
A note on various special calculations between the Ramp function and 

Caputo-type derivatives 

 
A. SIMYA IRMAK 

Institute of Graduate Studies 
Department of Computer Engineering 

Nişantaşı University 
34481742, Sarıyer, İstanbul 

TURKEY 
 
Abstract - This special note provides preliminary information on the ramp (signal) function, which plays a 
significant role in engineering and science, and offers advantages for the efficient use of various computer-
aided programs in different types of (mathematical) computations. Following this, we will present the 
fundamentals of certain Caputo-type calculations, which are also associated with a form of fractional calculus 
of arbitrary order. Furthermore, several specific computations involving the Caputo-type derivatives of the 
ramp function will be performed, and the key results obtained from these computations will be discussed. 

Key-Words: The ramp (signal) function, Caputo type calculations, Fractional calculus of arbitrary order, 
Applications of the Caputo-type derivatives, Special functions.

Received: June 27, 2025. Revised: August 9, 2025. Accepted: September 6, 2025. Published: October 15, 2025.

    

 

 

1 Some information on the Ramp   

(Signal) Function  
The Ramp function is a mathematically 

important  concept  that has a part in  an significant   
role  in  nearly all  fields  of  science and 
engineering. Commonly, it is denoted as  𝑟 ≔
𝑟(𝑥) and it is a real-valued function whose graph 
resembles a ramp.   

In mathematical analysis, the variable (or 
parameter) 𝑥 is known as the independent variable, 
while 𝑟 (or 𝑟(𝑥)) is referred to  as the dependent 

variable of  the function. This special function is 
also typically defined by the following form given 
by 
 

         𝑟(𝑥) =  { 𝑥
0

 𝑤ℎ𝑒𝑛  𝑥≥0
𝑤ℎ𝑒𝑛  𝑥<0

 ,                      (1)  
 

whose graph is below: 

 
 

Fig 1: The graph of the Ramp function 
 

The Ramp (Signal) function produces linearly 
increasing (or decreasing) output values over the 
(independent) variable 𝑥, with a specified slope. In 
addition, when the variable 𝑥 represents time, the 
starting time of the ramp can be optionally defined. 
The slope and starting time can be either constant 
or variable, depending on the application. 

Furthermore, the Ramp function can be 
represented by multiple equivalent definitions. The 
term “ramp” is also used to describe various 
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functions derived through scaling and shifting. In 
general, a common example is defined as: “0 for 
negative input values and equal to the input for 
non-negative values.” This special case is known 
as the unit ramp function, which is usually denoted 
by 𝑢 ≔ 𝑢(𝑥). It has a slope of 1 and starts at 𝑥 =
0.  

In particular, in the written literature, this 
special function is commonly referred to as the 
positive part function. At  the  same time, in  the  
field  of machine learning, it is generally known as 
the ReLU (Rectified Linear Unit) activation 
function, or simply as a rectifier, drawing an 
analogy to half-wave rectification in electrical 
engineering and related fields. Furthermore, in 
statistics, when used as a likelihood function, it 
forms the basis of the Tobit model. The function is 
known by various names across different 
disciplines and has numerous applications in both 
mathematics and engineering, depending on the 
context.  

Moreover, various differentiable variants of the 
Ramp function have been developed to 
accommodate specific modeling requirements in 
different fields. 

 
As is well known in mathematics and applied 

sciences, especially when analyzing the 
relationship between dependent and independent 
variables through differentiation or integration, the 
Ramp function has important derivative properties. 
Specifically, the first derivative of the Ramp 
function is the Heaviside step function, also called 
the unit step function, while its second derivative 
corresponds to the Dirac delta distribution (or δ-
distribution), also known as the unit impulse. 

 
These two special functions are typically 

denoted by H(𝑥) and 𝛿(𝑥), respectively, and can 
be defined by the following mathematical 
expressions:  

 

              𝑢(𝑥) = { 1
0

 𝑤ℎ𝑒𝑛  𝑥≥0
𝑤ℎ𝑒𝑛  𝑥<0

                         (2) 
and 

                        

              𝛿(𝑥) = { 0
0

 𝑤ℎ𝑒𝑛  𝑥>0
𝑤ℎ𝑒𝑛  𝑥<0

 .                       (3)     
We note here that, especially in mathematical 
analysis (and its comprehensive applications), the 
Dirac delta function (or 𝛿(𝑥) distribution), also 
known as the unit impulse function, is a 
generalized function (or distribution) defined over 
the set of real numbers. It is identically zero 
everywhere except at the origin, yet its integral 

over the entire real line equals one. Informally, it is 
also denoted as                                         

              𝛿(𝑥) = { 0
∞

 𝑤ℎ𝑒𝑛  𝑥>0
𝑤ℎ𝑒𝑛  𝑥<0

 .                      (4)    

Since no ordinary (classical) function satisfies 
these properties, a rigorous formulation of the 
delta “function” requires the use of limits or, more 
formally, the frameworks of measure theory and 
distribution theory. 

Originally introduced by the renowned physicist 
Paul Dirac, the delta function has become a 
fundamental concept in physics and engineering, 
particularly for representing point masses and 
instantaneous impulses. It is called the “delta 
function” because it serves as the continuous 
counterpart to the Kronecker delta, which is 
defined on a discrete domain and takes only the 
values 0 and 1. 

For some time, the delta function lacked a formal 
mathematical justification. This issue was resolved 
by Laurent Schwartz, who developed the theory of 
distributions, within which the delta function is 
rigorously defined as a linear functional acting on 
a space of test functions. 

For more detailed information on those special 
functions (and some of their applications) topics 
mentioned above, readers are referred to the key 
studies listed in the mentined references, [1], [2], 
[11], [14], [16], [21].   

2 A Brief  Introduction to Some 

Caputo-Type Calculations   
   As is well known, various type derivatives and 
their applications are inalienable mathematical 
tools that frequently appear in the mathematical 
literature and are also involved in a wide variety of 
calculations. These tools play a crucial role in 
nearly all fields of science and engineering, 
particularly in mathematics and physics. Of 
course, under favorable conditions, these logical 
calculations may also take the form of fractional 
derivatives (and integrals) of arbitrary order, 
commonly referred to as arbitrary fractional-order 
operations.  
 
Such fractional-order calculations, namely the 
mentioned type derivatives, in particular, continue 
to find valuable and sustainable applications across 
both  scientific and engineering disciplines, [7]. 
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Also see the earlier studies in the references, [8], 
[9].   
 
One notable category  of  these special calculations  
involves the well-known Caputo-type approach, 
specifically fractional-order derivatives. In this 
second part of the investigation, we will first 
present some fundamental  information about this 
particular type of derivative. In special, the 
essential concepts of the Caputo fractional 
derivative(s), used for various computations 
involving fractional-order operations such as 
integrals and derivatives, were originally 
introduced by M. Caputo in the context of solving 
certain boundary value problems arising in the 
theory of viscoelasticity, [12]. 
 
Let us now try to introduce the relevant concepts 
in a simple and concise manner. 
 
First of them, let the well-known notations  𝐑, 𝐑+   
and 𝐍+ denote the set of real numbers, the set 
[0, ∞)  and the set {1, 2, 3, ⋯ }, respectively.  
 
Definition 1. Let 𝑓 ≔ 𝑓(𝑥) be a continuous (or 
piecewise continuous) function defined from 𝐑+ to 
𝐑. Its Caputo type fractional derivative of order 𝛼 
is denoted by   
 

𝐃𝛼𝐶 [𝑓(𝑥)] ≡ 𝐃𝛼[𝑓(𝑥)]  ≡ 𝐃𝛼[𝑓] ,  
 

and is also defined by                  

           𝐃𝛼[𝑓(𝑥)] =
1

𝚪(𝑣−𝛼)
∫

𝑓(𝑣)(𝑡)

(𝑥−𝑡)𝛼−𝑣+1

𝑥

0
𝑑𝑡 ,      (5)  

 

where  
 

              𝑣 − 1 ≤ 𝛼 < 𝑣   and   𝑣 ∈ 𝐍+,             (6) 
 

and the familiar notation 𝚪(⋅) denotes the Gamma 
function with the parameter 𝑎 defined by  
 

             Γ(𝑎) = ∫ 𝑡𝑎−1∞

0
𝑒−𝑡𝑑𝑡   (𝑎 > 0).          (7)    

 

As is well known, the notation 𝑓(𝑣)(𝑡) denotes the 
𝑣th ordinary derivative of the related  function 𝑓.  
Namely, for  𝑓 ≔ 𝑓(𝑡),   
 

                           𝑓(𝑣)(𝑡) ≡
𝑑𝑣𝑓

𝑑𝑡𝑣 
                            (8)  

 

for all 𝑣 ≔ 1, 2, 3, ⋯ .  
In the same time, the Gamma function defined by 
(7) represents an improper integral. This integral 
converges for all real numbers except zero and the 
negative integers. We also denote the related set of 
the real numbers as   
 

𝐑∗ ≔ 𝐑 − {0, −1, −2, −3, ⋯ }.  
 

 

Although this special investigation is primarily 
concerned with positive real numbers, the 
graphical  relationship  between  all  real  numbers 
in the special set 𝐑∗ and the Gamma function is 
presented just below.   
 

   
 

Fig 2: The graph of the Gamma Function 
 

Furthermore, one of them relates directly to the 
assertion given by   
 

             𝐁(a, b) =
Γ(𝑎)Γ(𝑏)

Γ(𝑎+𝑏)
  (𝑎, 𝑏 ∈ 𝐑+),            (9)   

 

where the notation 𝐁(⋅,⋅) expresses the familiar 
Beta  function defined by   
 

            𝐁(a, b) = ∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1𝑑𝑡.
1

0
          (10) 

 
In special, the essential identity presented in (9) 
immediately yields that  
 

                    𝐁(a, b) =
(a−1)!(b−1)!

(𝑎+𝑏−1)!
 ,                  (11)   

 

where 𝑎, 𝑏 ∈ 𝐍+. 
 
It is important to emphasize here that these special 
functions are highly suitable for, and widely used 
in, the fields of science and engineering, 
particularly in mathematics and physics. The 
calculations required by the equation (5) are 
especially useful, as the special functions defined 
by the equation (10) cannot be expressed in terms 
of elementary functions.  
 
Furthermore, the wide range of results that can be 
obtained using the function given by simple form 
in (7) makes it particularly valuable. For those and 
some their applications, see more information, 
[10], [11], [12], [13].  
 
In the same time, since they are integrated into 
scientific software packages such as Mathematica 
and MATLAB, they also play a crucial role in a 
wide range of numerical computations. For more 
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information, see the scientific investigations in the 
references of this special investigation, [14], [15], 
[16], [17], [18]. 

In short, under appropriate conditions, as it can be 
easily perceived the existence of Caputo-type 
calculations, which are fractional derivatives of 
arbitrary order for a suitable function 𝑓,  depends 
on the existence of the special integral defined by 
(5).  

Notably, under the condition specified in equation 
(6), the special function introduced in equation (7), 
namely the Gamma function plays a fundamental 
and indispensable role in the definition of the Beta 
function given in the equation (10), as well as in 
various derivatives of arbitrary fractional order. 

Therefore, the fact that these mentioned functions 
possess broad and versatile identities and 
properties greatly expand the scope and 
applicability of the aforementioned fractional-
order type calculations. 
 
Now, according to our special information above, 
based on the specific details provided in items (7) 
through (11), it is worth emphasizing the 
numerous potential implications of the definition 
given in item (5), as outlined in Definition 1.  
 
(i)   Using fundamental mathematical  information 

and also applying a change of variable such as  
                          𝑥 − 𝑡 = 𝑢𝑥                        (12) 

 

to the special definition given in (5), the 
integral then takes the following useful form:  

 

   𝐃𝛼[𝑓(𝑥)] =
𝑥𝑣−𝛼

Γ(𝑣−𝛼)
 

 
 

                            × ∫
𝑓(𝑣)(𝑥(1−𝑢))

𝑢𝛼−𝑣+1

1

0
𝑑𝑢.      (13)  

 

(ii) The Caputo-type derivative possesses the 
linearity property. For two suitable functions 
𝑓𝑖 ≔ 𝑓𝑖(𝑥)  (𝑖 = 1, 2),  it can be easily shown 
that the following essential result holds:  

 
 

           𝐃𝛼 [𝑐1𝑓1 + 𝑐2𝑓2] 
 

                          = 𝑐1𝐃𝛼[𝑓1] + 𝑐2𝐃𝛼[𝑓2] ,       (14)  
  

where  𝑐1 and 𝑐2 any scalars.  In the same 
time, this  fundamental  property  can  also be 
extended to 𝑛 functions  𝑓𝑖 ,  where 𝑖 = 1, 2,
⋯ , 𝑛. Therefore, to verify this,  it is sufficient 
to use the main definition presented in (5) 

along with basic mathematical (integral) 
knowledge.  

 
(iii)  The index law for the Caputo-type derivative 

of arbitrary order also holds. Namely, in 
consideration of the aforementioned definition 
in (1), for all 𝛼 and 𝛽, it can be also shown 
that 

 

                𝐃𝛼 [𝑓] ⋅ 𝐃𝛽 [𝑓] = 𝐃𝛼+𝛽 [𝑓] ,            (15) 
 

where 𝑣 − 1 ≤ 𝛼 < 𝑣 and 𝑣 − 1 ≤ 𝛽 < 𝑣 
when 𝑣 ∈ 𝐍+. To verify this, it is sufficient to 
use classical integral knowledge within the 
framework of the definition given in (5).  

 
(iv) If 𝛼: = 0 is chosen in Definition 1, then 𝑣 ≔

1 necessarily follows, which leads to the main 
implication given by 

 

               𝐃0[𝑓] =
1

𝚪(1−0)
∫

𝑓(1)(𝑡)

(𝑥−𝑡)0−1+1

𝑥

0
 𝑑𝑡  

 

                          = 1

𝚪(1)
∫ 𝑓′(𝑡)

𝑥

0
𝑑𝑡                     (16)  

 

                          = 𝑓(𝑥) ,   
 

that is, that the Caputo derivative (of the 
related function 𝑓) of order 𝛼: = 0 exists 
when 𝑡 > 0.  

 
(v)   When considering Definition 1, since 
 

𝑣 − 1 ≤ 𝛼 < 𝑣,  
 

it follows that  𝛼: = 𝑣 − 1,  where 𝑣 is any 
natural number. This also gives us the 
equivalent assertions given by 

 

    𝐃𝑣−1 [𝑓] =  
1

𝚪(𝑣−𝑣+1)
∫

𝑓(𝑣)(𝑡)

(𝑥−𝑡)𝑣−1−𝑣+1 

𝑥

0
 𝑑𝑡  

 

                           = 1

𝚪(1)
∫ 𝑓(𝑣)(𝑡)

𝑥

0
𝑑𝑡                (17)  

 

                           = 𝑓(𝑣−1)(𝑥),   
 

which also shows that the Caputo derivative 
(of the related function 𝑓 ) of integer order 
exists. Naturally, it can be also expressed as in 
the equivalent form: 

 

                           𝐃𝑛[𝑓] ≡ 𝑓(𝑛)(𝑥) ,                   (18) 
   

for all  𝑛 ∈ 𝐍0 ≔ 𝐍+ ∪ {0}.  
 

 3 Some Results, Implications and    

Applications  
        In this section, some fundamental results will 

first be obtained by considering the Caputo-type 
calculations (derivatives) presented in the second 
section. Then, based on these obtained results, the 
discussion will proceed towards certain 
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implications and some of their possible  
applications, including the special functions 
introduced in the first section.  

 
 By taking into consideration of the definition 

defined in (5) (or, the equivalent form given by 
(11)), the following remark consisting of Caputo 
type derivative(s) of any constant function can be 
first determined.  
 
Remark 1. Let 𝑓 ≔ 𝑓(𝑥) ≡ 𝐴. In view of the 
definition in (12), for all 𝑛 ∈ 𝐍+,  all ordinary 
derivatives of the constant function 𝑓:       

                   𝑓(𝑛)(𝑡) ≡
𝑑𝑛

𝑑𝑡𝑛 
(𝐴) = 0.                  (19)   

 
Hence, according to the definition of the Caputo 
type derivative(s), we first have  
 

                              𝐃𝛼[𝐴] = 0                            (20) 
 

for some 𝛼 with 𝑛 − 1 ≤ 𝛼 < 𝑛. 
 
Remark 2. As we have emphasized before, the 
information between (7) and (10) facilitates the 
computation of the integrals in (5) (or (10)). As 
clearly shown in the Fig 2, the fact that both 
special functions are defined on 𝐑∗ significantly 
broadens the scope of Caputo-type derivative(s) 
for the power function given by 
 

                   𝑓(𝑥) =  𝑥𝑞  (𝑞 ∈ 𝐑∗).                     (21)  
 
 
 
 
 
 
 
 

For our next goals, let us now focus on the 
fractional derivative of the corresponding power 
function.  
 
a) Let 𝑞 ≤ 𝑣 − 1 and 𝑣, 𝑞 ∈ 𝐍+. Then, the 

mentioned definition easily presents us the 
pending result:   
 

            𝐃𝛼[𝑥𝑞] = 0   (𝑣 − 1 ≤ 𝛼 < 𝑣).           (22) 
 
b) Let 𝑞 > 𝑣 − 1,  𝑣 ∈ 𝐍+ and 𝑞 ∈ 𝐑+. Then, by 

taking cognizance of  
 

 𝑑𝑣

𝑑𝑡𝑣 
(𝑥𝑞) ≡ (𝑥𝑞)(𝑣)   

 

               = 𝑞(𝑥𝑞−1)(𝑣−1) 
 

               = 𝑞(𝑞 − 1)(𝑥𝑞−2)(𝑣−2) 
 

               = ⋯ 
  

               = 𝑞(𝑞 − 1) ⋅ ⋯ ⋅ (𝑞 − 𝑣 + 1)𝑥𝑞−𝑣 
 
 

               = Γ(𝑞+1)

Γ(𝑞−𝑣+1)
𝑥𝑞−𝑣,                             (23)  

 

and in view of the Gamma function in (7), the 
Beta function in (10), the private information 

presented by (5) together with (12) and (13), 
the equivalent results given by  
 

        𝐃𝛼[𝑥𝑞] =
1

𝚪(𝑣−𝛼)
∫

(𝑡𝑞)(𝑣)

(𝑥−𝑡)𝛼−𝑣+1

𝑥

0
𝑑𝑡 

 

                     = 1

𝚪(𝑣−𝛼)
∫ (

𝚪(𝑞+1)

𝚪(𝑞−𝑣+1)
𝑡𝑞−𝑣𝑥

0
   

  

                                               × (𝑥 − 𝑡)𝑣−𝛼−1)𝑑𝑡  
 

                     = 𝚪(𝑞+1)

𝚪(𝑣−𝛼)𝚪(𝑞−𝑣+1)
𝑥𝑞−𝛼  

 

                                   × ∫ 𝑢𝑣−𝛼−1(1 − 𝑢)𝑞−𝑣1

0
𝑑𝑢 

 

                     = 𝚪(𝑞+1)

𝚪(𝑣−𝛼)𝚪(𝑞−𝑣+1)
𝑥𝑞−𝛼  

 

                                       × 𝐵(𝑣 − 𝛼, 𝑞 − 𝑣 + 1)  
 

                     = 𝚪(𝑞+1)

𝚪(𝑣−𝛼)𝚪(𝑞−𝑣+1)
  

 

                                        × 𝚪(𝑣−𝛼)𝚪(𝑞−𝑣+1)

𝚪(𝑞−𝛼+1)
𝑥𝑞−𝛼  

 

                     = 𝚪(𝑞+1)

𝚪(𝑞−𝛼+1)
𝑥𝑞−𝛼                             (24) 

 

is then determined, where 𝛼  is any real number 
such that  𝑣 − 1 ≤ 𝛼 < 𝑣 with 𝑣 ∈ 𝐍+.  
 
The result presented in Remark 2 is a general 
finding that plays a significant role in formalizing 
both integer-order and fractional-order Caputo-
type derivatives. In particular, based on the 
information provided by the graph given by Fig 2, 
it is clear that the Beta function given in (10) will 
be also defined for all real numbers for which the 
Gamma function in (7) is defined. Therefore, all 
possible fractional-order Caputo-type derivatives 
will certainly be feasible. As some more examples, 
by setting  𝑞 ≔ 2 in the general result in (24), the 
Caputo-type derivatives of the elementary function 
𝑓(𝑥) = 𝑥2 can be easily obtained as the form 
given by  
 
 

           𝐃𝛼[𝑥2] =
𝑥1−𝛼

Γ(1−𝛼)
∫

𝑓(1)(𝑡)

(𝑥−𝑡)𝛼−1+1

𝑥

0
𝑑𝑡  

 

                   ≡ 𝑥1−𝛼

Γ(1−𝛼)
∫

𝑓(1)(𝑥(1−𝑢))

𝑢𝛼−1+1

1

0
𝑑𝑢  

 

                   = Γ(3)

Γ(3−𝛼)
𝑥2−𝛼  

 

                   = 2!

Γ(3−𝛼)
𝑥2−𝛼                             (25)  

 

                        = 2

Γ(3−𝛼)
𝑥2−𝛼 ,                            

 

where 𝑣 − 1 ≤ 𝛼 < 𝑣  for all 𝑣 ∈ 𝐍+ (𝑣 < 3).   
 
As special cases of the result obtained in (25), 
when choosing the possible values of the 
parameter 𝑣 as 𝑣 ≔ 1 and 𝑣 ≔ 2 in the mentioned 
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result (25), for the related function 𝑓(𝑥) = 𝑥2, the 
Caputo-type derivatives of orders 𝛼 = 1/2 and 
𝛼 = 3/2  can be easily received as in the forms:  
 

               𝐃1/2[𝑥2 ] =
2

 Γ(3−1/2) 
𝑥2−1/2  

 

                               = 2

Γ(5/2)
𝑥3/2  

 

                               = 2

Γ(5/2)
𝑥√𝑥                        (26)  

 

and  
 
 

               𝐃3/2[𝑥2] =
2

Γ(3−3/2)
𝑥2−3/2  

 
                               = 2

Γ(3/2)
√𝑥 ,                         (27)  

 

respectively.   
 
Moreover, if one considers the property of the 
Gamma function like the familiar factorial form 
given by 
 

                    𝚪(𝑛 + 1) = 𝑛𝚪(𝑛)                          (28) 
 

and the computational result given by   
 

                         𝚪 (
1

2
) = √𝜋 ,                               (29)  

 

the fractional order calculations determined as in 
(26) and (2.7) can be easily redesigned as the 
special assertions given by  
 

                𝐃1/2[𝑥2 ] =
2

 Γ(
5

2
) 

𝑥√𝑥    
 

                                = 2

 
3

2
 Γ(

3

2
) 

𝑥√𝑥  
 

                                = 2

 
3

2
 
1

2
 Γ(

1

2
) 

𝑥√𝑥  
 

                                = 8

 3 √𝜋  
𝑥√𝑥                        (30)  

and  
 

                𝐃3/2[𝑥2] =
2

Γ(
3

2
) 

𝑥1/2  
 

                                = 2

 
1

2
 Γ(

1

2
) 

√𝑥  
 

                                = 4

√𝜋 
√𝑥 ,                            (31)    

respectively.  
Naturally, of course, the values of the 
corresponding fractional derivatives of the 
function 𝑓(𝑥) = 𝑥2 at a point such as 𝑥0 = 1 will 
be as follows: 
 

            𝐃1/2[𝑥2 ]|
𝑥=1

=  
8

3 √𝜋 
𝑥√𝑥|

𝑥=1
   

 

                                    =  
8

3 √𝜋 
 

 

                                    ≅ 1,504506                   (32)              
and 
 

             𝐃3/2[𝑥2 ]|
𝑥=1

=  
4

√𝜋 
√𝑥|

𝑥=1
   

 

                                =  
4

√𝜋 
 

 
 

                                      ≅ 2,256699.               (33)  
 

We would like to highlight some important 
information here. The specific calculations 
between (30) and (33) can be repeated as many 
times as desired, at the discretion of interested 
researchers. The calculations presented in (32) 
and (33) can also be compared with the values 
of the first-second derivatives of the relevant 
functions evaluated at the point 𝑥0 = 1. 
Naturally, the related calculations can be 
extended to various derivatives of different 
orders as well. For example, one can refer to 
certain results in some special researches, [19], 
[20], [21]. 
 

4   Conclusion and Some Suggestions  
 This special research, which consists of four 

chapters, provides some basic information in the 
first chapter, including the ramp (signal) function, 
which plays a very different role in engineering 
and science, and its special implications, such as 
those in (2)-(4). 
 
The second chapter introduces the Caputo-type 
calculation, one of the calculations related to 
various fractional-order derivatives, and some 
special functions that are quite related to it. 
Relevant information is found in (5) and (11). This 
chapter also includes some additional special 
calculations related to Caputo-type calculations, 
including highlights and conclusions, in (12) 
through (18). 
 
The third chapter addresses and highlights some 
special calculations related to the mentioned 
Caputo-type derivatives that may be important for 
the purpose of this research. Relevant information 
is also found in (19) and (33). 

 
In particular, each of the three special sections 

above includes specific information and references 
related to the objectives of this research, and some 
goals are highlighted for researchers.  
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Notably, the specific calculations between (21) 

and (24), obtained using Remark 2, can facilitate 
the determination of more complex fractional 
metric calculations. In other words, when solving 
rather complex integrals generated by the 
functions involved in the integrals given in (5) or 
(13), applying the information provided by 
Remark 2, followed by the appropriate function 
expansion, will greatly simplify the solution. In 
many respects, we believe that the earlier studies 
presented in the studies, [22], [23], [24], [25] and 
[25], will also be valuable resources for interested 
researchers. 

 
As final words, with the help of the indicated 

calculations, this special can be finished with some 
Caputo-type fractional derivatives related to the 
ramp (signal) function.  For those, we want to 
focus on the most general form of the ramp 
function. If the linearity property in (14) is taken 
into consideration, Remark 1 is used and 𝑞 = 1 is 
selected in Remark 2, various Caputo type 
derivatives of fractional order 𝛼 for the function 
being of  
 

 𝑟𝑎,𝑏(𝑥) = 𝑎 + 𝑏𝑥  (𝑎, 𝑏 ∈ 𝐑 𝑤𝑖𝑡ℎ 𝑏 ≠ 0)   
 

can be then determine as the elementary form 
given by  
 

         𝐃𝛼 [𝑟𝑎,𝑏(𝑥)] = 𝐃𝛼 [𝑎 + 𝑏𝑥]  
 

                              = 𝐃𝛼[𝑎] + 𝐃𝛼[𝑏𝑥]        
  

                         = 𝐃𝛼[𝑎] + 𝑏𝐃𝛼[𝑥]  
 

                         = 0 + 𝑏
𝚪(1+1)

 𝚪(1−𝛼+1)
𝑥1−𝛼 

 

                         = 𝑏 𝚪(2)

 𝚪(2−𝛼) 
𝑥1−𝛼   

 

                         = 𝑏

𝚪(2−𝛼)
𝑥1−𝛼                       (34)  

for some (suitable) values of  the parameter 𝛼. This 
elementary result also gives us a great number of  
special results when choosing the different values 
of 𝛼. As two special examples, in light of the 
information in (24) and (34), when one selects the 
special values given by 
 

𝛼: =
1

2
    and    𝛼 ≔

1

3
 ,  

the followings:  
 

         𝐃1/2[𝑟0,1(𝑥)] = 𝐃1/2[0 + 1𝑥]  
 

                                = 𝐃1/2[𝑥] 
   

                                = 1

 𝚪(2−
1

2
)

𝑥1−1/2  
 

                                = 1

 𝚪(
3

2
) 

√𝑥  
 

                                = 1

 
1

2
 𝚪(

1

2
) 

√𝑥  
 

                                = 2

 𝚪(
1

2
) 

√𝑥                        (35)  

and  
 

         𝐃1/3[𝑟1,2(𝑥)] = 𝐃1/3[1 + 2𝑥]  
 

                                = 2𝐃1/3[𝑥] 
  

                                = 1

 𝚪(2−
1

3
)

𝑥1−1/3  
 

                                = 1

 𝚪(
5

3
) 

√𝑥23  

                                = 1

 
2

3
 𝚪(

2

3
) 

√𝑥23  
 

                                   = 3

 2 𝚪(
2

3
) 

√𝑥23
                   (36)  

 

can be easily obtained. Here, when using the 
special value in (29) for the mentioned result (35), 
the following special results: 
 

                𝐃1/2[𝑟0,1(𝑥)] =
2

√𝛑 
√𝑥   

                 ≅ 1,128379√𝑥  
and  

        𝐃1/2[𝑟0,1(𝑥)]|
𝑥=1

=  
2

√𝛑 
   

                     ≅ 1,128379. 
 

are also achieved. However, we cannot easily 
perform similar calculations for the special result 
given in (35). As is well known, while the 
evaluation of the value of Γ(1/2) can be done 
using basic mathematical knowledge, computing 
Γ(1/3) is not straightforward. As emphasized in 
Section 2, such values can also be calculated by 
using a variety of available computer software 
programs or packages, such  as  C, C++, Python, 
Mathematica, MATLAB, and others. As is known, 
these complex calculations are frequently used in 
science and engineering, particularly in applied 
mathematics, physics, and statistics. For numerical 
evaluations like these,  as  well  as  for the special 
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cases presented in the references given by (1), (2), 
(25)-(33), (35), and (36), a range of commonly 
used basic programs or specialized mathematical 
software tools offer considerable convenience. 
Further investigation is left to the individual efforts 
of interested researchers. 
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