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Abstract: - The Golden Ratio 𝜑 is conventionally taken for its positive value in the algebra form of 1+√5

2
, while 

its negative value of 1−√5

2
 from the quadratic solution from the definition, 𝑎+𝑏

𝑎
=

𝑎

𝑏
= 𝜑, 𝑎 > 𝑏 > 0, has not 

traditionally drawn much attentions from scientists and researchers, and is usually denoted as the negative 
inverse of the positive value in the form − 1

𝜑
. From the quadratic definition of 𝜙, I define 0 = ( lim

𝑛→∞
𝑎2−𝑛 −

𝑏2

𝑎𝑛 − 𝑎1−𝑛𝑏) ∩ ( lim
𝑛→∞

𝑎2

𝑏𝑛 − 𝑏2−𝑛 −
𝑎

𝑏𝑛−1) = ( lim
𝑛→∞

1

𝑎𝑛−2 −
1

𝜙𝑎𝑛−2 +
1

𝜙𝑎𝑛) ∩ ( lim
𝑛→∞

𝜙2

𝑏𝑛−2 −
1

𝑏𝑛−2 −
𝜙

𝑏𝑛−1) = ∅, 𝑎 >

𝑏 > 0, whereby the number 𝜙 is taken multivalued and the Zermelo–Fraenkel set theory is applied. And then 
with the relation 𝜙2 = 𝜙 + 1, I adopt an infinite deduction to summarize the function lim

𝑛→∞
(𝜙2 − 𝜙)

1

𝑛 being 
either a constant, which I argue against, or a multivalued recurring sequence. The derivative of the series has 
led to a metric space with the value of e expressed in a complex number form in a unit circle. The results 
corroborate with the Euler–Mascheroni constant and Gamma Function, and I hypothesize their further 
extensions to the whole number line. 
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1 Introduction 
The research is inspired by the intuition and 
subsequent speculation that the Riemann Zeta 
Function (RZF) ∫ 𝜁(𝑥)

𝑒

𝜑
 is an expression for the 

negative value of the Golden Ratio (GR) 𝜑 , and 
then I devised the proof with the definition of zero 
with the formalism of the GR with the incorporation 
of the Zermelo–Fraenkel set theory with the axiom 
of choice included (ZFC), seen in Eq. (1) [1]: 
 

0 = ( lim
𝑛→∞

𝑎2−𝑛 −
𝑏2

𝑎𝑛
− 𝑎1−𝑛𝑏)

∩ ( lim
𝑛→∞

𝑎2

𝑏𝑛
− 𝑏2−𝑛 −

𝑎

𝑏𝑛−1)

≡ ( lim
𝑛→∞

1

𝑎𝑛−2
−

1

𝜑2𝑎𝑛−2
+

1

𝜑𝑎𝑛
)

∩ ( lim
𝑛→∞

𝜑2

𝑏𝑛−2
−

1

𝑏𝑛−2
−

𝜑

𝑏𝑛−1)

= ∅, 𝑎 > 𝑏 > 0 
(1) 

 
 
2 Problem Formulation 
With the separated notation 𝜙 for the positive value 
of the GR, 𝜑 for the negative value, and Phi for the 
multivalue from the definition formalism 
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unchanged, Knott [2] noted several intrinsic 
properties of the GR: 
 

Phi2 = Phi + 1                                                   (2) 
 
and 

 
−(𝜙 − 1) = 𝜑.                                                (3) 
 
And I adopt a slightly different interpretation for 

the purpose that does not necessarily lead to 
Fibonacci numbers in Eq. (4), 

 
𝜑𝜙 = 𝑒𝑖𝜋= Phi - Phi2.                                      (4) 
 
In the following of the article, unless explicitly 

specified, I take the notation 𝜙 for the multivalued 
derivative from the GR formalism, and 𝜑  for the 
convention of the positive numerical value. 

From Eq. (4), the sequence of the function 
𝑓(𝑛) = (𝜙2 − 𝜙)

1

𝑛, 𝑛 ∈ ℕ  can be calculated as 
followed: 

 
(𝜙2 − 𝜙)1 = 1 
(𝜙2 − 𝜙)

1

2 = ±1 
(𝜙2 − 𝜙)

1

3 = 1 
(𝜙2 − 𝜙)

1

4 = 𝑖 or ±1 

(𝜙2 − 𝜙)
1

5 = 1 
(𝜙2 − 𝜙)

1

6 = ±1 
(𝜙2 − 𝜙)

1

7 = 1 
(𝜙2 − 𝜙)

1

8 = 𝑖
1

4 or 𝑖
1

2 or 𝑖 or ±1 
… 
(𝜙2 − 𝜙)

1

16 = 𝑖
1

8 or 𝑖
1

4 or 𝑖
1

2 or 𝑖 or ±1 
… 

(𝜙2 − 𝜙)
1

2𝑛 = 𝑖
1

2𝑛−1 or … or 𝑖
1

2 or 𝑖 or ±1 
… 
(𝜙2 − 𝜙)

1

4𝑛 = 𝑖 or ±1, 4𝑛 ∉ 2𝑛 
… 

(𝜙2 − 𝜙)
1

2𝑛 = ±1, 2𝑛 ∉ (4𝑛 ∪ 2𝑛). 
(5) 

 
Similarly noted by García-Caballero, Moreno [3] 

with Viéte’s formula, intriguing results arise by 
adding up the continued fraction form of 𝜑  with 
infinite sum and infinite products, revolved around 
the number 2 and correlated to 𝜋. By the Fibonacci 
spiral’s geometric similarities to the polar graph of 
the positive nontrivial positive solutions of RZF 
(with prima facie visualization in Fig. 1), I speculate 
that the negative value of Phi is correlated to my 

conjecture on the negative critical line of the RZF 
supplementary to the Riemann Hypothesis (RH) [2, 
4]. From Eq. (3) & (4), lemma 1 is obtained 

 
1 − 𝜑 =

𝑒𝑖𝜋

𝜑
.                                                     (6) 

 
The approximation and oscillation patterns for 

(𝜑 − 𝜑2)
1

𝜋  can be seen in Eq. (5), and a metric 
space is conceived to be needed in the form of 
𝑑

𝑑𝑥
𝑒𝑖𝑥 = 𝑖𝑒𝑖𝑥, whereas  𝑑

𝑑𝑥
𝑒𝜋𝑥 = 0. With reference 

to Eq. (1), it is observed that ( 1

𝑏𝑛−2)(𝜑2 −
𝜑

𝑏
− 1) 

has an oscillation between the value of 1
𝑏
 and ∓1. 

 

 

 
Fig. 1 Graphical comparison of the Fibonacci spiral 
generated by ChatGTP and the path of RZF along 

the conjectured critical line in RH created by 
Vepstas [5]. 
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Even though by a slight distortion with Wallis 
product applied on the Fibonacci relationship, it can 
also be defined that [2, 3] 

 
1

𝜑
= ∏(1 −

1

𝐹2𝑛𝐹2𝑛+1
)

∞

𝑛=1

, 

(7) 
 
a more fundamental approach is needed to 

understand the factor ⌊𝑏⌋’s constraint to the value of 
⌈𝑎⌉, in order to better understand the meaning of the 
definition of zero with the GR, namely, the 
vectorization of lengths by the extension from 
positive spaces. 

 
 

3 Problem Solution 
With the theoretical framework provided above, I 
formulate my solutions currently in the Harmonic 
Series (HS). 
 
3.1 Breakdown in the Harmonic Series 
From Eq. (5), it can be summarized 

I. ∀𝑝 as odd numbers ∈ 𝑛 ∈ ℕ, (𝜙2 − 𝜙)
1

𝑝 = 1; 
II. ∀𝑞  as even numbers ∈ 𝑚 ∈ 𝑛 ∈ ℕ , in which 

√𝑚 ∉ ℕ, (𝜙2 − 𝜙)
1

𝑞 = ±1; 
III. ∀𝑙 ∈ 2𝑛 ∈ 𝑛 ∈ ℕ,  

(𝜙2 − 𝜙)
1

𝑙 = {𝑖
1

2𝑙−1 , 𝑖
1

2𝑙−2 , … , 𝑖
1

2, 𝑖} ∪ ±1 
(8) 

 
By the axiom of choice in case III of Eq. (8), 
 

  (𝜙2 − 𝜙)
1

𝑙 ∈ 𝑓(𝑘) = 𝑖
4

2𝑘 , 𝑙 ∈ 2𝑛, 𝑘 ≥ 0, 𝑘 ∈ 𝑊, (9) 
 
whereas {case II}∪{case I}∈ {−1, 1} ∈ 𝑓(𝑘). 

Therefore, the injective, if not surjective, function 
 

(𝜙2 − 𝜙)
1

𝑛 ∈ 𝑓′(𝑛) = 𝑖
1

2𝑛−2 , 𝑛 ∈ 𝕎, 𝑛 ≥ 0   (10) 
 
is descriptive of the value outputs of Eq. (5). The 

summation of the sequence 𝑓(𝑛) in Eq. (5) can 
oscillate amongst divergence in positive number 
values, partial or complete symmetry with the 
critical point ∈ [−1, 1], and convergence in negative 
values; only the divergence, partial symmetry with 
the critical point ∈ [−1, 0) ∪ (0, 1], and exoccipital 
cases in positive value divergence may contain an 
imaginary part. Even though oscillatory integral 
seems to serve better for analyzing the value 
distribution of 𝑓(𝑛), the significant proportions do 

not fit into the definitive framework. Therefore, the 
Leibniz notation is preferred to serve the purpose. 

 
From Eq. (6) (lemma 1), we get ln 𝑓(0) =

ln 𝑓(1) = 𝑖𝜋 (hypothesis 0). Let 
 

∃𝑔(𝑛) ∀𝑛 ∈ 𝕎 ∩ 𝑛 > 0, = ln 𝑓(𝑛) = (𝑖𝜋)
1

𝑛,    (11) 
 

and the integration ∫ 𝑔(𝑛)
∞

𝑛=1
𝑑𝑛 is 

conventionally solved by de’Moivre’s theorem with 
𝑎rg 𝜃. Herein in the context, I propose lemma 2 
according to ZFC 

 

𝑓(𝑛) ∈ 𝑓′(𝑛) = 𝑖
1

2𝑛−2 =
𝑖

1
2𝑛

√𝑖
,                          (12) 

 
where both the function set 𝑓(𝑛) is bounded by 

𝑖−
1

2, proving hypothesis 0 as lemma 0; its closed 
form by the bound can be derived 

 

∏ 𝑓(𝑛)

∞

𝑛=0

∈ ∏ 𝑓′(𝑛)

∞

𝑛=0

 

=
𝑖

∑
1

2𝑛
∞
𝑛=0

√𝑖
= 𝑖

3

2, 𝑛 ∈ 𝕎, 𝑛 ≥ 0.           (13) 
 
The comparison with the approach with 

de’Moivre’s theorem can be seen in Fig. 2 and Fig. 
3 with ChatGTP’s standard solution’s result plots on 
Eq. (11). 

 

 
Fig. 2 Numerical stimulation with de’Moivre’s 
theorem from n = 1 to 10. 
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Fig. 3 Plot of the function 𝑔(𝑛) = (𝑖𝜋)

1

𝑛 from 
Eq. (11) with modulus and phase by the 
de’Moivre’s theorem approach. 

 
Albeit the de’Moivre’s theorem approach do not 

include 𝑛 = 1, it can be seen that the convergence 
exists with at least one bound value. So, the solution 
for Eq. (11) is necessary but not sufficient, unless 
the premise is set to ∃!. 

 
Hypothesis 1: 

∃! 𝑔(𝑛) ∀𝑛 ∈ 𝕎 ∩ 𝑛 > 0, = ln 𝑓(𝑛) = (𝑖𝜋)
1

𝑛.   (14) 
 

3.2 Complex Logarithm 
It is defined from lemma 0 that ln(−1) = 𝑖𝜋. Now 
we define 𝜑 − 𝜑2 = 𝑒𝑖𝜋 into a complex number 
 

𝑧 = log 𝑒 =
log(𝜑 − 𝜑2)

𝑖𝜋
, 

(proof trivial)    (15) 
and then it can be derived that 
 

𝜑 − 𝜑2 = log 𝑖𝜋𝑧 = log(𝑖𝜋 log 𝑒). 
(proof trivial)    (16) 

 
It is arguable that if log(𝑖𝜋 log 𝑒) can be put into 

log 𝑒 ∓ log 𝑖𝜋 , but the approximation on the real 
part is satisfactory 

 
𝑅𝑒(log 𝑖𝜋𝑧) =̇ log 𝜋 + 𝑒. 

(proof trivial)    (17) 
 

Therefore, 
 

𝑅𝑒[−𝑓(1)] =̇ log 𝜋 + 𝑒, 

(proof trivial)    (18) 
 
implying the potential of a complex value 

expression of 𝑓(1) with the form 
 

𝑅𝑒[𝑓(1)] =̇− (log 𝜋 + 𝑒).            (19) 
 

Thereby, the proof by contradiction exists, with 
regard to Eq. (5), to justify Eq. (14), and hypothesis 
1 is regarded for corollary 1 in the following texts. 

 
3.3 In Relation to RZF 
Let 𝑔(𝑛) = ln 𝑓(𝑛) = (𝑖𝜋)

1

𝑛, 𝑛 ∈ 𝑊, 𝑛 ≥ 0 , the 
integration 

 
∫ 𝑔(𝑛) 𝑑𝑛 = 𝑖𝜋 + ∫ 𝑔(𝑛)

∞

𝑛=1
𝑑𝑛          (20) 

 
is evaluated at the value point ∫ 𝑔(𝑧) 𝑑𝑛|𝑧 =

𝑖𝜋 + (𝑖𝜋)
1

𝑧 by the axiom of choice in Eq. (10) with 
presumed continuity in ∑ 𝑓(𝑛)∞

𝑛=1 , 𝑛 ∈ ℕ, and with 
the value of 𝑧 = log 𝑒 from Eq. (15) 

 
∫ 𝑔(𝑧) 𝑑𝑛|𝑧 = 𝑖𝜋 + (𝑖𝜋)ln 10.          (21) 

 
Therefore, the condition is met for applying 

de’Moivre’s theorem approach with the element 
(𝑖𝜋)ln 10 = 𝑒ln 10×ln(𝑖𝜋) with the polar form 
ln(𝑖𝜋) = ln 𝜋 + 𝑖

𝜋

2
. The expression from Eq. (21) 

then becomes 
 

∫ 𝑔(𝑧) 𝑑𝑛|𝑧 = 𝑖𝜋 + 𝑒ln(10 ln 𝜋) × 𝑒𝑖
𝜋

2
ln 10.   (22) 

 
From Eq. (13), it is seen that the imaginary part 

of the function set 𝑓(𝑛) is not only bounded by 1

√𝑖
, 

but also by an exponential function that is involved 
in Eq. (17) to (19). To further explore the potential 
correlations, the function 𝑓′(𝑛) is also evaluated at 
the value of 𝑧, with the presupposition on the 
imaginary part being capable of having a continuous 
pattern, which is proofed in the expression 

 

𝑓′(𝑧) =
𝑖

1

2log 𝑒

√𝑖
= 𝑖𝑒

ln 2
ln 10−

1

2 = 𝑖𝑒log 2−
1

2.      (23) 
 

Let’s take 𝜕 = ln 𝑛 + 𝛾𝑛, as in the Euler–
Mascheroni constant [6], to denote the HS, then 
∏ 𝑓(𝑛) = (𝜙2 − 𝜙)𝜕 = (−𝑒𝑖𝜋)

𝜕. By Eq. (16), it is 

derived that that 𝑧 =
log 𝑒𝑖𝜋

𝑖𝜋
, and from Eq. (13) with 

hypothesis 0, it is inferred 
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∏ 𝑓(𝑛) ∈ (∏ 𝑓′(𝑛)

∞

𝑛=0

) − 𝑖𝜋 

= 𝑖
3

2 − 𝑖𝜋 = 𝑖√𝑖 − 𝑖𝜋 = 𝑖(√𝑖 − 𝜋) 
(proof trivial)    (24) 

 
∏ 𝑓(𝑛) = (𝜙2 − 𝜙)𝜕 = (−𝑒𝑖𝜋)

𝜕
≡ 𝑖(√𝑖 − 𝜋)  

 
can be expressed as 
 

[−(𝜙 − 𝜙2)]𝜕 = (− log 𝑖𝜋𝑧)𝜕 
= [− log(𝑖𝜋 log 𝑒)]𝜕 = (−𝑒𝑖𝜋)

𝜕.         (24) 
 

It is then derived that 𝑧 =
10𝑒𝑖𝜋

𝑖𝜋
=

1

10𝑖𝜋
, and 

according to Eq. (6) & (16), it is justified that 
 

{
(𝜙 − 𝜙2)𝜕 = (log 10−1)𝜕

log 10−1 = −1 = log(𝑖𝜋 log 𝑒)
.            (25) 

 
And an alternative expression for the value of 𝑒 

is obtained and seen in Fig. 4 
 

𝑒 = 10
1

10𝑖𝜋.                           (26) 
 

 
Fig. 3 The visual presentation of Eq. (26) rendered 
by ChatGTP. 

 
The criteria for necessity in Eq. (11) and 

corollary 1 (Eq. (14)) are thus met 
 

𝑔(𝑛) = ln 𝑓(𝑛) = (10 log 𝑒)−
1

𝑛, 𝑛 ∈ ℕ.   (27) 
 
Thereby, it can also be expressed that 
 
∑ 𝑔(𝑛)∞

𝑛=1 = ln ∑ 𝑓(𝑛)∞
𝑛=1 = ln(𝜙2 − 𝜙)𝜕. (28) 

 

From Eq. (16), it is derived 𝜑2 − 𝜑 =
− log 𝑖𝜋𝑧 = −𝑒𝑖𝜋, therefore, 

 

∑ 𝑔(𝑛)

∞

𝑛=1

= ln ∑ 𝑓(𝑛)

∞

𝑛=1

= ln(𝑒2𝑖𝜋)𝜕 = 2𝑖𝜋𝜕. 

(29) 
 
And Eq. (24) provides the sufficiency criteria in 

proving corollary 1, justifying the theorem 1 in Eq. 
(14) and theorem 2 in Eq. (29). 

 
Theorem 3 is further derived in relation to the 

Euler–Mascheroni constant [6] 
 

∑ 𝑔(𝑛)

∞

𝑛=1

= ln(𝑒2𝑖𝜋)ln 𝑛+𝛾𝑛 = 2𝑖𝜋(ln 𝑛 + 𝛾𝑛), 

(30) 
 
and I further hypothesize 𝑛 ∈ 𝕨 holds for the 

theorem due to the symmetry of lemma 0, and it is 
plotted with ChatGTP, albeit the magnitude and 
phase in my proposed negative critical strip − 1

2
 was 

not visualized [4]. The proof for hypothesis 2 is 
significant for the extension of Gamma Function, 
hence the proof for the correlations between 
theorem 2 and theorem 3. 

 

 

 
Fig. 4 The visual presentation of lemma 0’s 
applicability in the whole number line with zero 
included. 

 
3.3 Back to the Harmonic Series 
By theorem 2 and 𝑓(𝑛) in Eq. (5), it is derived from 
Eq. (15) & (27) that 
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∑
1

𝑛

∞

𝑛=1

=
∑ 𝑔(𝑛)∞

𝑛=1

2𝑖𝜋
=

∑ 𝑔(𝑛)∞
𝑛=1

2𝑖𝜋
 

=
∑ (10 log 𝑒)−

1
𝑛∞

𝑛=1

2𝑖𝜋
=

(log 𝑒10)
−𝜕

2𝑖𝜋
.   (31) 

 
It is further derived 
 

2𝑖𝜋𝜕 = (log 𝑒10)−𝜕 
2𝑖𝜋𝜕 = (log 𝑒10)−𝜕 

log 2𝑖𝜋𝜕 = log(10 log 𝑒)−𝜕 
log 2𝑖𝜋𝜕 × 10−𝜕 = log(−𝜕 log 𝑒),       (32) 

 
And from Eq. (26), it is obtained 
 

2iπ × 10−𝜕 = − log 𝑒 = −
1

10𝑖𝜋
 

∑
1

𝑛
∞
𝑛=1 = − log

1

20𝜋2.                 (33) 
 
Alternatively, it is derived 
 

ln 2𝑖𝜋𝜕 = ln(10 log 𝑒)−𝜕,          (34) 
 
and 
  

ln 2𝑖𝜋𝜕 = ln(10)−𝜕 + ln(log 𝑒)−𝜕 
= −𝜕 ln 10 + ln[𝜕(log 𝑒)] + 𝑖𝜋 

= ln(−𝜕 log 𝑒) = ln(𝜕 log 𝑒) + 𝑖𝜋,      (35) 
 
which means 
 

ln 2𝑖𝜋𝜕2 log 𝑒 = 𝑖𝜋 
𝑒𝜕2

= 1. 
(36) 

 
Therefore, a relatively exact value of the HS is 

derived in terms of the complex domain, given 𝑛 ∈
ℕ 

 
𝜕2 = 𝑖𝜋 

∑
1

𝑛

∞

𝑛=1

= √𝑖𝜋 = √ln −1. 

(37) 
 
Alternatively, with lemma 0, 
 

𝜕2 = −
1

2𝑖𝜋
=

𝑖

2𝜋
 

∑
1

𝑛

∞

𝑛=1

= √
𝑖

2𝜋
 

(38) 

 
The dual results suggest that the sequence 

formalism of the Euler–Mascheroni constant not 
only exists in form of limits, but may also have a 
pair product in the negative whole numbers for 𝑛 ≠
0, corroborating with the previous hypothesis. 

 
 
4 Conclusion 

From the research I find a complex number 
expression for the transcendental number 𝑒 = 10

1

10𝑖𝜋 
with relation to a metric space that can be possibly 
correlated with the Euler–Mascheroni constant. An 
exact solution in terms of complex number is 
derived for HS ∑ 1

𝑛
∞
𝑛=1 = √𝑖𝜋 = √ln −1. Further 

proofs and analysis, including further derivatives 
that can serve for proofs of my previous works, will 
be given in the next papers to come. 
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