): 

                                                   

                                                                    (7.4) 

   

 

 

                                                   (7.5) 

From the above equations and the analytical form 

of the spectrum of the longitudinal vertical defects of 

the track we could effectively calculate the variance 

(mean square value) of the dynamic component of the 

Loads on the track panel due to the Non-Suspended 

Masses. All the results of measurements on track in 

the French railways network show that the spectrum 

of vertical defects in the longitudinal sense has the 

form [[24], [22]]: 
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                            (7.6) 

This implies that the mean square value or 

variance of the defects is given by: 
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=                                   (7.7) 

If we examine only the much more severe case, 

for the case of the Non-Suspended Masses, of the 

defects of short wavelength, consequently large Ω –

like the undulatory wear– then we can omit the term 

B, and, using Eqn. (6.8b 15b): 

                                                                 (7.8) 

 

The term B characterizes the defects with large 

wavelengths, for which the maintenance of track is 

effective, and when we examine this kind of defects 

term B should be taken into account.  

From equations (6.9 16) and (7.8 24): 

 ( ) ( )
3 2

3 3 3

1 1
n

n

A V A V
S S

V V

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        (7.8) 

 

8 Input-Output Spectral Densities in 

Relation to the Recordings of the 

Measurements  
 

8.1 Spectral Densities  

If we have the system “Railway Vehicle-Railway 

Track” then the condition and the position in space of 

the rail running table is the excitation (Input) and the 

movement of the vehicle is the response (Output).  

From Eqn. (6.4.15) [2024] we have (8.1): 

( ) ( ) ( ) ( )1 2iω θ iω θ

u p 1 1 2 2S ω S ω h θ e `dθ h θ e dθ

+ +

−  

− −

=        

that is, the Spectral Density of the Response (of the 

Track Recording Car too) Su(ω) is related to the 

Spectral Density of the input (excitation, namely the 

track defects) by the Eqn. 8.1) Sp(ω) with the 

response h(t - t̅) of the response to the unitary Dirac 

Impulse and its integral, since [[12], Eqn. 6.4.12-13)] 

the mean value of the response is: 

 

 

 

 

 

 

 

                                                                        (8.2) 

 

 

Using Eqns. (7.6) and (8.1), we find Eqn. (8.3) 

below: 

 

 

where frequency ν has two parts one real and one 

imaginary.  

However, the spectral density function is real, it 

does not contain an imaginary part (see [[12], 

paragraph 4]); the Spectral Density of the response 

(output) Su(ω) is related to the Spectral Density of the 

excitation (input) Sp(ω) with a real number |H(iω)|2. 

Consequently, if we find or measure the Spectral 

Density of the input we can calculate the Spectral 

density of the output. 
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Figure 7. Measurement of a longitudinal vertical 

defect at a position xi with a “2a long” chord/basis of 

measurements of the Recording Car and reliability of 

the recordings of the measurements: (a) defect’s 

wavelength much longer than the measuring chord of 

the Car, (b)  defect’s wavelength equal to the 

measuring chord, (c) defect’s wavelength shorter 

than the measuring chord and (d) The Recording 

Car’s Transfer Function K(Ω)  [cf. [11]]. 

In the case of the Track defects, it should be 

clarified that different wavelengths address different 

vehicles’ responses depending on the length of the 

cord/base of measurement. This is of decisive impor- 

tance for the wavelengths of 30 – 33 m, which are 

characteristic for very High Speed Lines ([1]=2022, 

[2]=2023). In the real tracks, the forms of the defects 

are random with wavelengths from few centimeters 

until 100 m. The defects constitute the “Input” in the 

system “Vehicle-Track” since the deflection y and 

the Action/Reaction R of each support point of the 

rail (and sleeper) are the “Output” or “Response” of 

the system. The accuracy of the measurements of the 

defects is of utmost importance for the calculation of 

the deflection y and the Reaction R; this accuracy, 

due to the bases of the measuring devices/vehicles, is 

fluctuating. Thus, we should pass from the space-

time domain to the frequencies’ domain through the 

Fourier transform, in order to use the power spectral 

density of the defects, especially for defects, with 

(long) wavelength, larger than the measuring base of 

the vehicle.  

In the case of random defects then we do not use 

the function f(x) but its Fourier transform: 

 

                                                               (8.4) 

In practice we don’t know the function of real 

defects y(x) but the measured values f(x), from the 

recording vehicle [7]; we imply that [cf. [[19], 312]:   

                                                                  

                                                                    (8.5) 

 

where SZ(Ω) is the spectral density of the Fourier 

transform of the real defects (input in the track 

recording vehicle), SF(Ω) is the spectral density of the 

Fourier transform of the measured values (output) 

and K(Ω) is a complex transfer function (of the 

Recording Vehicle/Car), called frequency response 

function, transforming the measured values of defects 

to the real values. For very High Speed Lines we 

should analyze the system “railway track – railway 

vehicle”. The calculation of the spectrum of track 

defects is described in [[[20], §6] and [[28], 155-

158]. 

Before we continue, please see Figure 7 for an 

example of a Transfer Function (let’s name it K(Ω)) 

of the -suspension of a- Track Recording Car with 

(an ideal) measurement basis of 10m [10]. In real 

conditions the Track Recording Cars have more 

complicated -but fixed- measuring systems and, each 

time, the Transfer Function of each Vehicle should 

be mathematically calculated. We can explain the 

above (Eqns 8.5 and 7.8) in more details now: since 
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we know -each time- the Transfer Function of any 

Track Recording Car and the spectrum of the 

longitudinal vertical defects along the Track (as these 

defects have been recorded by it), we can determine 

the variance of these defects and also the variance of 

the Dynamic Component of the acting Load of the 

wheel on the Track, due to these defects and the 

probability of occurrence of this Dynamic 

Component [[7], 7].  

We can describe also this relation as [[21], 23]:  

[power spectrum of the input] =  

= [power spectrum of the output] /  

/ [squared modulus of the transfer function]. 

A question arises: How does Figure 7-Lower 

result?  

 

8.2 Measurements by Track Recording Cars - 

Calculating the Car’s Transfer Function  

Every point on each rail (at the rail running table) of 

a track (Figure 7-Upper (three schemas)) can be 

defined by its three coordinates: at the position x and 

the functions y(x), in the horizontal alignment, and 

z(x), in the vertical alignment. The measurements of 

the vertical defects are performed with track geome-

try cars, the contact cars, which are made by actual 

contact with the rails, movable feeler points (transdu-

cers) that touch the rails to measure the parameters, 

e.g. the profile. The cars use the position of the car-

body, its yaw and roll and, consequently, their axles 

as the reference base for a relative measurement 

[[14], 678-679]. We examine the vertical defect, the 

dip between two bumps, of an oscillograph recording 

[[14], 684], with a reference chord of length 2a 

(normally 10 m) and the reliability of the 

measurements. The length of d at the position x is: 

      

               (8.6)                        

 

This transformation cannot be easily reversed: If 

we know z(x) in every x easily f(x) can be derived, but 

if we know f(x) it is not easy to calculate z(x). Thus 

we try to approach the matter for the case of a 

sinusoidal defect:   , we derive: 

 

 

 

 

 

 

 

                                                                     

 

 

                                                                       (8.7) 

 

 

 

with Ω=2π/ℓ. K(Ω)=1-cos[(2π/ℓ)•a] is a real function 

and it is the Transfer Function, permitting to pass 

from z(x) to f(x). If the chord 2a is the chord used as 

base from the track recording vehicle then K(Ω) is the 

transfer function of the vehicle. The track recording 

vehicles measure the defects, the track displacement,  

“under load”, that is under their axle load, which is 

usually smaller than the maximum axle load of the 

line but enough for the measurement of the gaps 

under the seating surface of the sleepers, if any. 

Normally the chord used as reference base both for 

the vertical and horizontal defects is the 10 m length 

and the axles of the vehicle are used for that. 

Regarding the reliability of the measurements, three 

cases are distinguished: 

(a) The vehicle’s reference base 2a (chord of 10 

m) is smaller than the defect’s wavelength ℓ=2a1 

(Figure 7–a). In that case the measured defect’s 

ordinate f(x)=d is much smaller than the real vertical 

defect’s ordinate z(x)=d1.  

(b) The chord 2a is equal to the defect’s 

wavelength ℓ=2a1, and f(x)=d=z(x)=d1 (Figure 7-b). 

(c) The chord 2a is larger than the defect’s 

wavelength ℓ=2a1, with the reliability fluctuating. 

The most characteristic case happens when the de-

fect’s wavelength (2a1) equal to ½ of the chord’s 

length (2a) and the measured ordinate f(x)=d=0 in-

stead of the real defect’s ordinate z(x)=d1 (Fig. 7-c). 

(d) In order to approach the matter of the 

reliability of the measured values, by the track 

recording vehicle, we examine its transfer function 

K(Ω) (Figure 7-d), presenting minimums, zero, for: 

                                                                                                                                                      

                                                                     (8.8) 

with k integer and maximums equal to 2 for: 

                                                                                                                                        

                                                                      (8.9) 

and in the case of a reference base (chord) of 10 m, 

that is a=10 m, then the values of K(Ω): 
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                                                                    (8.10) 

 

                                                                                                                                      

as depicted in Figure 7-d. The 10 m chord is very 

important because it includes the wavelengths of the 

vehicles’ hunting, but for larger wavelengths the 

measured values f(x)=d are smaller than the real 

ordinates z(x)=d1 (Figure 7-d). It should be clarified 

that different wavelengths address different vehicles’ 

responses depending on the cord (different from 10 

m). This is of decisive importance for the 

wavelengths of 30 – 33 m, that are characteristic for 

very High Speeds [[[1], 30], [18], [[6], 342]]: for 30 

m, K(Ω)=0.5 and for 50 m K(Ω)=0.2. In any case, for 

each vehicle the reference chord should be used 

instead of the 10 m chord. The table of the values up 

to 100m are presented in ANNEX 1, at the end of this 

article.  

We should underline that the above arise from 

mathematical analysis; the reason for that is 

presented in the next paragraph 9. The calculation of 

the Spectral Density of the real vertical defects of 

Track (input), which is a continuous (unknown) 

function and results from the measurement 

performed by a Track Recording Car, can be 

accurately calculated after the calculation of the 

Spectral Density of the (known) measurements 

performed by the Track Recording Car (output).   
  

9 Physical Meaning of the Fourier 

Transform or Why do We Use the 

Fourier Transform? 
 

9.1 Physical Meaning of Fourier Transform  

Figure 8 presents the real Physical Meaning of the 

Fourier Transform of one function y = f(x) at the 

space-time domain: e.g. the deflection of Track under 

the Load of a circulating wheel y = f(x), where x is 

defined as the distance between the beginning of the 

axis x (the beginning of the measurements x0 = 0 at 

time t = 0) and xi = V•ti, at t = ti, with yi = f(xi), with 

the speed V considered constant. The random 

function y = f(x) is decomposed, as it is described in 

the paragraph 3 above, in an infinite sum of infinite 

series of harmonic functions.  

In the case of a function f(x, t), its Fourier 

Transform is: 

                                                                       (9.1)  

where, F(ν) and f(x, t) represent the same physical 

quantity, but in a different representation. If we 

consider f(x, t), the representative point moves in the 

(space-time) domain. If we consider F(ν), the 

representative point moves in the frequencies 

domain.     

 

Figure 8. Physical meaning of the Fourier transform: 

(Left) at the plane x, y (space-time domain), the 

random function f(y) -a function of x which is 

dependent on time (e.g.: xi = V•ti)-, at a time-instant 

ti, x has a value xi at ti and y=f(xi), while in the -per-

pendicular to the x, y plane- axis of frequencies ν, the 

function y = f(x) can be “decomposed” in an infinite 

sum of harmonic functions. (Right) The Fourier 

Transform transforms the time-space function y=f(x) 

to a function in the frequencies domain: F(ν) (the 

Fourier Transform of the function f(y)) and ν; the 

surface (area) of each function f(t)·cos2πνit of the left 

schema, which is shown sliced at each frequency νi, 

is the ordinate of the right schema at the position of 

each frequency νi in the frequency domain plane 

F(ν), ν [By the author, who updated the Figures in 

[[13], 160], [[12], p.13, Fig. 10]; cf. [[17], I:23],  [[4], 

19-20]]. 

Figure 8 depicts the mapping -in the space-time 

domain- of the function y = f(x) where x is dependent 

on time t and its Fourier Transform F(ν) in the 

frequencies domain and the relation between the two 

graphs:  at the plane x, y (space-time domain, Figure 

8-Left), the random function f(y) -a function of x 

which is dependent on time (e.g.: x = V•t)-, at a time-

instant ti, x has a value xi at ti and y=f(xi), while in the 

-perpendicular to the x, y plane- axis of frequencies 

ν, the function y = f(x) can be “decomposed” in an 

infinite sum of harmonic functions. The Fourier 

Transform transforms the time-space function y=f(x) 
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to a function in the frequencies domain (Figure 8-

Right): F(ν) (the Fourier Transform of the function 

f(y)) and ν; the surface (area) of each function 

f(t)·cos2πνit of the left schema, which is shown sliced 

at each frequency νi, is the ordinate of the right 

schema at the position of each frequency νi in the 

frequency domain plane F(ν), ν. 

Figure 8 clearly presents that if we know the 

Spectral Density of the defects of the Track, we know 

the Power of the signal at each position xi, for each 

frequency νi. 

When we search for the value of F(ν) for a value 

νi of ν, this means that we are searching through the 

entire history (and future) of f(x, t) for what 

corresponds to the frequency νi. This corresponds to 

“infinitely selective filtering” (in French “filtrage 

infiniment selectif”). Such filtering is not physically 

feasible [[[17], I:12-13, see also chapt.VI. 7]; cf. 

[[21], 270, 274]]. Therefore, we cannot know F(ν) 

with perfect location on the frequency axis. 

Similarly, if we want to find f(x, t) from F(ν), we must 

know the spectrum for all frequencies up to infinity, 

and the formula shows that the same infinitely 

selective filtering operation (see below) is involved, 

with the time and frequency variables being swapped. 

This means that to perfectly know the value of f(x, t) 

at a time ti, one must have an infinite bandwidth. All 

of this is simply another form of the (Heisenberg’s) 

uncertainty principle that expresses the impossibility 

for the human observer to grasp reality without 

distorting it or making it somehow “fuzzy” [cf. [[17], 

I:12-13]; [[4], 19-20]].  

 

9.2 Linear Systems  

Any system can be viewed as a transducer (Figure 9-

upper), with the cause f(t) as its input and the effect 

g(t) as its output or response; g(t) is uniquely 

determined in terms of f (t).  

            (9.2) 

A system is called linear if: with g1(t) the output 

to f1(t), g2(t) the output to f2(t), and a1 and a2 two 

arbitrary constants, the output to a1f1(t) + a2f2(t) is 

given by a1g1(t) + a2g2(t). Using the notation of (9.2) 

and introducing L for linearity, we can express the 

above definition by (Eqn. 9.3): 

 

The importance of the Fourier integral in the 

analysis of linear systems is due to the fact that, if the 

input is an exponential eiωt, then the output is also an 

exponential proportional to the input. 

 
i t i tL e k e   =                  (9.4) 

If the Dirac Impulse is the input the System’s 

response is h(t) [[12], §5]. The Fourier Transform of 

h(t) of a Linear System (figure 9-Lower) is called 

System Function (Eqn.9.5): 

  

 

 

Figure 9. Linear System: (upper) function f(x,t) as 

input and g(x,t) as output; (lower) exponential 

function as input and output the exponential function 

multiplied by the Transfer Function of the Linear 

System.   

and is often specified by its attenuation a(ω) and 

phase shift or phase lag θ(ω), defined by (Eqn. 9.6): 

a(ω)=-ln A(ω), θ(ω)=-φ(ω), Η(ω)=e-a(ω)e-iθ(ω)  

From the inversion formula of Fourier Transform 

[[19], p.11, Eqn.2.17] we have: 

  

                                                                  (9.7) 

 

With F(ω) and G(ω) the Fourier Transforms of 

the input f(t) (i.e. f(x,t)) and the output g(t), we obtain 

(due to the property of the Linear System as time 

invariant):  

G(ω) = F(ω) • H(ω)                                  (9.8) 

and the g(t) can be written: 

  

                                                                   (9.9) 

 

 

9.3 Filtering 

The term filter is used to describe Linear Systems 

whose amplitude characteristic A(ω) is negligible in 

certain parts of the frequency axis. If A(ω) is small in 

some sense for ω > ωc, then the filter is called 

( ) ( ) ( )
0

1
cosh t A t d    





=   −  
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lowpass, and ωc its cutoff frequency [Papoulis 1962, 

94]. A bandpass filter is a system whose amplitude 

characteristic A(ω) has significant values only in an 

interval not containing the origin. The response g(t) 

to an arbitrary input f(t) is determined from (Eqn. 

9.9). In a number of important cases, however, 

special techniques lead to simple results [[[19], 94, 

120]; cf. [[21], 270-276]].  

The infinitely selective filtering of § 9.1 represents 

the frequencies that the filter will let through and the 

frequencies that it will attenuate (eliminate); the 

greater this attenuation, the more selective the filter 

[29], that is the infinitely selective filter does not 

permit but only one frequency νi to pass and 

attenuates all the other frequencies; this is not 

physically feasible [[17], 22-23] or “in practice we 

cannot quite achieve this degree of ‘perfect 

suppression’ since this is an unrealistic demand (that 

is we could not, in general, synthesize an electrical 

filter to succeed this, but, there are practical designs 

which provide a close approximation to this type of 

filter” [[21], 270-271]. 

 

10 Accuracy of the Estimation of the 

Spectral Density of the Recording(s) of 

the Measurements of the Track 

As it has been presented previously, the (Power) 

Spectral Density of a random signal (e.g. the 

recording of the measurement(s) of the defects of a 

Railway Track) at a point xi at the space-time domain 

(Figure 8) includes the entire history (the future is 

included also) of f(x, t) for what corresponds to the 

frequency νi. According to Fourier’s Theory any 

arbitrary (random) function, even one with a finite 

number of discontinuities, could be represented as 

(decomposed to) an infinite summation of sine and 

cosine terms. Furthermore, the Spectral Density has 

the important property that an approximation 

consisting of a given number of terms achieves 

(since, after a number of few terms, the next terms do 

not contribute significantly) the minimum mean 

square error between the (real) signal and the 

approximation. Consequently, since we can measure 

the (Power) Spectral Density of the output -that is of 

the recording of the measured values by the Track 

Recording Vehicle-, then the (Power) Spectral 

Density of the input -that is of the real (vertical) 

defects of the Track- can be accurately calculated 

from the output Spectral Density and the Vehicle’s 

Transfer Function K(Ω); K(Ω) is well, mathema-

tically, defined for every Car/Vehicle. Hence, there 

is not any problem of accuracy in the calculation of 

the Spectral Density of the output (recorded 

measurements) and from that of the calculated value 

of the Spectral Density of the real Track’s Defects. 

However, the following issue has been arised, in 

general: “the essence of the spectral estimation 

problem is captured by the following informal 

formulation: from a finite record of a stationary data 

sequence, estimate how the total power is distributed 

over frequency” [[26], 1].  

However, the Recordings of the Measurements of 

a Track Section (e.g. Domokos-Larissa) are 

performed by the Track Recording Car all over the 

whole length of this Track Section and not to a part of 

its length, namely, it is not a sample (partial in length) 

recording. The critical remark on this case -based on 

the reality in Railways- is: the recordings of the 

measurements are performed all over the whole 

length of a Track Section -from which recordings, we 

derive the spectral density of this Track Section- and 

not to a “single finite segment of the ‘signal’” 

[=‘Track Section defects’]. Only in the latter case an 

“aliasing issue” -as described in [[[21], 389], [[3], 

1]]- could be introduced, and not in the real case of 

the measurements of a Railway Track. 

 

11 Synopsis - Conclusions  

In this article, which is a quasi-Part II of [12], we 

examined the relation between the Power Spectral 

Density of the output -that is recordings of the 

measurements of the longitudinal vertical defects 

along the Railway Track, which were performed by a 

Track Recording Car (a Linear System)- and the 

Power Spectral Density of the input (real defects of 

the Track).  

Since the calculation of the Spectral Density of 

the recordings of the measurements can be performed 

easily from the results of these recordings, we can 

calculate the Spectral Density of the input (real 

defects of the Track) through the Transfer Function 

K(Ω) of the Car/Vehicle, which can also be calcula-

ted easily for each Car/Vehicle (as it is described in 

an example presented in the present article). 
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