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Abstract: The study aimed to evaluate indefinite integrals involving inverse hyperbolic functions using column 
integration. LIATHE (Logarithm, Inverse trigonometric, Algebraic, Trigonometric, Hyperbolic and Exponential) 
rule was modified by including inverse hyperbolic function that makes the meaning into (Logarithm, Inverse 
trigonometric/ Inverse hyperbolic, Algebraic, Trigonometric, Hyperbolic and Exponential). Applications of 
modified LIATHE rule on integrals of products that include inverse hyperbolic functions were illustrated. 
Horowitz’s diagram was adopted and modified for better evaluation of the integrals. Inclusion of inverse 
hyperbolic functions in LIATHE rule made this expository study distinct from other studies in Calculus. 
Generalized formula that includes inverse hyperbolic functions of the form ∫ sinh−1(ax) dx, , ∫ tanh−1(ax) dx, 
∫ sech−1(ax) dx, ∫ xn−1 sinh−1 xn dx,  ∫ xn−1 cosh−1 xn dx,   ∫ xn−1 tanh−1 xn dx, ∫ xn−1 sech−1 xn dx, 
∫ eax sinh−1 eax dx,  ∫ eax tanh−1 eax dx, and ∫ eax sech−1 eax dx  are derived. 
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1 Introduction 
Integration and differentiation are the two 

parts of Calculus and being able to integrate any 
complicated given function is not so easy and 
requires experience as there are many techniques. 
One common method of integrating more 
complicated functions of a certain type is integration 
by parts.  Integration by Parts is used to compute 
integral of the form, ∫ f(x)g(x) dx, typically one use 
u-v method and it can be expressed in the following 
form,  ∫ udv = uv − ∫ v du  [9]. 

In using the above formula, one has to 
determine which will be the u and the dv. Remember 
that there are five classes of elementary functions, 
recalled by the mnemonic LIATE, the acronym was 
first introduced in the work of Kasube [5]. Whichever 
function comes first in the following list should be u: 
L - Logarithmic functions: ln x, log25 x, etc., I – 
Inverse trigonometric functions: 
sin−1 x , cos−1 x , tan−1 x, etc., A - Algebraic 

functions: x, x3, 4x55, etc., T- Trigonometric 

functions: sin x , cos x , tan x, etc., E - Exponential 

functions: ex, 2x, etc. 
The above technique can also be applied in 

integrating inverse hyperbolic functions for these 
functions possess closely analogous properties with 
that of six inverse trigonometric functions. Inverse 
hyperbolic functions are the inverse functions of the 
hyperbolic functions. The inverse hyperbolic sine of 

x, sinh−1 x; inverse hyperbolic cosine of x, cosh−1 x; 
inverse hyperbolic tangent of x, tanh−1 x; inverse 
hyperbolic cotangent of x, coth−1 x; inverse 
hyperbolic secant of x, sech−1 x and inverse 
hyperbolic cosecant of x, csch−1 x are the six inverse 
hyperbolic functions. Hyperbolic functions and their 
inverses occur in many problems in engineering and 
sciences, which made them as important as 
trigonometric and inverse trigonometric functions. 

Robles [7] in his study, mentioned that 
hyperbolic functions are analogous to trigonometric 
functions or circular functions. Trigonometric 
functions are related to the circle, x2  +  y2  =  1 
whereas the hyperbolic functions are related to the 
standard hyperbola, x2  − y2  =  1. He showed the 
geometric similarity of trigonometric functions to 
hyperbolic functions and presented the generalized 
formula for the integration of hyperbolic functions. 
Since hyperbolic functions are closely similar to 
trigonometric functions so it is expected that their 
inverses are also analogous. The inverse 
trigonometric functions can be solved by integration 
by parts therefore the technique can be extended to 
inverse hyperbolic functions. Since inverse 
hyperbolic functions are also as important as inverse 
trigonometric functions, the researcher conducted a 
study that will expose the integration of product that 
involves inverse hyperbolic functions. 
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The researcher modified the LIATHE rule by 
including inverse hyperbolic functions. This paper 
attempted to expand the integration by parts 
technique to integrals involving inverse hyperbolic 
functions to further help the students solve those 
integrals. This study was only limited in modifying 
LIATHE to involve inverse hyperbolic functions in 
combinations with other elementary functions and 
generalizing a formula that include inverse 
hyperbolic functions which will help students in 
evaluating integral of products that involve inverse 
hyperbolic functions.  

The researcher organized the paper as 
follows: the section 2 presents the modification of the 
LIATHE rule by including inverse hyperbolic 
functions in combination with other elementary 
functions such as algebraic, exponential, 
trigonometric, hyperbolic and logarithmic functions. 
While section 3 shows the derivation of some 
reduction formula with the use of tabular integration 
by parts and application of the modified LIATHE 
rule that includes inverse hyperbolic functions in 
combination with other elementary functions stated 
in section 2.  
 

2  Modification of LIATHE Rule  
Integration by parts formula, ∫ udv =  uv −

 ∫ vdu . The given integral is divided into two 
parts.  One part is u and the other is dv, so that the 
product of u and dv is the original integral.  Then, 
obtain du by differentiating u and obtain v by 
integrating dv. The trick here is to let dv be 
something that is not only easy to integrate but does 
not get worse when one integrates it, and u is the rest 
of the equation which is something that gets better 
when being differentiated.  

The part dv need to be integrated twice, so 
select functions like ex dx, sin x dx, or (x +
 a)n dx as dv, because one can integrate these twice 
without too much difficulty.  Meanwhile, select u as 
something that gets better like disappearing when 
being differentiated, then the scheme will work.  For 
example, if you let 𝑢 =  𝑥 then 𝑑𝑢 =  𝑑𝑥, which is 
helpful because the algebraic function x more or less 
disappears. 
 When determining what is u and dv in the 
integration by parts technique, a LIATE 
(Logarithmic, Inverse trigonometric, Algebraic, 
Trigonometric, and Exponential) rule provides a 
suggestion of how to do that. When applying the 
LIATE rule, choose u as the one furthest to the left in 
LIATE and choose dv as the one furthest to the right. 
 However, the researcher adapted the 
mnemonic LIATHE used in the study of Alcantara 

[1] and modified the mnemonic by including inverse 
hyperbolic functions. The researcher presented (I) as 
inverse trigonometric/ inverse hyperbolic functions 
that makes the modified LIATHE into: Logarithmic, 
Inverse trigonometric/ inverse hyperbolic, Algebraic, 
Trigonometric, Hyperbolic and Exponential 
functions. The modification of LIATHE was possible 
because inverse trigonometric functions behave like 
that of inverse hyperbolic functions when 
differentiating and integrating.  
 Properties of the LIATHE functions could 
also help in determining what function is easy to 
differentiate (u part) and integrate (dv part). 
Logarithmic functions are one of the most preferable 
to differentiate because the results lead to algebraic 
functions. Inverse trigonometric functions are also 
one of the most preferable to differentiate because the 
results also lead to algebraic functions that are in 
rational or radical form. Since inverse hyperbolic 
function is analogous to inverse trigonometric 
function, therefore its differentiation also leads to 
algebraic functions. Logarithmic functions and 
inverse trigonometric/ hyperbolic functions are 
usually placed in the u part because there are no learn 
basic integration formulas for them. 
Algebraic/Polynomial function can be placed in 
either u or dv part because it can be integrated or 
differentiated. It is usually preferable to use in the u 
part since the results are also algebraic functions and 
eventually get down to constant while integrating 
repeatedly leads the exponents to infinity. 
Trigonometric functions differentiation gets the 
results into trigonometric functions too that is why 
these are one of the most preferable to integrate. 
Hyperbolic functions are analogous to trigonometric 
functions so the results of the differentiation are also 
similar. While exponential functions are the easiest to 
differentiate and also one of the most preferable to 
integrate since the results lead to exponential 
function [6],[8],[10]. 
 
2.1 Including Inverse Hyperbolic Functions in 

Combination with Algebraic Functions. 

Consider the product  ∫ f(x)g(x) dx ,where 
f(x) is an algebraic function and g(x) is an inverse 
hyperbolic function.  

In this integrand, the given algebraic 
function is the third letter in the acronym LIATHE 
and inverse hyperbolic is in the second letter. 
Applying modified LIATHE rule, it is appropriate to 
let u = inverse hyperbolic and dv = algebraic dx. 
Example 1.  Evaluate ∫ 𝐱 𝐭𝐚𝐧𝐡−𝟏 𝐱 𝐝𝐱 

 It is evident in the given integrand that x is 
an Algebraic function which is the third letter in the 
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LIATHE while tanh−1 x is an Inverse Hyperbolic 
function which is the second letter.  Applying the 
LIATHE rule, let u =  tanh−1 x and dv =  x dx. 
 
2.2 Including Inverse Hyperbolic 

Functions in Combination with Exponential 

Functions. 
Consider the product  ∫ f(x)g(x) dx , where 

f(x) is an exponential function and g(x) is an inverse 
hyperbolic function. 

In this case, the given exponential function is 
the last letter in the acronym LIATHE and inverse 
hyperbolic is in the second letter. Applying modified 
LIATHE rule, it is appropriate to let u = inverse 
hyperbolic and dv = exponential dx. 
Example 2. Evaluate ∫ 𝐞𝐱 𝐬𝐢𝐧𝐡−𝟏 𝐞𝐱 𝐝𝐱 

 It shows in the given integrand that ex is an 
Exponential function which is the last letter in 
LIATHE while sinh−1 ex is an Inverse hyperbolic 
function which is the second letter. Applying the 
LIATHE rule, let u =  sinh−1 ex and dv =  ex dx. 
 
2.3 Including Inverse Hyperbolic 

Functions in Combination with 

Trigonometric Functions. 
Consider the product ∫ f(x)g(x) dx , where 

f(x) is a trigonometric function and g(x) is an inverse 
hyperbolic function. 
 In this case, the given trigonometric function 
is in the fourth letter of the acronym LIATHE. 
Applying modified LIATHE rule, it is appropriate to 
let u = inverse hyperbolic and dv = trigonometric dx. 
Example 3. Evaluate ∫ 𝐜𝐨𝐬 𝐱 𝐭𝐚𝐧𝐡−𝟏(𝐬𝐢𝐧 𝐱) 𝐝𝐱  

 As shown in the given, the integrand is a 
product of Trigonometric function, cos x, which is 
the fourth letter in LIATHE and Inverse hyperbolic 
function, tanh−1(sin x), which is the second letter. 
Applying the LIATHE rule, let u =  tanh−1(sin x) 
and dv =  cos x  dx. 
 
2.4  Including Inverse Hyperbolic 

Functions in Combination with Hyperbolic 

Functions. 
Consider the product ∫ f(x)g(x) dx where g(x) 

is a hyperbolic function and g(x) is an inverse 
hyperbolic function. 
 In this case, the given hyperbolic function 
comes after trigonometric function and it is in the 
fifth letter of the acronym LIATHE. Applying the 
modified LIATHE rule, it is appropriate to let u = 
inverse hyperbolic and dv = hyperbolic dx. 
Example 4. Evaluate ∫ 𝐬𝐢𝐧𝐡 𝐱 𝐜𝐨𝐬𝐡−𝟏(𝐜𝐨𝐬𝐡 𝐱) 𝐝𝐱 

 It shows in the given integrand that sinh x is 
a Hyperbolic function which is the fifth letter in 
LIATHE while cosh−1(cosh x) is an Inverse 
hyperbolic function which is the second letter. 
Applying the LIATHE rule, let 
u =  cosh−1(cosh x)  and dv =  sinh x  dx. 
 
2.5  Including Inverse Hyperbolic 

Functions in Combination with Logarithmic 

Functions. 
Consider the product  ∫ f(x)g(x) dx where 

g(x) is a logarithmic function and g(x) is an inverse 
hyperbolic function. 
 In this case, the given logarithmic function is 
the first letter in the acronym LIATHE. Applying the 
modified LIATHE rule, let u = logarithmic and dv = 
inverse hyperbolic dx. However, for this combination 
both logarithmic and inverse hyperbolic have no 
direct integration that is why some interchange L and 
I as dv part and use ILATHE rule.  
Example 5. Evaluate ∫ 𝐥𝐧 𝐱 𝐜𝐨𝐬𝐡−𝟏 𝐱 𝐝𝐱  

 As shown in the given, the integrand consists 
of ln x, a Logarithmic function which is the first letter 
in LIATHE and cosh−1 x, an Inverse hyperbolic 
function which is the second letter. Both functions 
have no direct integration, so one cannot avoid the 
double integration in the dv part. In this case, both 
LIATHE and ILATHE rule can be used. Applying 
the LIATHE rule, let u =  ln x and 
dv =  cosh−1 x dx while applying the ILATHE rule 
let u = cosh−1 x dx and dv =  ln x dx. 
 
 
3 Derivation of Some Reduction 

Formula with the Use of Tabular 

Integration by Parts and Application of 

Modified LIATHE Rule  

 Doing calculus problems which require 
integration by parts can be a lengthy and tedious 
process, even for someone with experience in finding 
the integrals of functions. Fortunately, for many of 
the most common types of integration by parts, there 
is a fast and simple shortcut available, the tabular 
method [1]. This method is sometimes known as 
column integration [2] or tabular integration by parts 
[3]. 
 Horowitz [4] illustrates in his paper the 
tabular method in a diagram. He assumed throughout 
that F and G are smooth enough to allow repeated 
differentiation and integration, respectively. 
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Table 1. Tabular integration of ∫ F(t)G(t) dt 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The integral ∫ F(t)G(t) dt is equal to the sum 

of the terms in table 1. Symbolically, 

∫ F(t)G(t) dt  =  FG(−1) − F1G(−2)  

+  F2G(−3) − . . . +(−)nFnG(−n−1)  

+ (−)(n+1) ∫ F(n+1)G(−n−1)dt 

∫ F(t)G(t) dt  = ∑ (−)kFkG(−k−1) 

n

k = 0

+ (−)(n+1) ∫ F(n+1)G(−n−1)dt 

 
The researcher also used trial and error 

method in the following combination of inverse 
hyperbolic functions for the derivation and 
application of modified LIATHE rule.  
 

3.1 Including Inverse Hyperbolic 

Functions in Combination with Algebraic 

Functions 

 
Example 6. Derive the formula of the given below, 
where n is any real number and  n ≠ 0 

∫ xn−1 sinh−1 xn  dx

=  
xn

n
sinh−1 xn −

n

n
∫

x2n−1

√x2n + 1
dx 

 

Derivation: Applying the LIATHE rule, let u =
 sinh−1 xn and dv =  xn −1 dx. A table below can be 
formed using the column integration technique:  

 

 

 

 

 

Table 2. Table for evaluating 
 ∫ xn−1 sinh−1 xn dx,  n ≠ 0, n ∈ ℝ 

Derivative Integral Product 

+ sinh−1 xn xn−1  

 

−
nxn−1

√x2n +  1
 

 

xn

n
 

 
xn

n
sinh−1 xn

−
n

n
∫

x2n−1

√x2n + 1
dx 

 
From table 2, the integral part on the product column 
can be simplified and be solved using u-substitution 
method, let u =  x2n  +  1 and du =  2nx2n−1 dx 
that gives 
 

∫ xn−1 sinh−1 xn  dx

=  
xn

n
sinh−1 xn −

1

2n
∫ u−

1
2 du 

∫ xn−1 sinh−1 xn  dx  =  
xn

n
sinh−1 xn −

1

2n
(

u
1
2

1
2

) 

 
simplify the right side of the equation and substitute 
u to x, therefore the result is 
 

∫ xn−1 sinh−1 xn  dx

=  
xn

n
sinh−1 xn −

√x2n + 1

n
+ C. 

 

Example 7. Derive the formula of the given below, 
where n is any real number and  n ≠ 0 
 

∫ xn−1 cosh−1 xn dx

=  
xn

n
cosh−1 xn

−
n

n
∫

x2n−1

√x2n − 1
 dx 

 

Derivation: Applying the LIATHE rule, let 
u =  cosh−1 xn and dv =  xn −1 dx. A table below 
can be formed using the column integration 
technique:  

 

 

Column #1 Column #2 

+ F G 

−F1 G(−1) 

+F2 G(−2) 

−F3 G(−3) 

⋮ ⋮ 

(−)nFn G(−n) 

(−)(n+1)F(n+1). .. G(−n−1) 
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Table 3. Table for evaluating 
∫ xn−1 cosh−1 xn dx, n ≠ 0, n ∈ ℝ 

Derivative Integral Product 

+ cosh−1 xn xn−1  

 

−
nxn−1

√x2n −  1
 

 

xn

n
 

 
xn

n
cosh−1 xn

−
n

n
∫

x2n−1

√x2n − 1
 dx 

 
From table 3, the integral part on the product column 
can be simplified and be solved using u-substitution 
method, let u =  x2n −  1 and du =  2nx2n −1 dx 
that gives 

∫ xn−1 cosh−1 xn  dx

=  
xn

n
cosh−1 xn −

1

2n
∫ u−

1
2 du 

∫ xn−1 cosh−1 xn  dx  =  
xn

n
cosh−1 xn −

1

2n
(

u
1
2

1
2

) 

simplify the right side and substitute u to x, 
therefore the result is 

∫ xn−1 cosh−1 xn  dx

=  
xn

n
cosh−1 xn −

√x2n − 1

n
+ C. 

 

Example 8. Derive the formula of the given below, 
where n is any real number and  n ≠ 0 

∫ xn−1 tanh−1 xn dx

=  
xn

n
tanh−1 xn −

n

n
∫

x2n−1

1 − x2n
 dx 

 

Derivation: Applying the LIATHE rule, let u =
 tanh−1 xn and dv =  xn−1 dx. A table below can be 
formed using the column integration technique:  

 

Table 4. Table for evaluating 
 ∫ xn−1 tanh−1 xn dx, n ≠ 0, n ∈ ℝ 

Derivative Integral Product 

+   tanh−1 xn  xn−1  

 

−
nxn−1

1 − x2n
 

 

xn

n
 

 
xn

n
tanh−1 xn

−
n

n
∫

x2n−1

1 − x2n
 dx 

 
From table 4, the integral part on the product column 
can be simplified and be solved using u-substitution 
method, let u =  1 − x2n and du =  −2nx2n−1 dx 
that gives 

∫ xn−1 tanh−1 xn dx =  
xn

n
tanh−1 xn + 

1

2n
∫

du

u
 

∫ xn−1 tanh−1 xn dx =  
xn

n
tanh−1 xn + 

1

2n
ln|u| 

substitute u to x, therefore the result is 

∫ xn−1 tanh−1 xn dx

=  
xn

n
tanh−1 xn

+ 
1

2n
ln|1 − x2n| + C. 

 
 

Example 9. Derive the formula of the given below, 
where n is any real number and  n ≠ 0 

∫ xn−1 sech−1 xn  dx

=  
xn

n
sech−1 xn

+  
n

n
∫

xn

x√1 − x2n
dx 

 

Derivation: Applying the LIATHE rule, let u =
 sech−1 xn and dv =  xn−1 dx.  A table below can be 
formed using the column integration technique:  

 

Table 5. Table for evaluating 
∫ xn−1 sech−1 xn dx, n ≠ 0 ∈ ℝ 

Derivative Integral Product 

+ sech−1 xn xn−1  

 

−
−nxn−1

xn√1 − x2n
 

 

xn

n
 

 
xn

n
sech−1 xn

+ 
n

n
∫

xn

x√1 − x2n
dx 

 

From table 5, the integral part on the product column 
can be simplified into  

∫ xn−1 sech−1 xn  dx

=  
xn

n
sech−1 xn + ∫

xn−1 dx

√1 − x2n
 

using integral that yields inverse sine  √1 − u2, let 
u2  =  x2n, u =  xn and du =  nxn−1 dx, therefore 
the result is 
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∫ xn−1 sech−1 xn  dx

=  
xn

n
sech−1 xn +

1

n
sin−1 xn +  C. 

 

Note: The process used in evaluating the integrals in 
Example 8 and Example 9 can also be applied to 
evaluate the integrals of products concerning 
xn−1  coth−1 xn and xn−1 csch−1 xn.  
 
Example 10. Derive the formula of the given below, 
where a is any real number and a ≠ 0 

∫ sinh−1(ax)  dx

=  x sinh−1 ax −  a ∫
x 

√a2x2 + 1
dx 

 

Derivation: Applying the LIATHE rule, let 
u =  sinh−1(ax) and dv =  1 dx. A table below can 
be formed using the column integration technique:  

 

Table 6. Table for evaluating 
 ∫ sinh−1(ax) dx, a ≠ 0, a ∈ ℝ 

Derivative Integral Product 

+   sinh−1(ax) 1  

     
− 

a

√a2x2 +  1
 

 

x 

 
x sinh−1 ax

−  a ∫
x 

√a2x2 + 1
dx 

 
From table 6, the integral part on the product column 
can be solved using u-substitution method, let u =
 a2x2 + 1 and du =  2a2x dx, that gives 

∫ sinh−1(ax) dx =  x sinh−1(ax) −
a

2a2
∫ u−

1
2  du 

∫ sinh−1(ax) dx =  x sinh−1(ax) −
1

2a
(

u
1
2

1
2

) 

simply and substitute u to x, therefore the result is 

∫ sinh−1 ax dx =  x sinh−1 ax −
1

a
√a2x2 +  1 +  C. 

 
Example 11. Derive the formula of the given below, 
where a is any real number and a ≠ 0 

∫ tanh−1(ax)  dx

=  x tanh−1(ax)

−  a ∫
x 

1 − a2x2
dx  

 

Derivation: Applying the LIATHE rule, let 
u =  tanh−1(ax) and dv =  1 dx. A table below can 
be formed using the column integration technique:  

Table 7. Table for evaluating 
 ∫ tanh−1(ax) dx, a ≠ 0, a ∈ ℝ 

Derivative Integral Product 

+   tanh−1(ax) 1  
 
−

a

1 − a2x2
 

x 

 
x tanh−1(ax)

−  a ∫
x 

1 − a2x2
dx 

 
From table 7, the integral part on the product column 
can be solved using u-substitution method, let u =
 1 −  a2x2 and du =  −2a2x dx, that gives 

∫ tanh−1(ax) dx =  x tanh−1(ax) +  
a

2a2
∫

du

u
 

∫ tanh−1(ax) dx = x tanh−1(ax) +  
1

2a
ln|u| 

substitute u to x, therefore the result is 

∫ tanh−1(ax) dx =  x tanh−1(ax)

+  
1

2a
ln|1 − a2x2| +  C.  

 
Example 12. Derive the formula of the given below, 
where a is any real number and a ≠ 0 

∫ sech−1(ax)  dx 

 

Derivation: Applying the LIATHE rule, let u =
 sech−1(ax) and dv =  1 dx.  A table below can be 
formed using the column integration technique:  

 

Table 8. Table for evaluating 
 ∫ sech−1(ax) dx, a ∈ ℝ 

Derivative  Integral Product 

+   sech−1(ax) 1  

 
− 

− a

ax√1 −  a2x2
 

 

x 

 
x sech−1(ax)

−
a

a
∫

x 

x√1 − a2x2
dx 

 
From table 8, the integral part on the product column 
can be simplified and be solved using integral that 
yields inverse sine √1 − u2, let u2  =  a2x2, u =  ax 
and du =  a dx, that gives  

∫ sech−1(ax) dx = x cosh−1(ax) −
1

a
sin−1 u  

substitute u, therefore the result is 

∫ sech−1(ax) dx

= x cosh−1(ax) −
1

a
sin−1(ax) +  C. 
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Note: The process used in deriving a generalized 
formula in Example 10, Example 11 and Example 12 
can also be applied to derive a formula for arccosh 
(ax), arccoth (ax) and arccsch ax. 
 
3.2 Including Inverse Hyperbolic 

Functions in Combination with Exponential 

Functions 

 
Example 13. Derive the formula of the given below, 
where a is any real number and a ≠ 0 

∫ eax sinh−1(eax) dx

=   
eax

a
sinh−1(eax)

−
a

a
∫

e2ax

√e2ax +  1
dx 

 

Derivation: Applying the LIATHE rule, let u =
sinh−1(eax) and dv =  eax dx. A table below can be 
formed using the column integration technique:  

 

Table 9 . Table for evaluating 
 ∫ eax sinh−1(eax) dx, a ≠ 0 a ∈ ℝ 

Derivative Integral Product 

+ sinh−1(eax) eax  

 

−
aeax

√e2ax +  1
 

 

eax

a
 

 
eax

a
sinh−1(eax)

−
a

a
∫

e2ax

√e2ax +  1
dx 

 
 
From table 9, the integral part on the product column 
can be simplified and solved using u-substitution 
method, let u =  e2ax  +  1 and du =  2ae2ax dx, 
that gives 

∫ eax sinh−1(eax) dx

=  
eax

a
sinh−1(eax) −

1

2a
∫ u

−1
2 du 

∫ eax sinh−1(eax) dx

=  
eax

a
sinh−1(eax) −

1

2a
(

u
1
2

1
2

) 

simplify the right side of the equation and substitute 
u to x, therefore the result is 

∫ eax sinh−1(eax) dx

=  
eax

a
sinh−1(eax) −

1

a
√e2ax + 1

+ C. 
 
Example 14. Derive the formula of the given below, 
where a is any real number and a ≠ 0 

∫ eax tanh−1(eax) dx

=  
eax

a
tanh−1(eax)

−
a

a
∫

e2ax

1 − e2ax
dx. 

 

Derivation: Applying the modified LIATHE rule, let 
u =  tanh−1 eax and dv =  eax dx. A table below 
can be formed using the modified column integration 
technique:  

 

Table 10. Table for evaluating 
∫ eax tanh−1(eax) dx, a ≠ 0, a ∈ ℝ 

Derivative Integral Product 

+ tanh−1(eax) eax  

 

−
aeax

1 − e2ax
 

 

eax

a
 

 
eax

a
tanh−1(eax)

−
a

a
∫

e2ax

1 − e2ax
dx 

 
From table 10, the integral part on the product 
column can be simplified and solved using u-
substitution method, let u =  1 − e2ax and du =
 −2ae2ax dx, that gives 
 

∫ eax tanh−1(eax) dx

=  
eax

a
tanh−1(eax) +

1

2a
∫

du

u
 

∫ eax tanh−1(eax) dx

=  
eax

a
tanh−1(eax) +

1

2a
ln|u| 

substitute u to x, therefore the result is 

∫ eax tanh−1(eax) dx

=  
eax

a
tanh−1(eax)

+
1

a
ln|1 − e2ax| + C. 
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Example 15. Derive the formula of the given below, 
where a is any real number and a ≠ 0 

∫ eax sech−1(eax)  dx

=  
eax

a
sech−1(eax)

+  
a

a
∫

eax

√1 − e2ax
dx. 

 

Derivation: Applying the LIATHE rule, let u =
 sech−1(e2x) and dv =  e2x dx.  A table below can 
be formed using the column integration technique:  

 

Table 11. Table for evaluating 
∫ eax sech−1(eax)  dx, a ≠ 0, a ∈ ℝ 

Derivative Integral Product 

+ sech−1(eax) eax  

 

−
−aeax

eax√1 − e2ax
 

 

eax

a
 

 
eax

a
sech−1(eax)

+  
a

a
∫

eax

√1 − e2ax
dx 

 
From table 11, the integral part on the product 
column can be simplified into  

∫ eax sech−1(eax)  dx

=  
eax

a
sech−1(eax)

+ ∫
eax

√1 − e2ax
 dx 

 
using integral that yields inverse sine √1 − u2, let 
u2  =  e2ax, u =  eax  and du =  aeax dx, therefore 
the result is 
 

∫ eax sech−1(eax)  dx

=  
eax

a
sech−1(eax)

+
1

a
sin−1(eax) +  C. 

 

 

Note: The process used in deriving a generalized 
formula in Example 13, Example 14 and Example 15 
can also be applied for eax cosh−1(eax) , 
eax coth−1(eax) and eaxcsch−1(eax). 
 
 

3.3 Including Inverse Hyperbolic 

Functions in Combination with 

Trigonometric Functions 
 
Consider Example 3 ∫(cosx) tanh−1(sinx) dx 
Solution: Applying LIATHE rule, let u =
 tanh−1(sin x) and dv =  cos x dx.  A table below 
can be formed using the column integration 
technique:  

 

Table 12. Table for evaluating 
∫(cosx) tanh−1(sinx) dx 

Derivative Integral Product 

+  tanh−1(sin x) cos x  

 
−

cos x

1 −  sin2x
 

 
sin x 

 
(sinx) tanh−1(sin x)

−  ∫
sinx cos x 

1 − sin2x
dx 

 
From table 12, the integral part on the product 
column can be simplified and solved using 
trigonometric identity sin2x +  cos2 x =  1, that 
gives 
 

∫(cos x) tanh−1(sin x)  dx

=  (sinx) tanh−1(sin x)

− ∫
sinx cos x 

cos2x
 dx 

 
simplify the right side of the equation 
 

∫(cos x) tanh−1(sin x)  dx

=  (sinx) tanh−1(sin x)

− ∫
sin x

cos x
 dx 

The integral on the right side of the equation can be 
simplified using trigonometric identity sin x/ cos x = 
tan x, 

∫(cos x) tanh−1(sin x)  dx

=  (sinx) tanh−1(sin x)

− ∫ tan x dx 

integrate tan x, then the result is 

∫(cos x) tanh−1(sin x)  dx

=  (sinx) tanh−1(sin x) −  sec2 x
+ C. 
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3.4 Including Inverse Hyperbolic 

Functions in Combination with Hyperbolic 

Functions 

 
Consider Example 4 
∫(csch x coth x) sinh−1(csch x) dx 
 

Solution: Applying the LIATHE rule, let 
u =  sinh−1(csch x) and dv =  csch x coth x dx. A 
table below can be formed using the column 
integration technique:  
 

Table 13. Table for evaluating 
∫(csch x coth x) sinh−1(csch x) dx 

Derivative Integral Product 

+  sinh−1(csch x) csch x coth x  

−
− csch x coth x

√1 +  csch2 x
 − csch x 

− (csch x coth x) sinh−1(csch x)

− ∫
csch2 x coth x

√1 + csch2 x
 dx 

 

 
From table 13, the integral part on the product 

column can be simplified using hyperbolic identity 
coth2 x − csch2 x =  1, 

∫(csch x coth x) sinh−1(csch x) dx  

= −(csch x coth x) sinh−1(csch x)

− ∫
csch2 x coth x 

√coth2 x
 dx 

 
simplify the right side of the equation, 

∫(csch x coth x) sinh−1(csch x) dx

= −(csch x coth x) sinh−1(csch x)

− ∫ csch2 xdx 

∫(csch x coth x) sinh−1(csch x)  dx

= −(csch x coth x) sinh−1(csch x)
+ coth x + C. 

 

3.5 Including Inverse Hyperbolic 

Functions in Combination with Logarithmic 

Functions 
 
Consider Example 5  ∫ ln x cosh−1 x dx 
 

Solution: Applying the LIATHE rule, let u =
 ln x and dv =  cosh−1 x dx. A table below can be 
formed using the column integration technique:  

 

Table 14. Table for evaluating 
 ∫ ln x cosh−1 x dx 

Derivative Integral Product 

+ ln x 

 

 

cosh−1 x 

 

 

− 
1

x
 

    
∫ cosh−1 xdx 

   

lnx (∫ cosh−1 x  dx)  

− ∫
1

x
(∫ cosh−1 x dx) dx 

 
 
From table 14, the integration of the second entry on 
the integral column is  

∫ cosh−1 x dx =  x cosh−1 x − √x2 − 1 

Then the product column can be simplified into  

∫ ln x cosh−1 x dx

= ln x (x cosh−1 x − √x2 − 1)

−  ∫ (cosh−1 x −
√x2 − 1

x
) dx 

As shown the integrand on the right side of the 
equation can be separated into   

∫ ln x cosh−1 x dx

= ln x ( x cosh−1 x − √x2 − 1)

− ∫ cosh−1 x dx +  ∫
√x2 − 1

x
 dx 

Then take their integration separately, the first 
integrand can be solved using integration by parts,  

∫ cosh−1 x dx =  x cosh−1 x − √x2 − 1 + C 

while the second integrand can be solved using 
trigonometric substitution, 

∫
√x2 − 1

x
 dx =  √x2 − 1 − sec−1 x + C 

Now combine the solutions, 

∫ lnx cosh−1 x dx

= lnx ( x cosh−1 x − √x2 − 1)

− x cosh−1 x + √x2 − 1

+  √x2 − 1 −  sec−1 x 
Simplify and it gives the results, 

∫ lnx cosh−1 x dx

= (xlnx − x) cosh−1 x

+ √x2 − 1 (√x2 − 1 − ln x)  

−  sec−1 x + C 
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As shown from the results above whatever 

dv part will be, the solution is still harder and needs 
a lot of patients in solving. In this case, LIATHE rule 
can be interchange into ILATHE since logarithmic 
and inverse hyperbolic both have no direct 
integration. 

 
 

Conclusion and Recommendation 
The LIATHE rule is modified where letter (I) 

is presented as inverse hyperbolic functions instead 
of only inverse trigonometric functions. The 
modified LIATHE rule that includes inverse 
hyperbolic function is applied and the following 
generalized formula 
∫ sinh−1(ax) dx, ∫ tanh−1(ax) dx , ∫ sech−1(ax) dx  
where  a ∈ ℝ, 
  ∫ xn−1 sinh−1 xn  dx , ∫ xn−1 cosh−1 xn  dx,

∫ xn−1 tanh−1 xn  dx, ∫ xn−1 sech−1 xn  dx where 
n ∈  ℝ, and ∫ eax sinh−1(eax) dx ,

∫ eax sech−1(eax) dx, ∫ eax tanh−1(eax)  dx, where 
a ∈ ℝ,  are derived. Further studies to derive other 
algorithm in Mathematics that involve inverse 
hyperbolic functions is recommended.  
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