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Abstract - This special note provides preliminary information on the ramp (signal) function, which plays a
significant role in engineering and science, and offers advantages for the efficient use of various computer-
aided programs in different types of (mathematical) computations. Following this, we will present the

fundamentals of certain Caputo-type calculations, which are also associated with a form of fractional calculus
of arbitrary order. Furthermore, several specific computations involving the Caputo-type derivatives of the

ramp function will be performed, and the key results obtained from these computations will be discussed.
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1 Some information on the Ramp
(Signal) Function

The Ramp function is a mathematically
important concept that has a part in an significant
role in nearly all fields of science and
engineering. Commonly, it is denoted as 71 =
r(x) and it is a real-valued function whose graph
resembles a ramp.

In mathematical analysis, the variable (or
parameter) x is known as the independent variable,
while r (or r(x)) is referred to as the dependent
variable of the function. This special function is
also typically defined by the following form given
by

_ {x when x20
r(x) = {0 when x<0’

whose graph is below:

(1)
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Fig 1: The graph of the Ramp function

The Ramp (Signal) function produces linearly
increasing (or decreasing) output values over the
(independent) variable x, with a specified slope. In
addition, when the variable x represents time, the
starting time of the ramp can be optionally defined.
The slope and starting time can be either constant
or variable, depending on the application.

Furthermore, the Ramp function can be
represented by multiple equivalent definitions. The
term “ramp” is also used to describe various
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functions derived through scaling and shifting. In
general, a common example is defined as: “0 for
negative input values and equal to the input for
non-negative values.” This special case is known
as the unit ramp function, which is usually denoted
by u := u(x). It has a slope of 1 and starts at x =
0.

In particular, in the written literature, this
special function is commonly referred to as the
positive part function. At the same time, in the
field of machine learning, it is generally known as
the ReLU (Rectified Linear Unit) activation
function, or simply as a rectifier, drawing an
analogy to half-wave rectification in electrical
engineering and related fields. Furthermore, in
statistics, when used as a likelihood function, it
forms the basis of the Tobit model. The function is
known by various names across different
disciplines and has numerous applications in both
mathematics and engineering, depending on the
context.

Moreover, various differentiable variants of the
Ramp function have been developed to
accommodate specific modeling requirements in
different fields.

As is well known in mathematics and applied
sciences, especially when analyzing the
relationship between dependent and independent
variables through differentiation or integration, the
Ramp function has important derivative properties.
Specifically, the first derivative of the Ramp
function is the Heaviside step function, also called
the unit step function, while its second derivative
corresponds to the Dirac delta distribution (or &-
distribution), also known as the unit impulse.

These two special functions are typically
denoted by H(x) and &(x), respectively, and can

be defined by the following mathematical
expressions:
_ (1 when x=20
u(x) = 0 when x<0 (2)
and
_ (0 when x>0
5(x) = 0 when x<0 3)

We note here that, especially in mathematical
analysis (and its comprehensive applications), the
Dirac delta function (or &(x) distribution), also
known as the unit impulse function, is a
generalized function (or distribution) defined over
the set of real numbers. It is identically zero
everywhere except at the origin, yet its integral
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over the entire real line equals one. Informally, it is
also denoted as
§(x) =

0 when x>0
oo when x<0 *

(4)
Since no ordinary (classical) function satisfies
these properties, a rigorous formulation of the
delta “function” requires the use of limits or, more
formally, the frameworks of measure theory and
distribution theory.

Originally introduced by the renowned physicist
Paul Dirac, the delta function has become a
fundamental concept in physics and engineering,
particularly for representing point masses and
instantaneous impulses. It is called the “delta
function” because it serves as the continuous
counterpart to the Kronecker delta, which is
defined on a discrete domain and takes only the
values 0 and 1.

For some time, the delta function lacked a formal
mathematical justification. This issue was resolved
by Laurent Schwartz, who developed the theory of
distributions, within which the delta function is
rigorously defined as a linear functional acting on
a space of test functions.

For more detailed information on those special
functions (and some of their applications) topics
mentioned above, readers are referred to the key
studies listed in the mentined references, [1], [2],
[11],[14], [16], [21].

2 A Brief Introduction to Some
Caputo-Type Calculations

As is well known, various type derivatives and
their applications are inalienable mathematical
tools that frequently appear in the mathematical
literature and are also involved in a wide variety of
calculations. These tools play a crucial role in
nearly all fields of science and engineering,
particularly in mathematics and physics. Of
course, under favorable conditions, these logical
calculations may also take the form of fractional
derivatives (and integrals) of arbitrary order,
commonly referred to as arbitrary fractional-order
operations.

Such fractional-order calculations, namely the
mentioned type derivatives, in particular, continue
to find valuable and sustainable applications across
both scientific and engineering disciplines, [7].
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Also see the earlier studies in the references, [8],

[9].

One notable category of these special calculations
involves the well-known Caputo-type approach,
specifically fractional-order derivatives. In this
second part of the investigation, we will first
present some fundamental information about this
particular type of derivative. In special, the
essential concepts of the Caputo fractional
derivative(s), used for various computations
involving fractional-order operations such as
integrals and derivatives, were originally
introduced by M. Caputo in the context of solving
certain boundary value problems arising in the
theory of viscoelasticity, [12].

Let us now try to introduce the relevant concepts
in a simple and concise manner.

First of them, let the well-known notations R, R*
and NT denote the set of real numbers, the set
[0,00) and the set {1,2, 3, }, respectively.

Definition 1. Let f := f(x) be a continuous (Or
piecewise continuous) function defined from R* to
R. Its Caputo type fractional derivative of order «
is denoted by

‘D[f(x)] = D*[f(x)] =D“[f],
and is also defined by

1 x_ Y
Da[f(x)] = r(v-a) fo (x—t)x-v+1 dt ’

%)
where
v—1<a<v and v €N,

(6)
and the familiar notation I'(-) denotes the Gamma
function with the parameter a defined by

() = f, t* e tdt (a>0). 7
As is well known, the notation f ™ (t) denotes the
vth ordinary derivative of the related function f.
Namely, for f := f(t),

f@m =
forallv:=1,2,3,--.
In the same time, the Gamma function defined by
(7) represents an improper integral. This integral
converges for all real numbers except zero and the
negative integers. We also denote the related set of
the real numbers as

R*:=R-{0,-1,-2,-3,-}.

dvf
atv

(8)
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Although this special investigation is primarily
concerned with positive real numbers, the
graphical relationship between all real numbers
in the special set R* and the Gamma function is
presented just below.

Mx)

y

C

A

Fig 2: The graph of the Gamma Function

Furthermore, one of them relates directly to the
assertion given by

r'(a)r(b)
I'(a+b) (9)

where the notation B(:,-) expresses the familiar
Beta function defined by

B(a,b) = [, t¢71(1 — )’ 1dt.

B(a,b) = (a,b € RY),

(10)

In special, the essential identity presented in (9)
immediately yields that

_ (a-1)!(b-1)!
B(a,b) = (a+b-1)! ’

(11)

where a,b € N™.

It is important to emphasize here that these special
functions are highly suitable for, and widely used
in, the fields of science and engineering,
particularly in mathematics and physics. The
calculations required by the equation (5) are
especially useful, as the special functions defined
by the equation (10) cannot be expressed in terms
of elementary functions.

Furthermore, the wide range of results that can be
obtained using the function given by simple form
in (7) makes it particularly valuable. For those and
some their applications, see more information,
[10], [11], [12],[13].

In the same time, since they are integrated into
scientific software packages such as Mathematica
and MATLAB, they also play a crucial role in a
wide range of numerical computations. For more
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information, see the scientific investigations in the
references of this special investigation, [14], [15],
[16], [17], [18].

In short, under appropriate conditions, as it can be
easily perceived the existence of Caputo-type
calculations, which are fractional derivatives of
arbitrary order for a suitable function f, depends
on the existence of the special integral defined by

().

Notably, under the condition specified in equation
(6), the special function introduced in equation (7),
namely the Gamma function plays a fundamental
and indispensable role in the definition of the Beta
function given in the equation (10), as well as in
various derivatives of arbitrary fractional order.

Therefore, the fact that these mentioned functions
possess broad and versatile identities and
properties greatly expand the scope and
applicability of the aforementioned fractional-
order type calculations.

Now, according to our special information above,
based on the specific details provided in items (7)
through (11), it is worth emphasizing the
numerous potential implications of the definition
given in item (5), as outlined in Definition 1.

(i) Using fundamental mathematical information

and also applying a change of variable such as

x—t=ux (12)

to the special definition given in (5), the
integral then takes the following useful form:

DUf ()] = ey

) -
X flfv (X(l u))du

0 ya-v+i1

(13)

(i) The Caputo-type derivative possesses the
linearity property. For two suitable functions
fi = fi(x) (i =1,2), it can be easily shown
that the following essential result holds:

D% [c1f1 + c2f2]
=, DY[fi] + c;DY[f2],  (14)
where c¢; and ¢, any scalars. In the same
time, this fundamental property can also be
extended to n functions f;, where i = 1,2,
.-+, n. Therefore, to verify this, it is sufficient
to use the main definition presented in (5)
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along with basic mathematical (integral)

knowledge.
(iii)

that
D [f]-DF [f] = D**F [f],

framework of the definition given in (5).

(iv) If @: = 0 is chosen in Definition 1, then v =
1 necessarily follows, which leads to the main

implication given by
ore1 1 x Y@
D] = r(1-0) fO (x—£)0-1+1 dt
1 (x g
= ﬁfo fr@)de

=fx),

that is, that the Caputo derivative (of the
related function f) of order a:= 0 exists

when t > 0.

(v)

When considering Definition 1, since
v—1<a<v,

it follows that a:=v —1, where v is any
natural number. This also gives us the

equivalent assertions given by

=176 _ 1 x 9@
D [f] T I(w-v+1) fO (x—t)yv-1-v+1

=l FP @t
= D),

dt

which also shows that the Caputo derivative
(of the related function f) of integer order
exists. Naturally, it can be also expressed as in

the equivalent form:

D"[f] = f™ (),
forall n € N, := Nt U {0}.

3 Some Results, Implications and

Applications

In this section, some fundamental results will
first be obtained by considering the Caputo-type
calculations (derivatives) presented in the second
section. Then, based on these obtained results, the
certain

discussion ~ will proceed towards
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The index law for the Caputo-type derivative
of arbitrary order also holds. Namely, in
consideration of the aforementioned definition
in (1), for all a and f, it can be also shown

(15)
where v—1<a<v and v-1<B8<v
when v € N*. To verify this, it is sufficient to
use classical integral knowledge within the

(16)

(17)
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implications and some of their possible
applications, including the special functions
introduced in the first section.

By taking into consideration of the definition
defined in (5) (or, the equivalent form given by
(11)), the following remark consisting of Caputo
type derivative(s) of any constant function can be
first determined.

Remark 1. Let f == f(x) = A. In view of the
definition in (12), for all n € N*, all ordinary
derivatives of the constant function f:

@ =24 =0. (19)

Hence, according to the definition of the Caputo
type derivative(s), we first have

D%[A] =0 (20)

forsome a withn—1 < a < n.

Remark 2. As we have emphasized before, the
information between (7) and (10) facilitates the
computation of the integrals in (5) (or (10)). As
clearly shown in the Fig 2, the fact that both
special functions are defined on R* significantly
broadens the scope of Caputo-type derivative(s)
for the power function given by

f(x) = x (q €R). (21)

For our next goals, let us now focus on the
fractional derivative of the corresponding power
function.

a) Let q<v—1 and v,q € N*. Then, the
mentioned definition easily presents us the
pending result:

DY x9] =0 (wv—1<a<v). (22)
b) Let g >v—1, v€NT and q € R*. Then, by
taking cognizance of

dv

L) = ()W

= q(xq—l)(v—l)
=q(q — D(xTH@D

=q@—1D - (q-—v+1x7"

ra+1)  q—v
T T (23)

and in view of the Gamma function in (7), the
Beta function in (10), the private information
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presented by (5) together with (12) and (13),
the equivalent results given by

@
D¥[x4] = —— [F «

T T(v-a) 0 (x—t)a-v+t

_ 1 fx( I(g+1) ra-v
Fv-a)’0 \I(g-v+1)
x (x — )" Ddt

I'(q+1) q-a
rv-a)r(q—v+1)

X fol u’ (1 —w) v du

I'(qg+1)
- Frv—-a)f(qg—-v+1)
XBv—a,q—v+1)
_ r(g+1)
- rv-a)f(q—v+1)
Fv-a)f(q—v+1) q-a
r(g—a+1)

q—a

_ T(q+1) qg-a
- F(q—a+1)x )

is then determined, where « is any real number
such that v — 1 < a < v withv € N*.

The result presented in Remark 2 is a general
finding that plays a significant role in formalizing
both integer-order and fractional-order Caputo-
type derivatives. In particular, based on the
information provided by the graph given by Fig 2,
it is clear that the Beta function given in (10) will
be also defined for all real numbers for which the
Gamma function in (7) is defined. Therefore, all
possible fractional-order Caputo-type derivatives
will certainly be feasible. As some more examples,
by setting q = 2 in the general result in (24), the
Caputo-type derivatives of the elementary function
f(x) = x? can be easily obtained as the form
given by

x=* x W
D*[x?] = r(1-a) fo (x—t)a-1+1 dt

1-a (1) _
_ X flf (x(1—-u)) du

- r(1-a) -0 ux—1+1

F'3) . 2-a
rid-a)

_ 2 2—a

= F(3_00x (25)
— 2 2—-a

- F(3—a)x ’

wherev —1 < a <v forallv € N* (v < 3).

As special cases of the result obtained in (25),
when choosing the possible values of the
parameter v as v := 1 and v := 2 in the mentioned
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result (25), for the related function f(x) = x?2, the

Caputo-type derivatives of orders o« = 1/2 and

a = 3/2 can be easily received as in the forms:

pl/2 [x2] = 2 x2-1/2

r(3-1/2)

3/2

T TG

2
T I (s/2) xVx

(26)
and

2 _
D3/2[x?] = D) 2-3/2

2
Vx,

YD)

(27)
respectively.
Moreover, if one considers the property of the

Gamma function like the familiar factorial form
given by

I'(n+ 1) =nI'(n) (28)
and the computational result given by
1
r(z)=ve. (29)

the fractional order calculations determined as in
(26) and (2.7) can be easily redesigned as the
special assertions given by

TR

_ x

D1/2 [xz] —

(30)

and

X, (31)
respectively.

Naturally, of course, the values of the
corresponding fractional derivatives of the
function f(x) = x? at a point such as x, = 1 will
be as follows:

pl/2 [x2 ]l _ _8

x=1 3\/Ex\/§

x=1
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= 1,504506 (32)

and
3/27,.2 _ 4
D22, = V|
A
e
2,256699.

~

(33)

We would like to highlight some important
information here. The specific calculations
between (30) and (33) can be repeated as many
times as desired, at the discretion of interested
researchers. The calculations presented in (32)
and (33) can also be compared with the values
of the first-second derivatives of the relevant
functions evaluated at the point x, = 1.
Naturally, the related calculations can be
extended to various derivatives of different
orders as well. For example, one can refer to
certain results in some special researches, [19],
[20], [21].

4 Conclusion and Some Suggestions

This special research, which consists of four
chapters, provides some basic information in the
first chapter, including the ramp (signal) function,
which plays a very different role in engineering
and science, and its special implications, such as
those in (2)-(4).

The second chapter introduces the Caputo-type
calculation, one of the calculations related to
various fractional-order derivatives, and some
special functions that are quite related to it.
Relevant information is found in (5) and (11). This
chapter also includes some additional special
calculations related to Caputo-type calculations,
including highlights and conclusions, in (12)
through (18).

The third chapter addresses and highlights some
special calculations related to the mentioned
Caputo-type derivatives that may be important for
the purpose of this research. Relevant information
is also found in (19) and (33).

In particular, each of the three special sections
above includes specific information and references
related to the objectives of this research, and some
goals are highlighted for researchers.

227 Volume 10, 2025



A. Simya Irmak

Notably, the specific calculations between (21)
and (24), obtained using Remark 2, can facilitate
the determination of more complex fractional
metric calculations. In other words, when solving
rather complex integrals generated by the
functions involved in the integrals given in (5) or
(13), applying the information provided by
Remark 2, followed by the appropriate function
expansion, will greatly simplify the solution. In
many respects, we believe that the earlier studies
presented in the studies, [22], [23], [24], [25] and
[25], will also be valuable resources for interested
researchers.

As final words, with the help of the indicated
calculations, this special can be finished with some
Caputo-type fractional derivatives related to the
ramp (signal) function. For those, we want to
focus on the most general form of the ramp
function. If the linearity property in (14) is taken
into consideration, Remark 1 is used and g = 1 is
selected in Remark 2, wvarious Caputo type
derivatives of fractional order a for the function
being of

Tap(x) =a+bx (a,b € Rwithb # 0)
can be then determine as the elementary form
given by
D% [ra‘b (x)] = D% [a + bx]
= D%[a] + D*[bx]
= D%[a] + bD*[x]
_ra+y
r(i—-a+1)

_bI®@  1-a
re-a)

1-a

=0+b

__b 1-a
r2-oa)

for some (suitable) values of the parameter a. This

(34)

elementary result also gives us a great number of
special results when choosing the different values
of a. As two special examples, in light of the
information in (24) and (34), when one selects the
special values given by

1 1
a:== and a:===,
2 3

the followings:
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D/2[ry,(x)] = DY/2[0 + 1x]
= DV2[x]

and

3 3/
=;R§¢;

can be easily obtained. Here, when using the
special value in (29) for the mentioned result (35),

the following special results:

D'/2 [7”0,1 (x)] = %\/9?

= 1,128379%/x
and
2
yr
1,128379.

D'/2 [r0,1(x)] |x=1 =

IR

are also achieved. However, we cannot easily
perform similar calculations for the special result
given in (35). As is well known, while the
evaluation of the value of I'(1/2) can be done
using basic mathematical knowledge, computing
I'(1/3) is not straightforward. As emphasized in
Section 2, such values can also be calculated by
using a variety of available computer software
programs or packages, such as C, C++, Python,
Mathematica, MATLAB, and others. As is known,
these complex calculations are frequently used in
science and engineering, particularly in applied
mathematics, physics, and statistics. For numerical
evaluations like these, as well as for the special
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cases presented in the references given by (1), (2),
(25)-(33), (35), and (36), a range of commonly
used basic programs or specialized mathematical
software tools offer considerable convenience.

Further investigation is left to the individual efforts
of interested researchers.

References:

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

N. N. Lebedev, Special Functions and
Their Applications, translated by R. A.
Silverman, New Jersey, Prentice-Hall
Inc, 1965.

L. C. Andrews, Special Functions for
Engineers and Applied Mathematics,
New York, MacMillan Comp., 1984.

K. B. Oldham, The Fractional Calculus,
Mathematics in Science and
Engineering, Vol. 111, Academic Press,
New York, 1974.

D. Cafagna, Past and present - fractional
calculus: A mathematical tool from the

past for present engineers, |EEE
Industrial Electronics Magazine, Vol. 1,
No. 2, 2007, pp. 35-40. DOLI:

10.1109/MIE.2007.901479

V. V. Uchaikin, Fractional Derivatives
for Physicists and Engineers, Springer,
Berlin, 2013.

D. Valério, J. T. Machado and V.

Kiryakova, @ Some pioneers of the
applications of fractional calculus,
Fractional Calculus and Applied

Analysis, Vol. 7, No. 2, 2014, pp. 552-
578. DOI: 10.2478/s13540-014-0185-1
M. Caputo, Linear model of dissipation
whose Q is almost frequency
independent. II, Geophysical Journal
International, Vol. 13, No. 5, 1967, pp.
529-539. https://doi.org/10.1111/].1365-
246X.1967.tb02303.x

H. Pratap, S. Kumar and G. Singh,
Brief History of Fractional Calculus: A
Survey, Migration Letters, Vol. 21, No.
S7,2024, pp. 238-243.

ISSN: 2367-895X

229

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

Z. Li, L. Liu, S. Dehghan, Y. Chen and
D. Xue, A review and evaluation of
numerical tools for fractional calculus
and fractional order controls, Int. J.
Control., Vol. 90, 2017, pp. 1165-1181.
DOI: 10.1080/00207179.2015.1124290
P.J. Davis, Leonhard Euler's Integral: A
Profile of the Gamma
Function, = American  Mathematical
Monthly, Vol. 66, No. 10, 1959, pp. 849-
869.

R. Beals and R. Wong, Special
Functions: A Graduate Text, Cambridge
University Press, 2010. Tables, New
York, Dover, 1972.

B. Ross, The Development of the
Gamma Function and A Role of
Fractional Calculus, New York
University dissertation, NY, 1974.

E. C. de Oliveira and J. A. Tenreiro
Machado, A Review of Definitions for
Fractional Derivatives and Integral,
Mathematical Problems in Engineering,
vol. 2014, Article ID 238459.
https://doi.org/10.1155/2014/238459
M. Abramowitz and 1. A. Milton,
Handbook of Mathematical Functions
with Formulas, Graphs and
Mathematical Tables, New York, Dover,
1972.

K. Diethelm, The Analysis of Fractional
Differential Equations: An Application-
Oriented Exposition Using Differential
Operators of Caputo Type, Series on
Complexity, Nonlinearity and Chaos,
Springer, Heidelberg, 2010.

F. W. J. Olver, D. W. Lozier, R. F.
Boisvert and C. W. Clark, NIST
Handbook of Mathematical Functions,
Cambridge University Press, 2010.

Historical

B. Sikora, Remarks on the Caputo
fractional derivative, Minut, Vol. 5,
2023, pp. 76-84.

Volume 10, 2025


https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
https://doi.org/10.1155/2014/238459

A. Simya Irmak

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

K. Diethelm, N. J. Ford, A. D. Freed and
Y. Luchko, Algorithms for the fractional
calculus: A selection of numerical
methods, Computer Methods in Applied
Mechanics and Engineering, Vol. 194,
2005, pp. 743-773.
https://doi.org/10.1016/j.cma.2004.06.00
6

R. Hilfer, Applications of Fractional
Calculus in Physics, World Scientific,
Singapore, 2000

B. Ross, Fractional calculus and its
applications, Springer Lecture Notes in
Mathematics, Vol. 57, 1975, pp. 1-36.

A. M. Mathai, A Handbook of
Generalized Special Functions for
Statistical and Physical Sciences,
Clarendon Press, Oxford, UK, 1993.

L. Debnath, A
introduction to fractional
calculus, International Journal of
Mathematical Education in Science and
Technology, Vol.35, No. 4, 2004,
pp. 487-501. DOL:
10.1080/00207390410001686571

A. Atangana and R. Alqahtani,
Modelling the spread of river blindness
disease via the Caputo fractional
derivative and the beta-derivative,
Entropy, Vol, 18, No. 2, 2016, p. 40.
https://doi.org/10.3390/e18020040

A. Carpinteri and F. Mainardi, Fractals
and Fractional Calculus in Continuum
Mechanics,
1998.

brief  historical

Springer-Verlag  Telos,

V. E. Tarasov, Fractional Dynamics:
Applications of Fractional Calculus to
Dynamics of Particles, Fields and
Media, Nonlinear Physical
Springer, 2010.

Science,

ISSN: 2367-895X

International Journal of Mathematical and Computational Methods

230

http://www.iaras.org/iaras/journals/ijmcm

[26] C. Liand M. Cai, Theory and Numerical

Approximations of Frac-tional Integrals
and Derivatives, SIAM, 2019.

Volume 10, 2025


https://doi.org/10.1016/j.cma.2004.06.006
https://doi.org/10.1016/j.cma.2004.06.006
https://doi.org/10.3390/e18020040



