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1 Introduction 
We consider sequences of polynomials which are 
orthogonal with respect to the Sobolev inner product 
defined on the set of polynomials ℙ by 

(f, g) = ∑ ∫ 𝑓(𝑖)(𝑥)𝑔(𝑖)(𝑥)𝑑𝜇𝑖(𝑥)
ℝ

𝑁

𝑖=0

, (1) 

for some 𝑁 ≥ 1, where (𝜇𝑖}𝑖=𝑜
𝑁  are positive finite 

Borel measures. The interest of the study of 
orthogonal polynomials is justified by several 
reasons: the spectral theory for ordinary differential 
equations, the analysis of spectral methods in the 
numerical treatment of partial differential equations, 
the search of algorithms for computing Fourier-
Sobolev series as well as the approximation to both a 
function and its derivative in terms of Sobolev 
orthogonal polynomials; the extension of Gauss 
quadrature formulas [1] – [7]. There exists a real-
valued polynomial ℎ: ℝ → ℝ satisfying  

(ℎ𝑝, 𝑞) = (𝑝, ℎ𝑞)(𝑝, 𝑞 ∈  ℙ), 
if and only if each of measures 𝜇𝑖(𝑥)(1 ≤ 𝑖 ≤ 𝑁) are 
purely atomic with a finite number of mass points [8]. 
                           
 
2 Continual-discrete Sobolev 

polynomials 
Let 𝜇 be a finite positive Borel measure on the 
interval [−1,1] with infinitely many points at the 
support and let the points 𝑎𝑘 , 𝑎𝑘 ∈ ℝ, 𝑘 = 1, 2, … , 𝑚.  
For 𝑓 and 𝑔 in 𝐿𝜇

2 ([−1,1]) such that there exist the 
derivatives in 𝑎𝑘, we can introduce the inner product 
             
 
 
 

(𝑓, 𝑔) = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝜇(𝑥)
1

−1

+ 

+ ∑ ∑ 𝑀𝑘,𝑖𝑓
(𝑖)(𝑎𝑘)𝑔(𝑖)(𝑎𝑘)

𝑁𝑘

𝑖=0

𝑚

𝑘=1

, (2) 

where 𝜇({𝑎𝑘}) = 0, 𝑀𝑘,𝑖 > 0 (𝑖 = 0,1, … , 𝑁𝑘;  𝑘 =
1,2, … , 𝑚), 𝜇′(𝑥) > 0 𝑎. 𝑒. Linear spaces with this 
inner product are called a “continual-discrete 

Sobolev spaces”. 

Continual-discrete Sobolev spaces are an 
interesting topic in many fields of mathematics and 
its applications [9, 10]. If we investigate the 
oscillation of a string loading with 
masses 𝑀𝑘  at the points 𝑎𝑘 and use the Fourier 
method for the corresponding Sturm-Liouville 
boundary value problem associated with the second-
order partial differential equation, then the 
eigenvectors are orthogonal with respect to the inner 
product 

(𝑓, 𝑔) = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥 + ∑ 𝑀𝑘𝑓(𝑎𝑘)𝑔(𝑎𝑘).

𝑚

𝑘=1

1

−1

 

If we study the oscillation of girder, we get a fourth-
order partial differential equation. The corresponding 
eigenfunctions are orthogonal with respect to the 
inner product involving equilibrium theory of plates 
strengthened by rods, was considered for the first 
time by S.P. Timoshenko as early as 1915 (he was a 
famous specialist in elastic theory). 
In the future we will consider the following two cases     

|a𝑘| ≤ 1 и |a𝑘| > 1 (k = 1,2, … , m). 
A) Case |a𝑘| ≤ 1 (k = 1,2, … , m) [11]. 

Let 𝑁𝑘
∗  be the positive integer number defined by  

𝑁𝑘
∗ = {

𝑁𝑘 + 1, 𝑖𝑓 𝑁𝑘  𝑖𝑠 о𝑑𝑑,
𝑁𝑘 + 2, 𝑖𝑓 𝑁𝑘 𝑖𝑠 е𝑣𝑒𝑛,

 

 

Boris Osilenker
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 277 Volume 10, 2025



𝑤𝑁(𝑥) ≔ ∏(𝑥 − 𝑎𝑘)𝑁𝑘
∗

𝑚

𝑘=1

, 𝑁 = ∑ 𝑁𝑘
∗

𝑁

𝑘=1

; 

𝑤𝑁+1(𝑥) = ∫ 𝑤𝑁(𝑡)𝑑𝑡
𝑥

−1
. 

B) Case  |a𝑘| > 1(k = 1,2, … , m)  [12]: 

wN(x) = ∏(𝑥 − 𝑎𝑘)𝑁𝑘+1

𝑚

k=1

, 𝑁 = ∑(𝑁s + 1)

𝑚

s=1

. 

We will assume that all points 𝑎𝑘  belong to the 
interval (−∞ < as < −1, s = 1,2, … , m); otherwise, 
we only have to change the corresponding factor 
(x − 𝑎𝑘) by (𝑎𝑘 − 𝑥)  in the definition of  𝑤𝑁 (𝑥). 

In order to study the Fourier series in the 
case |as| > 1 (s = 1,2, … , m) the condition 𝜇’(𝑥) >
0 a.e is not sufficient for our purposes in what 
follows. Thus, we will consider the measure 𝜇 in the 
Szeg𝑜̈  class: 

∫ log 𝜇′ (𝑥)

1

−1

𝑑𝑥

√1 − 𝑥2
> −∞. 

Example: Jacobi weight (1 − 𝑥)𝛼(1 + 𝑥)𝛽 (𝛼, 𝛽 >
−1). Let {𝑞̂𝑛(𝑥)};  𝑥 ∈ [−1,1];  𝑛 ∈ ℤ+, ℤ+ =
{0,1,2, … } be the sequence of polynomials of degree  
n  with a positive leading coefficients orthonormal 
with respect to this inner product (2) 

(𝑞̂𝑛, 𝑞̂𝑚)  = 𝛿𝑛,𝑚 (𝑛, 𝑚 ∈ ℤ+) 
Orthonormal polynomials 𝑞̂𝑛(𝑥) satisfy the 
following recurrence relations                     

𝑤𝑁+1(𝑥)𝑞̂𝑛(𝑥) = ∑ 𝑑𝑛+𝑗,𝑗

𝑁+1

𝑗=0

𝑞̂𝑛+𝑗(𝑥) + 

∑ 𝑑𝑛,𝑗𝑞̂𝑛,𝑛−𝑗(𝑥)

𝑁+1

𝑗=1

(3) 

(n∈ ℤ+; 𝑞̂−𝑗 = 0, 𝑗 = 1,2, … ; 𝑑𝑛,𝑠 = 0, 𝑠 > 𝑛). 
Remarks. 1. If {𝐞n}n=0

∞  is the orthonormal basis of a 
separate Hilbert space ℋ and J is Jacobi operator, then  

𝜋𝑁+1(𝐽)𝒆𝑛 = ∑ 𝑑𝑛+𝑗,𝑗

𝑁+1

𝑗=0

𝒆𝑛+𝑗 + ∑ 𝑑𝑛,𝑗𝒆𝑛−𝑗     

𝑁+1

𝑗=1

 

(n∈ ℤ+; 𝒆−𝑗 = 0, 𝑗 = 1,2, … ; 𝑑𝑛,𝑠 = 0, 𝑠 > 𝑛) is 
given by a generalized Jacobi matrix of order (2𝑁 +
3) [13]. 
2. Let us consider a special case of the inner product 
(2): 

(𝑓, 𝑔): = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝜇(𝑥)

1

−1

+ ∑ ∑ 𝑀𝑘,𝑖𝑓(𝑖)(𝑎𝑘)𝑔(𝑖)(𝑎𝑘)

𝑁

𝑖=0

𝑚

𝑘=1

 

= ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝜇(𝑥) + ∑ 𝑀𝑘,0𝑓(𝑎𝑘)𝑔(𝑎𝑘)

𝑚

𝑘=1

1

−1

+ ∑ ∑ 𝑀𝑘,𝑖𝑓(𝑖)(𝑎𝑘)𝑔(𝑖)(𝑎𝑘)

𝑁

𝑖=1

𝑚

𝑘=1

= ∫ 𝑓(𝑥)𝑔(𝑥)

1

−1

𝑑𝜇0(𝑥)

+ ∑ ∫ 𝑓(𝑖)(𝑥)𝑔(𝑖)(𝑥)𝑑𝜇𝑖(𝑥)

1

−1

𝑁

𝑖=1

= ∑ ∫ 𝑓(𝑖)(𝑥)𝑔(𝑖)(𝑥)𝑑𝜇𝑖(𝑥),

1

−1

𝑁

𝑖=0

 

whеre 𝑑𝜇0(𝑥) =dμ(x)+∑ 𝑀𝑘,0𝛿(𝑥 − 𝑎𝑘) 𝑑𝑥𝑚
𝑘=1 ,  

d𝜇𝑖(𝑥) = ∑ 𝑀𝑘,𝑖𝛿(𝑥 − 𝑎𝑘) 𝑑𝑥𝑚
𝑘=1 (𝑖 = 1,2, … , 𝑁), 

and 𝛿(𝑥) −  𝛿 Dirac’s function. We obtain the 
classical Sobolev’s inner product (1) with continuous 
and discrete measures.  
 
 
3. Example. Discrete symmetric 

Gegenbauer-Sobolev polynomials 

(𝑓, 𝑔)𝛼 = ∫ 𝑓(𝑥)𝑔(𝑥)𝑤𝛼(𝑥)𝑑𝑥

1

−1

+ 𝑀[𝑓(1)𝑔(1) + 𝑓(−1)𝑔(−1)] + 
𝑁[𝑓′(1)𝑔′(1) + 𝑓′(1)𝑔′(−1)](𝑀 ≥ 0, 𝑁 ≥ 0), 

𝑤𝛼(𝑥) = (1 − 𝑥2)𝛼(𝛼 > −1)́  
{𝑞̂𝑛

(𝛼)(𝑥) ≡ 𝑞̂𝑛
(𝛼)(𝑥; 𝑀, 𝑁)} (𝑛 ∈ ℤ+, 𝑥 ∈ [−1,1]), 

(n
(α),q̂m

(α)
)α=δn,m (n, m∈ℤ+). 

They were introduced by H. Bavinck, Y.J. Meijer 
([14,15]) and have been investigated in the following 
articles [16]-[22] and so on.  
      Some of their properties differ from the properties 
of classical orthonormal Gegenbauer polynomials 
𝑝𝑛

𝛼(𝑥):                 
1. For n large enough, the polynomials 

𝑞̂𝑛
(𝛼)(𝑥; 𝑀, 𝑁), 𝑁 > 0, positive  exactly (𝑛 − 2) 

different, real and simple zeros belonging to the 
interval   (-1,1);  the two remainder zeros are outside 
of the interval being one positive and the other  one 
negative; all roots of 𝑝𝑛

𝛼(𝑥) in (−1,1); 
2. 𝑝𝑛

𝛼(𝑥) are eigenfunctions of the differential 
operators of a second-order. Polynomials  
𝑞̂𝑛

(𝛼)
(𝑥; 𝑀, 𝑁) are eigenfunctions of the linear 

differential operator usually infinite degree: 
if 𝛼 = 0, 1, 2, …. 𝑀 > 0, 𝑁 > 0: degree 4𝛼 + 10; 
𝑀 > 0, 𝑁 = 0: 2𝛼 + 4;                                         
𝑀 = 0, 𝑁 > 0 ∶  2𝛼 + 8;  these degrees are least;  
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3. |𝑞̂𝑛
(𝛼)

(±1)| ≈ 𝑛−𝛼−
3

2, |{q̂n
(α)

}′(±1)|≈𝑛−𝛼−
3

2,  

|{𝑞̂𝑛
(𝛼)

}′(±1)| ≈  𝑛−𝛼−
7
2, 

|𝑝𝑛
𝛼(±1)| ≈ 𝑛𝛼+

1
2, 𝛼 > −

1

2
;                    

4.  (𝑥3 − 3𝑥)𝑞̂𝑛
(𝛼)

(𝑥) = 𝑎𝑛+3𝑞̂𝑛+3
(𝛼)

(𝑥) + 
𝑏𝑛+1𝑞̂𝑛+1

(𝛼)
(𝑥) + 𝑏𝑛𝑞̂𝑛−1

(𝛼)
(𝑥) + 𝑎𝑛𝑞̂𝑛−3

(𝛼)
(𝑥)  

(𝑛 ∈ ℤ+; 𝑞̂−𝑠
(𝛼)

(𝑥)=0, 𝑠 = 1, 2, … ; 𝑎𝑛 = 0,  n =
0, 1, 2; b0 = 0), 

𝑎𝑛 =
1

8
+

𝐶1

𝑛
+ 𝑂 (

1

𝑛2
),    

𝑏𝑛 = −
9

8
+

𝐶2

𝑛
+ 𝑂 (

1

𝑛2
).  

This recurrence relation has the lowest order. 
Orthonormal polynomials 𝑝𝑛

𝛼(𝑥) satisfy a three-term 
recurrence relation 

𝑥𝑝𝑛
𝛼(𝑥) = 𝑐𝑛+1𝑝𝑛+1

𝛼 (𝑥) + 𝑑𝑛𝑝𝑛
𝛼(𝑥)

+ 𝑐𝑛𝑝𝑛−1
𝛼 (𝑥)(𝑛 ∈ ℤ+), 

𝑝−1
𝛼 (𝑥) = 0,   𝑝0

𝛼(𝑥) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,   𝑐0 = 0, 
with 

𝑐𝑛 =
1

2
 + 𝑂 (

1

𝑛2) , 𝑑𝑛 = 𝑂 (
1

𝑛2) (𝑛 → ∞). 
 

 

4 Fourier-Sobolev series in continual-

discrete Sobolev spaces  
Let {𝑞̂𝑛(𝑥), 𝑛 ∈ ℤ+ ; 𝑥 ∈ [−1,1]} be the sequence of 
orthonormal polynomials of degree 𝑛 with a positive 
leading coefficient: 

(q̂n, q̂m)=𝛿𝑛,𝑚 (𝑛, 𝑚 ∈ ℤ+), 
𝑞̂𝑛(𝑥) = 𝑘(𝑞̂𝑛)𝑥𝑛 + 𝑟(𝑞̂𝑛)𝑥𝑛−1 + ⋯ , 𝑘(𝑞̂𝑛) > 0. 

Denote by ℜр (1≤p<∞),ℜ1 =  ℜ, the set of functions  
     ℜ𝑝 =

{
𝑓, ∫ |𝑓(𝑥)|𝑝𝑑𝜇(𝑥) <

1

−1
∞; 𝑓(𝑖)(𝑎𝑘)  𝑒𝑥𝑖𝑠𝑡

𝑖 = 0,1,2, … , 𝑁𝑘  , −∞ < 𝑎𝑘 < ∞(𝑘 = 1,2, … , 𝑚)
}. 

For each 𝑓 ∈ ℜ   we form a Fourier-Sobolev series       
𝑓(𝑥)~ ∑ 𝑐𝑘(𝑓)∞

𝑘=0 𝑞̂𝑘(𝑥), 
𝑐𝑘(𝑓) = (𝑓, 𝑞̂𝑘) (𝑘 ∈ ℤ+;  𝑥 ∈ [−1,1]). (4)      

We consider the trilinear T-regular method of 
summability defined by the matrix 

Λ = {𝜆𝑘
(𝑛)

, 𝑘 = 0,1, … , 𝑛, 𝑛 + 1; 𝜆0
(𝑛)

= 1, 
𝜆𝑛+1

(𝑛)
= 0, 𝑛 ∈ ℤ+}. (5)

Matrix   Λ  is called T - regular, if the following 
conditions are valid: 
а)  𝑙𝑖𝑚𝑛→∞𝜆𝑘

(𝑛)
= 1 (𝑘 ∈ ℤ+is fixed); 

b) ∑ |𝜆𝑘
(𝑛)

− 𝜆𝑘+1
(𝑛)

| ≤ 𝐶 (𝑛 ∈ ℤ+).𝑛
𝑘=0    

For example: Cesaro means (𝐶, 𝛼 > 0) , Voronoj -
N𝑜̈rlund means, Riesz’s means and so on. For every  
𝑓 ∈ ℜ   we introduce Λ-means 

𝕌𝑛𝑓( 𝑥; Λ) ∶= ∑ 𝜆𝑘
(𝑛)

𝑛

𝑘=0

𝑐𝑘(𝑓)𝑞̂𝑘(𝑥) (𝑥 ∈ [−1,1]). (6) 

Compact convergence in a normed function space 𝐻 
on a set 𝐹 is called convergence in the metric of the 
space 𝐻 on any compact subset 𝐾 of 𝐹 (in the case of 
a space of continuous function 𝐶([−1,1]) with a 
uniform metric, the topology of uniform convergence 
on compact subsets). 
We study  the following problem:to investigate Λ – 
summability of a given Fourier-Sobolev series, that 
is, to obtain conditions for orthonormal system   
{𝑞̂𝑛}𝑛 =0

∞   and the entries of Λ − 𝑚𝑎𝑡𝑟𝑖𝑥 (5), for 
which the relations    

lim
𝑚→∞

𝕌𝑛𝑓(𝑥; Λ) = 𝑓(𝑥), (7) 

lim
𝑛→∞

∑ 𝜆𝑙
(𝑛)

𝑛

𝑙=0

𝑐𝑙(𝑓)𝑞̂𝑙
(𝑖)

(𝑎𝑘) = 𝑓(𝑖)(𝑎𝑘) (8) 

(𝑖 = 0,1,2, … , 𝑁𝑘; 𝑘 = 1, , … , 𝑚) 
hold at the point 𝑥 ∈ (−1,1), almost everywhereе   
and in the topology of compact convergence in the 
spaces 𝐶([−1,1]) and 𝑊𝜔

𝑝([−1,1]). 
The interest in orthogonal Sobolev polynomials 

and Fourier -Sobolev series is related to a number of 
problems of Function Theory, Functional Analysis, 
Quantum Mechanics, Mathematical Physics and 
Computing [1, 9].   In the classical book [24],[25], we 
can find the point of view of partial differential 
equations (see also [23, 26]). 
 

 

5 Partial sums of the Fourier-Sobolev 

series 
Define by 

𝑆𝑛𝑓(𝑥) = ∑ 𝑐𝑘(𝑓)𝑞̂𝑘(𝑥) = ∫ 𝑓(𝑡)

1

−1

𝐷𝑛(𝑡; 𝑥)𝑑𝜇(𝑡)

𝑛

𝑘=0

 

+ ∑ ∑ 𝑀𝑘,𝑖𝑓(𝑖)(𝑎𝑘)𝐷𝑛
(𝑖)

𝑁𝑘

𝑖=0

𝑚

𝑘=1

(𝑎𝑘; 𝑥), (𝑥 ∈ [−1,1]).  

the partial sums of the Fourier-Sobolev series (4), 
where  

𝐷𝑛(𝑡; 𝑥) = ∑ 𝑞̂𝑘(𝑡)𝑞̂𝑘(𝑥)  (𝑛 ∈ ℤ+ ; 𝑡, 𝑥 ∈ [−1,1])

𝑛

𝑘=0

 

is Dirichlet’s kernel. The point 𝑥 ∈ (𝑎, 𝑏)  is called a 
Lebesgue point of a function 𝑓, if the following 
relation 

𝑙𝑖𝑚
ℎ→0

1

2ℎ
∫ |𝑓(𝑡) − 𝑓(𝑥)|𝑑𝜇(𝑡) = 0

𝑥+ℎ

𝑥−ℎ

 

holds. As is known, the set of the Lebesgue points of 
f ∈ L𝜇

1 (a, b)  is situated μ- almost-everywhere  𝑥 ∈

(𝑎, 𝑏).   
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Define by 
ℰ𝑚

= {
(−1,1)\ ∪𝑠=1

𝑚 {𝑎𝑠}, 𝑖𝑓 |𝑎𝑠| ≤ 1 (𝑠 = 1,2, … , 𝑚),

(−1,1),              𝑖𝑓 |𝑎𝑠| > 1 (𝑠 = 1,2, … , 𝑚).
 

Theorem 1. Assume that 𝑓 ∈ ℜ  and  

∫ |𝑓(𝑥)|ℎ(𝑥)𝑑𝜇(𝑥)
1

−1

< ∞, 

∫ ℎ(𝑥)𝑑𝜇(𝑥) < ∞,

1

−1

 

where h(x) is continuous in  ℰ𝑚 majorant of 𝑞̂𝑛(𝑥) : 
|𝑞̂𝑛(𝑥)| ≤ ℎ(𝑥) (𝑥 ∈ ℰ𝑚; 𝑛 ∈ ℤ+). (9) 

Then the following results hold:                           
(i) At each Lebesgue point 𝑥 ∈ ℰ𝑚 of the function 𝑓, 
the partial sums 𝑆𝑛𝑓(𝑥)  of the Fourier – Sobolev 
series (4) satisfy 

𝑆𝑛𝑓(𝑥) = 𝑜𝑥(1) 𝑙𝑛(𝑛 + 1) (𝑛 → ∞). 
(ii) Let function 𝑓 be a continuous on [−1, 1]  and the 
measure 𝜇 is absolutely continuous 

𝑑𝜇(𝑥) = 𝜔(𝑥)𝑑𝑥, 𝜔(𝑥) > 0 (10) 
is continuous (𝑥 ∈ ℰ𝑚). Then uniformly on every 
compact subset 𝐾 of  ℰ𝑚 the relation 

𝑆𝑛𝑓(𝑥) = 𝑜(1) 𝑙𝑛(𝑛 + 1) (𝑛 → ∞) 
holds. 
The statements (i)-(ii)are preserved in the case 
|𝑎𝑘| > 1(𝑘 = 1,2, … , 𝑚), if the measure 𝜇 satisfies 
the Szegö condition. The issues of convergence of 
Fourier series for systems of continual-discrete 
orthogonal polynomials and their special cases were 
studied in the articles [11], [12], [27]-[36].              
 
 
6 𝚲-means of the Fourier-Sobolev 

series  
Define by 

𝕌𝑛𝑓( 𝑥; Λ) ∶= ∑ 𝜆𝑘
(𝑛)

𝑛

𝑘=0

𝑐𝑘(𝑓)𝑞̂𝑘(𝑥) 

(𝑛 ∈ ℤ+; 𝑥 ∈ [−1,1]) 
the Λ -means of Fourier series (4). 

Theorem 2. Suppose that an orthonormal 
polynomial system {𝑞̂𝑛(𝑥)}𝑛=0

∞    has a majorant ℎ(𝑥) 
(see (9)) and the recurrence coefficients (3) satisfy 
∑ 𝑗𝑁+1

𝑗=1 ∑ ∑ (|𝑑𝑠+𝑗,𝑠+𝑗+𝑙
∞
𝑠=0

𝑁+1
𝑙=0 −

𝑑𝑠+𝑙,𝑠+𝑗+𝑙|+|𝑑𝑠,𝑠+𝑗 − 𝑑𝑠+𝑙,𝑠|) < ∞ 
∑ 𝑗𝑁+1

𝑗=1 ∑ ∑ (|𝑑𝑠+𝑗,𝑠+𝑗−𝑙
∞
𝑠=0

𝑁+1
𝑙=0 −

𝑑𝑠+𝑙,𝑠+𝑗−𝑙|+|𝑑𝑠,𝑠+𝑗 − 𝑑𝑠−𝑙,𝑠|) < ∞,                      (11) 
where the constant 𝐶 > 0 does not depend on n ∈ ℤ+, 
and for the entries of T-regular matrix Λ the following 
estimate 

𝑚𝑎𝑥
0≤𝑘≤𝑛

|𝜆𝑘
(𝑛)

|

+ ∑
(𝑘 + 1)(𝑛 − 𝑘 + 1)

𝑛 + 1

𝑛

𝑘=0

𝑙𝑛
3(𝑛 + 𝑘 + 1)

𝑛 − 𝑘 + 1
|∆2𝜆𝑘

(𝑛)
| 

≤ 𝐶 (𝑛 ∈ ℤ+) (12) 
holds, where ∆2𝜆𝑘

(𝑛)
= 𝜆𝑘

(𝑛)
− 2𝜆𝑘+1

(𝑛)
+ 𝜆𝑘+2

(𝑛)
 (𝑘 =

0,1, … , 𝑛; 𝑛 ∈ ℤ+). Then the following statements are 
valid: 
(i) Let f be a function 𝑓 ∈ ℜ𝑝, 1 ≤ 𝑝 < ∞, be satisfy  

∫ |𝑓(𝑥)|𝑝ℎ𝑝(𝑥)𝑑𝜇(𝑥) < ∞,
1

−1

∫ ℎ𝑝(𝑥)𝑑𝜇(𝑥) < ∞
1

−1
.

(13) 

Then at every Lebesgue point 𝑥 ∈ ℰ𝑚 of function 𝑓, 
the  𝛬 - means 𝕌𝑛𝑓( 𝑥; 𝛬) of the Fourier-Sobolev 
series converges to 𝑓(𝑥), that is, the relation (7) 
holds. 
(ii) If, an addition, the measure 𝜇 satisfies the 
condition (10) and the function 𝑓 is continuous on 
[−1,1], then the relation (7) holds uniformly on all 
compact subsets 𝐾 ⊂ (−1,1).  
(iii) Let 𝑓 be a function 𝑓 ∈ ℜ𝑝, 1 ≤ 𝑝 < ∞,  be 
satisfy (13) and there exist the derivatives  𝑓(𝑖)(𝑎𝑘) 
 for 𝑖 = 0,1, … , 𝑁𝑘 , 𝑘 = 1,2, … , 𝑚, with 

𝑠𝑢𝑝
𝑛∈ℤ+

∑ |𝑞̂𝑗
(𝑖)(𝑎𝑘)|

𝑛

𝑗=0

< ∞ (14) 

then the relation (8) holds.    
The statements (i)-(ii) are preserved in the case 
|𝑎𝑘| > 1(𝑘 = 1,2, … , 𝑚), if the measure 𝜇 satisfies 
the Szegö condition. 
Define by  
𝑊𝜔

𝑝(𝐹) = {𝑓, ||f||W𝜔
p

(F) < ∞,  

||f||W𝜔
p

(F) = ||f||L𝜔
p (F) + ∑ ∑ Mk,i

Nk
i=0 |f (i)(ak)|p}m

k=1 , 
where  (1 ≤ p < ∞) the subset 𝐹 ⊂ (−1,1). 

Theorem 3. Let a polynomial system {𝑞̂𝑛 (𝑥)}𝑛=0
∞  

satisfy the conditions (9)-(11), (14) and  

||ℎ||
𝐿𝜔

𝑞 ([−1,1])
< ∞ (1 < 𝑝 < ∞,

1

𝑝
+

1

𝑞
= 1) (15) 

1. Then for any function 𝑓 ∈ 𝑊𝜔
𝑝

([−1,1]), satisfying 
(13), for Λ-means (6) we have  

||𝑈𝑛𝑓(𝑥)||𝑊𝜔
𝑝

(𝐾) ≤ 𝐶𝑝||𝑓||𝑊𝜔
𝑝

([−1,1]) < ∞ 
on an arbitrary compact subset 𝐾 ⊂ ℰ𝑚, where the 
constant 𝐶𝑝 > 0 does not depend on 𝑛 ∈ ℤ+ and the 
function 𝑓. 
2. (Compact 𝛬 −summability) For any function 𝑓 ∈
𝑊𝜔

𝑝
([−1,1]), satisfying (13), on all compact subset 

К ⊂ ℰ𝑚 thеre is a relation: 
||𝑈𝑛𝑓(𝑥; 𝛬) − 𝑓(𝑥)||𝑊𝜔

𝑝(𝐾) → 0 (𝑛 → ∞). 
The statements 1, 2 are preserved in the case |a𝑘| >
1 (𝑘 = 1,2, … , 𝑚), if the measure μ satisfies the 
Szegö condition. 
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The following propositions p lay an important role in 
the study of linear summation methods. The kernel of   
Λ -means has the form 
                            𝐾𝑛(𝑡, 𝑥; Λ) =

∑ 𝜆𝑘
(𝑛)𝑛

𝑘=0  𝑞̂𝑘(𝑡)𝑞̂𝑘(𝑥) (x ∈ ℰm, 𝑛 ∈ ℤ+). 
 Let us introduce the function 

𝐾̃𝑛(𝑡, 𝑥; Λ) =
𝐾𝑛(𝑡,𝑥;Λ)

ℎ(𝑡)ℎ(𝑥)
  (𝑡, x ∈ ℰm;  𝑛 ∈ ℤ+). 

Nonnegative function 𝐺𝑛
∗(𝑡, 𝑥) (𝑡 ∈ (𝑎, 𝑏), 𝑥 ∈

[𝛼, 𝛽] ⊂ (𝑎, 𝑏);  𝑛 ∈ ℤ+) is called “a humpbacked 
majorant” for the sequence 𝐺𝑛(𝑡, 𝑥) in the variable 𝑡 
at the point 𝑥 if the following conditions are satisfied: 
(1) For all 𝑛 ∈ 𝑍+  𝑎𝑛𝑑 𝑡 ∈ (𝑎, 𝑏), 𝑥 ∈ [𝛼, 𝛽] 

|𝐺𝑛(𝑡, 𝑥)| ≤ 𝐺𝑛
∗(𝑡, 𝑥); 

(2) For fixed 𝑛 ∈ 𝑍+, 𝑥 ∈ [𝛼, 𝛽] the function 
𝐺𝑛

∗(𝑡, 𝑥)  is nondecreasing on (𝑎, 𝑥) and 
nonincreasing on (𝑥, 𝑏).  

Lemma 1. Let a orthonormal polynomial system 
{𝑞̂𝑛 (𝑥)}𝑛=0

∞  satisfy conditions (9)-(11) and for the 
entries of T-regular matrix Λ (5) the estimate (12) 
holds. Then for the function 𝐾̃𝑛(𝑡, 𝑥; 𝛬) there is “a 
humpbacked majorant” for which the following 
estimate is valid 

∫ 𝐾̃𝑛
∗(𝑡, 𝑥; 𝛬)

1

−1
ℎ(𝑡)𝜔(𝑡)𝑑𝑡 ≤ 𝐶 (x∈ К; 𝑛 ∈ ℤ+), 

where the constant 𝐶 > 0 does not depend on 𝑥 ∈ К   
and 𝑛 ∈ ℤ+. 

Lemma 2 Let a orthonormal polynomial system 
{𝑞̂𝑛 (𝑥)}𝑛=0

∞  satisfy conditions (9) and (14). 
If  

∫ |𝑓(𝑡)|ℎ(𝑡)𝑑𝜇(𝑡
1

−1
) < ∞, ∫ ℎ(𝑡)𝑑𝜇(𝑡) < ∞

1

−1
, 

is satisfied for a function 𝑓 ∈ ℜ, then the following 
relation is valid                      

∑ 𝑐𝑛(𝑓)

∞

𝑛=0

𝑞̂𝑛
(𝑖)(𝑎𝑘) = 𝑓(𝑖)(𝑎𝑘  ) 

(𝑘 = 1, … , 𝑚; 𝑖 = 0,1, … , 𝑁𝑘). 
The statement is preserved in the case |𝑎𝑘| > 1(𝑘 =
1,2, … , 𝑚), if the measure μ satisfies the Szegö 
condition. 

Remarks 1. Fourier-Gegenbauer polynomial 
system  {𝑞̂𝑛

(𝛼)
(𝑥)}𝑛=0

∞   satisfy the conditions of 
Theorems 1–3 and Lemmas 1-2. 

2. The Cesaro mean (С, 𝛼) (𝛼 > 0) and   the 
Berstein – Rogosinski mean (see [38]) satisfy the 
condition (12). 
 

 

7 Open problems 
1. To investigate the order of approximation 

of function by linear means of Fourier-
Sobolev series.                                                

2.To conduct experimental research in this topic. 
3. Study multiple Fourier-Sobolev series.                                                          
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