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Abstract: In building industry, both the beauty of the building facades and cost-effectiveness of the building are 
critical to occupants. The occupants long for the building that is more beautiful as well as comfort with low cost. 
For the beautiful facade, the more glasses are used and sometimes, the building covered with glasses. However, 
no glasses can prevent the heat energy flows out completely. Under the circumstance, to prevent the energy 
leakage through the window glass, multiple-framed windows are employed in architectural engineering in 
Korea. The gap between glasses is inevitable and the buoyancy-driven air flow in the gap between window 
glasses is one critical key for the heat transfer through the window. A numerical program for the air flow in the 
gap is developed considering gravity (buoyancy-driven momentum). Both the energy based on the temperature 
and the incompressible Navier-Stokes equations by using Boussinesq assumption are employed. A finite 
volume method based on the second-order accuracy is used to discretize, and a SIMPLE algorithm is employed 
to solve the pressure field instead of a decoupled continuity equation. The numerical validations are performed, 
and the reliability of the method is assessed. The characteristics of heat transfer and flow in three gaps are 
closely investigated with the developed code. 
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1 Introduction 
Windows consists of frame and glasses. To prevent 
energy leakage through the windows, multi-layered 
glasses with insulation liquid between them are used. 
One of the methods for energy saving is multiple 
framed windows that have two or three multi-
layered glasses in a row. The air cavity between 
frames that add the complexities of design and 
engineering inevitably exists. The key of the heat 
transfer in the air cavity is a natural convection. 
Heat transfer by the natural convection is of interest 
in many industrial and architectural applications. 
The use of unstructured meshes for computation has 
become general because of geometrical complexity 
in the engineering problems.  

The ability of unstructured meshes to discretize 
arbitrary and complex domains, the ease of local, 
and adaptive grid refinement which enhances the 
efficiency of the solution as well as accuracy are 
critical for the success of the numerical analysis. 
Among the discretization methods, the finite volume 
methods (FVM) are widely used for computational 
fluid dynamics (CFD). This is mainly due to the 
inherent conservativeness of FVM and ease of 
understanding. These FVMs are capable to 

accommodate arbitrary polyhedral grids composed 
of cells of various topologies. FVM is employed in 
this study calculating temperature and velocity field 
in an enclosed cavity. 

Recently, Lestari [1] developed a numerical code 
for incompressible Navier-Stokes flow on triangular 
unstructured grids. A fully-implicit, Crank-Nicolson 
and an explicit four-step Runge-Kutta methods are 
used. The numerical algorithm used to solve the 
final equations is derived from the SIMPLER 
algorithm and four-stage Runge-Kutta to update the 
velocities directly without a pressure correction 
equation in addition to fully implicit and Crank-
Nicholson methods.  

Mathur and Murthy [2] have developed a 
pressure-based finite-volume method for the 
unstructured grid system. The method includes 
arbitrary polyhedral meshes, including meshes with 
non-conformal nodes. Cell-based, collocated storage 
is used. The high-order fluxes as well as secondary 
diffusion terms are computed using linear 
reconstruction and limiting similar to methods used 
for compressible flows. To minimize storage 
requirements, a segregated solution strategy is used, 
and SIMPLE algorithm is employed for pressure 
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and velocity coupled. An algebraic multigrid solver 
is used for the solution of linearized equations.  

A single numerical code is not fully satisfied the 
all of the requirements in industrial purpose and 
thus, a lot of CFD program have been developed 
commercially [3, 4] and for research purpose. The 
flow in the cavity is laminar but is unstable because 
of its dimension (up to a few meters). The research 
on the flow and heat transfer is strongly required. 
Developing a CFD code based on the authors’ 
previous study [5, 6] to calculate the natural 
convection phenomena next to the window cavity 
and window frame, we have been implementing a 
numerical code based on the SIMPLE method for 
solving three-dimensional incompressible flow 
using unstructured grids. In this study, flow and 
temperature according to window air cavity (gap) 
between frames will be carefully investigated, after 
validation of the flow field in an incompressible 
flow with a rectangular cavity. The mesh 
dependency test is also performed. 
 
2 Numerical Methods 
In the derivation of the governing equations of fluid 
dynamics, the Eulerian methods, spatially fixed 
control volume, is employed instead of Lagrangian 
methods. The laminar flow of an incompressible 
Newtonian fluid is assumed. The details can be 
found in Ref  5. 
 
2.1 Finite volume methods 
The equations for the transport of a scalar variable 
can be written in the following form: 

 

V S

dV v dS
t φρφ ρφ φ∂  + −Γ ∇ ⋅ ∂ ∫ ∫



  

, ,V S
V S

Q dV Q dSφ φ= + ⋅∫ ∫
 

         (1) 

 
where ϕ, гϕ, Qϕ,S, and Qϕ,V stand for the 

transported variable, the diffusion coefficient, the 
surface exchange terms and volume sources, 
respectively. The momentum and energy equations 
can also be written in the form of (1) except an 
additional diffusion terms in the momentum 
equation. 

The conservation equation of the continuity 
equation, for a control volume drive from the (1) 
implies that the rate of change of the mass inside the 
control volume   is equal to the difference between 
inflow and outflow mass fluxes across the volume 
surface. In integral form, the continuity equation can 
be written as follows: 

 

[ ] 0
V S

dV v dS
t

ρ ρ∂
+ ⋅ =

∂ ∫ ∫


   (2) 

 
where, ρ  is the fluid density and   is the velocity. 

In incompressible flow, the first term in (2) is zero 
and the convection term cannot be ignored. More 
details including discretization, pressure correction 
and SIMPLE methods can be found in Ref. 7. 
 

 
Fig. 1 Geometry and grids for validation 

 
2.2 Validation 
The pressure oscillation problem (checkerboard 
problem) is generally occurred in a collocated 
method for solving incompressible flow, and it 
degrades the solution or makes a calculation 
unstable[7, 8]. Third order diffusion term is chosen 
to reduce the checkerboard pressure oscillation in 
this study. The three-dimensional enclosed flow 
with natural convection has been calculated, and the 
results obtained from the numerical calculation for 
the viscous flow solver developed in this study are 
compared with experimental results in Ref. 9. The 
geometry of the three-dimensional cavity is simple 
and easy to handle. However, the characteristics of 
natural convection are nonlinear, and provide a good 
test of the computational procedure. The 
geometrical configuration and boundaries used in 
this study are shown in Fig. 1. The high and low 
temperatures are located at each side (x-direction) 
and the other boundaries are adiabatic. The Ra is 
5×104 and the properties of the medium (air) are 
considered as constant that are listed in Table 1. To 
confirm Ra, density was arbitrary modified to 1.01, 
and the other properties are retained its origin values. 
 
Table 1 Material property for validation 
Material Air μ 1.824E-05 

ρ 1.01 L 0.04 
Cp 9.7703E+02 H/L 5 
K 2.51 E-02 B/L 5 
g 9.81 ΔT (Th-Tc) 10 
β 3.41 E-03 Pr 0.71 
α 2.14E-05 Ra 5.0E+04 

 
The velocities including computational and 

experimental results are plotted in Fig. 2. A good 
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agreement with existing experimental data [10] is 
obtained. The computations were performed with 
respect to consecutive numbers of cells (15625, 
27000, and 56000). The fluid obtains heat energy 
from the hot wall in right side and loses it to the 
cold wall in left side. There is no transfer of heat 
energy through the adiabatic horizontal walls. It is 
expected that boundary layers along both hot and 
cold walls are exited. According to the distance 
between two walls, two boundary layers interfere 
with each other, and it may change the flow pattern 
and heat transfer significantly. The velocity 
variations between coarse and fine cells are 
considerably small as shown in Fig. 2. The coarse 
mesh can capture the characteristics of flow and 
temperature in the cavity properly. It implies that 
considering the computational cost, the small 
numbers of cell are sufficient for this kind of 
calculations. 
 

 
Fig.2 Velocity and temperature distributions 

according to the number of cells. 
 

The flow in a three-dimensional cavity can be 
considered as a laminar one at Ra=5×104, (viscosity 
effect is dominant) and develops one large vortex 
across the domain from top to bottom. The air next 
to the hot wall is heated, and moved upward along 
the wall by buoyancy. In despite of three-
dimensional flow, an ascending air flow can be 
observed on the whole hot wall. On the contrary, a 
descending air flow can be observed on the cold 
wall constantly. The three-dimensional effect can be 
expected nearby the adiabatic walls. 
 
3 Results and discussions 
The geometry calculated in this study is the three-
dimensional cavity that is similar to that of 
validation model except its dimensions. The height 
(H) and width (B) are 2m. The computation are 
performed with three different thicknesses (L=0.1, 
0.15, and 0.2). The computational domain and 
boundaries are plotted in Fig. 3, and the 
specifications of the media (air) are listed in Table 2. 
The Ras for L=0.1, 0.15, and 0.2 are 2.06×106, 
6.94×106, and 1.64×107, respectively. The properties 
of the air are considered as constant and the 

direction of the gravity is negative z-axis. It is 
expected that the flow make a large vortex as shown 
in a validation case except upper and lower dead-
ends. 
 

 
Fig. 3 Computational domain and boundaries 

 
To decide the proper number of the cells for the 

calculation, the mesh dependency test for the L=0.1 
(case01) is performed with four consecutive cells 
(8750, 15300, 32000, and 60750 cells). The fluxes 
through the cold wall are listed in Table 3. The 
relative error of a fine mesh shows about 0.14% 
against that of the finest mesh. The configurations 
of the fine mesh are used for the following 
calculation. For the convenience as shown in Table 
2, the three calculations with different thicknesses 
such as L= 0.1, 0.15, and 0.2 are named “Case01, 
Case02, and Case03” respectively. 
 
Table 2 Material properties and computational cases 

 Case01 Case02 Case03 
ρ 1.18 1.18 1.18 
Cp 9.7703E+02 9.7703E+02 9.7703E+02 
K 2.51 E-02 2.51 E-02 2.51 E-02 
g 9.81 9.81 9.81 
β 3.41 E-03 3.41 E-03 3.41 E-03 
α 2.14E-05 2.14E-05 2.14E-05 
μ 1.824E-05 1.824E-05 1.824E-05 
L 0.1 0.15 0.20 

H, B 2 2 2 
ΔT 20 20 20 
Pr 0.71 0.71 0.71 
Ra 2.056E+06 6.939E+06 1.6448E+07 

 
Table 3 Mesh dependency test of Case01 

 No. of cells Heat flux Rel. error 
Coarse 8750 126.37 3.65% 

Base 15300 123.33 1.16% 
Fine 32000 121.76 0.14% 

Finest 60750 121.92 - 
 
Table 4 Heat flux deviation according L 

Cases L Heat flux Difference 
Case01 0.1 121.76 0.55% 
Case02 0.15 122.26 0.13% 
Case03 0.2 122.43 - 
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Fig. 4 Velocity distributions of Case01 and Case03. 

 
Along the high temperature wall, the heat transfer 

occurs by heat conduction due to temperature 
difference between wall and fluid, and the fluid 
obtained the energy is accelerated in the opposite 
direction of the gravity by buoyancy effect. The 
buoyancy-driven flow transfers the energy to the 
other side of the cavity by fluid itself. During this 
process, the friction because of the viscosity on the 
wall is attended. Along the distance between two 
horizontal walls, the energy loss by the fluid friction 
increases and the velocity in the boundary layer 
decreases inevitably. The velocity is bound by the 
friction. 

The flow along the high temperature wall can be 
divided into an acceleration region, turning-flow-
direction region, deceleration region (next to 
beginning of low temperature wall), and 
acceleration region. In Fig. 4, the velocity 
distributions along the x-axis are plotted. The 
velocities between Case01 and the others are 
different each other. The maximum peak velocity of 
the Case01 shows at z=1.5, whereas the maximum 
of the Case03 does at z=1.0 since there is no 
interaction between two boundary layers developing 
from high and low temperature walls. A flat velocity 
area can be observed in Fig. 4(a) (z=1.0), and it 
implies the interaction between two layer is not 
severe. At above z=1.5, the velocities decrease 
because of upper dead-end, and gradually change its 
direction to the other wall. The air experiences the 
sudden decrease in momentum, but since the hot air 
having more momentum than that of low 
temperature air in the surrounding area; it 
accelerates air next to the low temperature wall. The 
hot air is mixed with low temperature air and lost its 
momentum. The cooled air moves downward and 
accelerated gradually along the low temperature 
wall. Cooled air changes its direction in the lower 
dead-end. It completes its vortical flow in the cavity. 

In Fig. 4(a), Case01 shows more flat area (Uz~0) 
in the center and the variation of the velocity is 
lower than in fig. 4(b) for Case03. It implies that the 
interaction between two boundary layers in Case03 

is small. The boundary layers each side develops 
independently and thus, the heat transfer is not 
changed between two layers. 

As shown in Table 4, despite the increase in the 
thickness from L=0.1 to 0.2, the heat flux through 
the wall is constant. The deviation between Case01 
and Case03 is less than 1% . In this enclosed natural 
convection problem, the convection heat transfer 
next to the wall is dominant. The air obtaining 
energy from the wall moves upward, and makes a 
boundary layer. However, the distance between two 
walls is sufficiently far and the interaction between 
boundary layers is quite small. The distance 
between two walls has no effect. 
 

 
Fig. 5 temperature distributions of Case01 and Case03. 
 

The convection heat transfer is a key of the 
energy transfer in this enclosed cavity.  The 
thickness of the temperature boundary layer is 
thinner than that of the velocity. The flat area of the 
temperature is wider as shown in Fig. 5. The 
temperature next to the high temperature wall 
increases along the z-axis. It is expected that the 
energy obtained from the high temperature wall is 
less than energy release from the low temperature 
wall whereas the energy obtaining from the high 
temperature wall is more than energy release. In 
term of case01 at z>1.5, the effect of boundary 
interaction can be observed. Since the flow direction 
changes, and the temperature of the flow is still high 
at z>1.8, there are reverse temperature distributions. 
The temperature increase along the x-axis (right is a 
low temperature wall). 

In Fig. 5, temperature boundary layer can be 
observed clearly. Both Case01 and Case03 have the 
same boundary layer thickness and thus, the wide 
float temperature can be seen in the Fig. 5(b). The 
temperatures increase along the z-axis. As shown in 
Fig. 5, despite of slight difference between two 
cases, temperature distribution next to the wall is the 
same and the gradients are also similar. The 
temperature and velocity distribution except y/B 
>0.05 are constant along y-axis. This implies that 
the flow on z-y plane is two-dimensional.  
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Fig. 6 Velocity vector at y=1.0 

 

 
Fig. 7 Comparison of streamlines along y axis 

 
In case of vector velocity in Fig. 6, except the 

upper and lower dead-end, three cases with different 
thickness are corresponded roughly. The only 
central area which has no flow increases as the 
width increases. The streamline in Fig. 7 shows that 
the major flow is vortical flow along z-axis and 
there is week secondary flow in the upper and lower 
dead-end.  
 
4 Conclusion 
In this study, the numerical algorithms for three-
dimensional incompressible Navier-Stokes flow and 
energy equation on unstructured grids with arbitrary 
shaped cells have been developed. Third order 
diffusion method is employed to avoid the 
checkerboard pressure oscillation generally 
encountered in a collocated method for solving 
incompressible flow. Among possible energy 
equations, the temperature equation is used. The 
numerical algorithm used to solve the final linear 
equations is derived from the SIMPLE algorithm. 
The numerical methods including energy equation 
used have been validated with the three-dimensional 
cavity and a good agreement with experimental data 
and numerical data are obtained. Numerically, the 
intermediate flows until converged are complex and 
large fluctuation of residual can be observed. 

From the flow and streamline in the cavity after 
fully converged, the distance between two walls 
(glasses) is sufficiently far and there are no 
boundary layer interactions. Therefore, no severe 
flow and temperature changes according to 
thicknesses are observed. A single large vortex 
between two walls dominates the flow and 
temperature characteristics. The vortex is stable, and 
there is no additional vortical flow between two 

layers. The deviation of the temperature and flow is 
not severe and thus, it is note that the flow and 
temperature is not sensitive against thicknesses. The 
most of the energy transfer comes from this large 
vortex and the thickness has no effect on energy 
transfer. As a result, one large vortex approximately 
two-dimensional one except next to each end 
generated. In the near future, we perform the 
computation concentrating on the relations between 
two and three-dimensional effect according to the 
gap.  
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