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Abstract: - Boundary value problems of thermoelasticity on graphs can be used to study various thermoelastic 
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is developed. Generalized solutions of non-stationary and stationary boundary value problems of 
thermoelasticity are constructed for various boundary conditions at the ends of the star graph and the 
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value problems in analytical form are obtained. The obtained solutions allow modeling sources of forces and 
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and various transmission conditions at the nodes of not only a star graph, but also graphs of linear and mixed 
structure. 
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1. Introduction 

Graph theory has wide applications in subjects 
such as economics, logistics, sociology, optimal 
control and navigation [1], [2]. The properties of 
graphs are also actively used to solve boundary 
value problems (BVPs) on network-like structures 
[3], [4], [5], [6], [7], [8], [9], [10]. 

With the development of mechanical 
engineering, complex multi-link rod structures 
operating under various thermal conditions began 
to be actively used. They are widely used in 
structural mechanics, mechanical engineering, 
robotics, and many other fields. An urgent 
scientific and technical task is to study the 
thermally stressed state of network systems for 
various purposes under dynamic and thermal 
influences, taking into account their thermoelastic 
properties under dynamic and thermal influences, 
including impact types. This is necessary to 
analyze the strength and reliability of such 
objects, determine safe operating modes, and 
prevent disasters. 

Mathematical modeling of the thermodynamics 
of rod structures and the creation of information 
technologies based on it is one of the more 
effective and inexpensive methods for researching 

and designing such systems. Here boundary value 
problems of uncoupled thermoelasticity are 
considered on a star thermoelastic graph (Fig. 1), 
which can be used to study various mesh 
structures under conditions of volume and thermal 
heating (cooling). 

 
Fig. 1. Star graph 

The novelty of the present work lies in the fact 
that a generalized function method is used to solve 
boundary value problems, leading to a differential 
equation solution with a singular right-hand side 
[11]. The solution is constructed as the 
convolution of the Green’s function of the 
equation with the appropriate right-hand side. To 
determine the unknown boundary values of the 
solution and its derivatives on each segment, 
resolving boundary equations are constructed at 
the ends, employing the asymptotic properties of 
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Green’s function and its derivative at zero. To 
construct a closed system of equations, the 
obtained algebraic equations for each edge of the 
graph are supplemented with transmission 
conditions at the node and linear boundary 
conditions at its ends. These conditions can be 
either locally or not locally connected. Thus, the 
proposed method applies to a wide range of 
BVPs, including those on mesh structures. 

 
2. Statement of a Boundary Value 

Problem on a Thermoelastic Star 

Graph 
 

We consider the periodic vibration of a thermo-
elastic star graph with frequency . This graph 
contains N edges Sj = (A0, Aj) of the length 

( 1,2,..., )jL j N with a common node A0, 

0 jx L  . Amplitudes of displacement 

( , ) ( ) i t
j ju x t u x e   and temperature 

( , ) ( ) i t
j jx t x e     satisfy the equations [12]:    
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Here j , j  are the thermoelastic constants, 
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



 , 

jc is the velocity  of elastic waves, 

j  is the density of mass, 1 1( , ) ( )j j i tF x t F x e     
is the longitudinal component of acting periodic 
force in a j-th edge of the graph; 

2 2( , ) ( )j j i tF x t F x e   describes the power of heat 
sources on it.   
   The thermoelastic stress in the rod is determined 
by Duhamel-Neumann law: 

 
2( , ) , ( , ) ( , )j j j j x j jx t c u x t x t             (3) 
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   Here we pose the following boundary value 
problem (BVP). Amplitudes of displacements and 
temperature are known at the ends of the graph: 
for all 1,...,j N  
 

   2

2

,

( , ) ( )

j i t
j j

j i t
j j

u L t w e

L t e







  









            (4) 

 
We enumerate by index 1 the point x=0 and by 
index 2 the point x= jL  1 20, jx x L  and 
boundary displacements and temperature 

 1 1 2 2, , ,j j j j
w w   at the ends of segments.  

     The following continuity conditions and 
generalized Kirchhoff conditions are specified in 
the common node 0A of the graph: 
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We need to find the solution of the boundary 
periodic value problem of uncoupled 
thermoelasticity on this star graph. 
 

3. Generalized Solution of Thermal 

Boundary Value Problems on an 

Graph Segment 

 
To determine the solution on the graph at first we 
consider BVP on graph segment by use the 
general function method. For this we consider the 
BVP for heat equation (2) on the segment [0, L] in 
the space of generalized functions of slow growth 

 2 2ˆ( ) { ( , ), , }S R f x t x t R   [13]. To do this, 
we introduce a regular generalized function (we 
mark it with a cap): 

 ( , ), ,ˆ( , ) ,
0,

x t x t D
x t

x D


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where ( , )x t is  the solution of BVP, 
[0, ] [0, )D L    . It can be represented in the 

form  

ˆ( , ) ( , ) ( ) ( ) ( )x t x t H L x H x H t   .         (7) 

 Here ( )H x is Heaviside step function.   
To construct the equation for ˆ( , )x t in 2( )S R , we 
find generalized derivatives of ˆ( , )x t :  
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where  x is singular generalized  delta - 

function, ( ) , 1,2.
j
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x


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The equation (2) in 2( )S R  has the next form for 
ˆ( , )x t : 
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      (8)                                                      

Note that the right side of this equation includes 
all initial and boundary temperature ( )j t  and 
heat flows ( ) ( )j jt q t   (j=1, 2). 
According to the theory of generalized functions 
[13], the solution of Eq. (8) can be represented as 
a convolution of fundamental solution of heat 
equation (2) with the right-hand side of this 
equation: 
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We denote  2 2
ˆ ( , ) ( , ) ( ) ( ) ( )F x t F x t H x H L x H t  . 

Here  ( , )U x t is the fundamental solution 
of the heat equation (1) by 

( , ) ( , ) ( ) ( ).F x t x t x t     It decays at   and has 
the form [13]: 

21( , ) exp( / 4 ) ( ),
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U x t x t H t
t
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      (10)                 

, ( , )x
U

U x t
x





.  If ( , )F x t is a regular function, 

then relation (9) can be represented in the next 
integral form: 
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Formula (11) determines the temperature inside a 
segment by known temperature and heat flows at 
its ends and is very useful for engineering 
applications.  
However, for correctly posed boundary value 
problems, out of 4 boundary functions on the right 
side of formula (11), only 2 are known. To 
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determine two unknown boundary functions, 
resolving boundary equations should be 
constructed using boundary conditions at the ends 
of the segment.  

4. Solving of Heat Boundary Value 

Problem in Fourier 

Transformation Space in Time 
 

To construct the resolving system of equations, 
we use Fourier transformation in time: 

0

ˆ( , ) F ( , )
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1ˆ( , ) ( , ) .
2
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x x t
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To define Fourier transform of generalized 
solution (9) we use the property of  Fourier 
transform of convolution [12]:  
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Here a variable under a sign of convolution shows 

the convolution only over this variable  *
x

. The 

integral representation of Eq. (13) has the form: 
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Fourier transform of Green's function of heat 
equation is equal to  

 sin
( , ) ,

2
k x

U x
k




                  (15) 

where (1 )
2
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Its derivative has the gap in point x=0 and equal to  
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There are next symmetry conditions: 

( , ) ( , ),

1, ( 0, ) .
2x

U x U x

U

 




 

 
                       (16) 

We use these properties for solving BVP. 
 
 

5. Resolving Equations of Boundary 

Value Problems 

To find unknown boundary functions, we pass in 
relation (17) to the limit at 0 , 0 :x      
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Next, we move the last term to the left side and, 
taking into account the right limit of , ( , )xU x  at 
zero (16) , we obtain the next equation on left end 
of the segment: 
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Similarly, we consider the limit at  , 0.x L      
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We move the last term to the left side, and obtain 
the second boundary equation: 
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Let us formulate the obtained results in the form 
of this theorem. 
Theorem 1. The Fourier time transformants of 

boundary functions of boundary value problems 

satisfy the system of linear algebraic equations of 

the form: 
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This system makes possibility to solve BVP for 
any given two boundary functions of temperature 
and heat flow at the ends of a segment of four 
boundary functions. 
To solve all temperature BVPs, it is convenient to 
consider the extended system of equations in the 
form of matrix equation: 

( ) ( ) C( )   Α ,                   (18)                                     
where 

31 32 33 34
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a a a a

a a a a

   
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 
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 
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 1 1 2 2( ) ( ), ( ), ( ), ( )B = q q       ,  

1 2 3 4C( ) ( (0, ), ( , ), ( ), ( )).Q Q L b b      
 

The last two equations in the system (18) are 
determined by boundary conditions at the ends of 
the segment, which are known for BVP:  
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31 32 1

41 42 1

33 34 2 3

43 44 2 4

( )
( )

( ) ( )
.

( ) ( )

a a

a a q

a a b

a a q b

 



  

 

  
  

   

   
     
     

       (19) 

By given coefficients ija and right-hand side 
( )ib  , we have  four equations (18) for definition 

of four boundary functions.  The solution of Eqs 
(18) has the form: 

1( ) ( ) ( )B C   Α ,                (20) 
where 1( )

A is the inverse matrix of ( )Α .  
So, all boundary functions are defined, therefore, 
the Fourier transform for solving the boundary 
value problem is constructed. Using the inverse 
Fourier transform (12), we obtain the original 

( , )x t on the segment [0, L]. 
Note that the resolving system of equations (18) 
makes it possible to solve all boundary value 
problems for the heat equation with local and 
associated linear boundary conditions that 
determine the coefficients ija  (19) of the matrix 

( ).Α  This does the Method of Generalized 
Functions universal for solving similar boundary 
value problems for differential equations. 
 
In a similar manner, in the articles [14], [15] the 
solutions of boundary value problems for the 
D'Alembert wave equation on a segment are 
constructed. 

 
6. Presentation of Amplitudes 

of Displacement and Temperature 

    at Edges of a Star Graph 
    
Let us use the solution (12) of BVP in Fourier 
transformant space on the segment and Eqs (17) 
and similar formulas for wave equation [14] for 
construction the periodic solution with frequency 
  on the line graph. 
 

 The amplitudes of temperature at Sj (j=1,…,N) is 
equal to  

2 2

2 2

1 2

2 2

1 2

( , ) ( , ) ( , )

( ) ( ) ( , )

( ) ( ) ( , )

( ) ( ) , ( , )

( ) ( ) , ( , )

j j
j

x

j j
j j

j j
j j

j
j x j

j
j j x

x F x U x

q H x U L x

q H L x U x

H x U L x

H L x U x

   

  

  

   

   

  

  

  

  

 

         (21) 

 
The amplitudes of displacements at edges Sj 
(j=1,…, N)   is equal to 

     

2
11

2 ,11

2
12

2 ,2 1

, ( ) ,

( ) ( ) ( , )

( ) ( ) ( , )

( ) ( ) ( , )

( ) ( ) ( , )

j
j j

j
j j

j
j j x

j
j j

j x j

u x H L x H x x

c p H L x U x

c w H L x U x

c p H x U L x

c w H x U L x

 

 

 

 

 

   

  

  

  

 

      (22) 

 
where  

 1
1( , ) sin ,

2

( ) ;

j
j

j

j
j

U x x
c

c

 



 

 



     (23) 

 
2

sin
( , ) ,

2 ( )

( ) (1 ) .
2

jj

j j

j
j

k x
U x

k

k i


 







 



             (24) 

If  the boundary functions are known: 

 

 

1 1 2 2

1 1 2 2

1 ( ) , , , ,

2 ( ) , , , ,

j j j j j

j j j j j

w p w p

q q



  





B

B
 

then formulas (21) and (22) determine the 
temperature and displacement on each edge of the 
graph. 
At first, we solve the BVP for temperature on the 

star graph. 
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7. Solution of BVP on the Heat Star 

Graphs 
 

There are next equations of connection boundary 
temperature at  Sj  edges of the heat graph: 
 

 2 ( ) 2 ( ) 2 ( ),j j j   A B F              (25) 
 

2 ( )
sin( )

1 0 cos( )
( )

sin( )
cos( ) 1 0

( )

j

j j

j j
j

j j

j j
j

k L
k L

k

k L
k L

k









 
 

 
 
  
  

A

 

 

2 2 2 20

2 ( )

2 ,
j

j

j j j j

x x Lx x
F U F U



 



 
   

 

F

 

 
The resolving system of equations for the 
Dirichlet boundary value problem on a thermal 
star graph with N edges has the form: 
 

2( ) 2( ) ( )   Α B F ,             (26) 
where 
 

 1 2

1 1

1

2( ) = 2 , 2 ,..., 2 ,

2( )

2 ,..., 2 ; ,..., ;0, ..., 0; ( ) ,

( )

N

N N

N
j

j j

T T G

T L












  
 
  



B B B B

F

F F
  

Here the matrices have the following 
dimensions:    4N×4N 4N×12 , ( )A B2 ,

 4 N×12( )F . The first 2N lines along the 

diagonal 2A  contain connection matrices for each 
edge of this graph 2 jΑ . The remaining elements 

are zero. 
   The next N-1 rows of the matrix 2A  contain the 
continuity conditions (4)2. The last row of the 
matrix contains the Kirchhoff condition (5)2 at the 
node A0 of the star graph. 

   The solution to algebraic equations (10) has the 
form: 

 12( ) 2 2( )  B Α F .              (27) 
After determining the unknown edge and nodal 
functions 2( )B , using formulas (21) we 
determine the temperature on the every edge of 
the graph. (j=1,…, N) 
      The boundary value problem on the thermal 

graph has been solved. 
 

8. Solution of BVP on 

the Elastic Star Graphs 

 

There are next equations of connection boundary 
temperature at  Sj  edges of elastic graph [16]: 

1 1 1 ( ),j j j  A B C                   (28) 
 

1 ( )
sin( )

1 0 cos( )
( )

sin( )
cos( ) 1 0

( )

j

j j

j j
j

j j

j j
j

L
L

L
L






 




 



 
 

 
 
 
  

A

 
 

   
,

1 1 1 10

1 ( )

2 , ,

( ) / .

j

j j j j
j j j j

x x Lx x

j j

x xF U F U

c



  

   
 



 
     

 



 

F

 

The resolving system of equations for the 
Dirichlet boundary value problem on an elastic 
star graph with N edges has the form: 
 

1( ) 1( ) ( )   Α B F ,              (29) 
where 

 

 

1 2

1 1

1
1

1( ) = 1 , 1 ,..., 1 ,

1( )

1 ,..., 1 ; ,..., ;0, ..., 0; ( ) ,

N

N N

N

j j

d d P

d u L











  
 
  



B B B B

F

F F
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Here the matrices have the following 
dimensions:    4N×4N 4N×11 , 1( )A B ,  4 N×11( )F . 
The first 2N lines along the diagonal 1A  contain 
the connection matrices 1 jΑ for each edge of this 
graph. The remaining elements are zero.     The 
next N-1 rows of the matrix 1A  contain the 
continuity conditions (4)2. The last row of the 
matrix contains the Kirchhoff condition (5)2 at the 
node A0. 
    The solution to algebraic equations (29) has the 
form: 

 11( ) 1 1( )  B Α F .                 (30) 
After determining the unknown boundary and 
nodal functions 1( )B , using formulas (7), we 
determine the temperature on any edge of the 
graph.  

The boundary value problem on the elastic graph 
has been solved. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

Figure 2. The Graphs 
 

 

9. Conclusion 
 
Note that the constructed solutions in the space of 
Fourier transforms describe the thermoelastic state 
of the graph under stationary oscillations with a 
fixed oscillation frequency. Therefore, these 
solutions can be used to construct a solution to 
time-periodic boundary value problems. To do 
this, it is sufficient to expand the boundary 
conditions and external effects into Fourier series 
in time and use the solutions constructed here for 
each harmonic of this series 
 
The technique developed here for solving 
boundary value problems of thermoelasticity on a 
star graph can be extended to graphs of linear and 
mixed structure, including closed ones (Fig. 2). 
The determining factor here is the equations for 
the connection of boundary functions for 
temperature, displacements, heat fluxes and 
stresses at the ends of each link of the graph, 
which are presented in this article. To construct a 
matrix of the resolving system of equations, one 
should add conditions at the ends of the graph and 
transmission conditions, such as those considered, 
or others that take into account the orientation of 
the edges of the graph in space. 
 
The developed method allows solving a wide 
class of boundary value problems with local and 
related boundary conditions at the ends of the 
graph and various transmission conditions at its 
nodes and should find application in the design of 
network systems and rod structures. 
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