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Abstract: This study investigates the robustness of two-sample inferential statistics when datasets are derived 
from mixture distributions, where traditional methods like the t-test may fail due to violated assumptions. Using R 
software, random variables from Standard Normal, Gamma, and Exponential distributions were generated and 
analyzed using four inferential tests: Rank Transformation t-test (Rt), Wilcoxon Sum Rank Test (WSD and its 
Asymptotic version WSA), and Trimmed t-test (Tt-test). Robustness was evaluated based on Type I error rates 
across varying levels of multicollinearity and sample sizes (n=10, 20, 30, 40, 50, 60, 70, 80 and100). A test was 
deemed robust if it maintained acceptable error rates (α=0.1, 0.05, and 0.01) and demonstrated consistency across 
multicollinearity levels and sample sizes. At α=0.1, the WSD and Tt-test exhibited the highest robustness. At 
α=0.05, the Tt-test was the most robust, while at α=0.01, both the Tt-test and WSD were robust, with the Tt-test 
slightly outperforming. Overall, the Tt-test and WSD consistently demonstrated robustness across all significance 
levels, suggesting they are reliable alternatives for two-sample problems involving mixture distributions. These 
findings underscore the importance of selecting robust statistical methods to ensure accurate inferences in 
complex data scenarios. 
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1. Introduction 

Mixture distribution is the probability distribution of 
random variable that is derived from collection of 
other random variables. These random variables can 
be random real number or random vectors having the 
same distribution, it can be continuous in nature and 
have outcome that is continuous and the probability 
density function of these continuous random 
variables are called mixture density. The individual 
distributions that combined to form the mixture 
distribution are called the mixture components and 
the probabilities associated with each component are 
called the mixture weights. In other words, a mixture 
distribution is a combination of two or more 
probability distributions. Data when analyzed often 
fail the assumption of normality which could be as a 
result of unequal variances in the error terms or 
presence of outliers in the data set, and thus the need 
for equivalent non-parametric tests. When data are 
not normally distributed then the random variables 

are not identical, such data usually come from a 
mixed distribution. Since each distribution has 
parameters different from other distributions, then 
that makes a mixed data to contain some level of 
outliers and other measures that make the data not to 
be normally distributed. Several literature reviews on 
mixture distribution in diverse areas of specialization 
have been presented by different researchers across 
many disciplines. Such include the social and 
behavioral sciences, environmental sciences, 
engineering and physical sciences among others. 
(Odukoya et al, 2019; Odukoya et al, 2019b; 
Omonijo et al., 2019, PrakasaRao, 1983). For 
example, in biological and physical sciences, Denys 
(2008) illustrated that mixture of distributions do 
occur such that if random sample of fish species is 
taken, therefore the characteristics measured for each 
member of the sample will definitely vary with age 
but, the distribution of the characteristics in all 
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population will be a mixture of the distributions at 
different ages. Adejumo et al. (2022) revealed that in 
mixture distribution, especially distributions from 
Gaussian and Cauchy, Rank transformation test was 
recommended as a robust test statistic and to be used 
at all levels of significance if the data is one sampled. 
Jinseo et al. (2018) considered mixture models when 
the mixing distribution can be quietly identified 
using Schwarz’s criteria and Neyman test. In his 
analysis, he presented smooth goodness of fits for 
testing the mixture distribution of a sequence of 
independently identically distributed random 
variables. In case of Michael, (2002), using the 
likelihood ratio (LR) test for unconditional geometric 
distributions examined the mixture hypothesis of 
conditional geometric distributions. Through 
simulation studies, the interrelationship between 
geometric and exponential mixture hypothesis was 
examined. Meanwhile, Blair (1985) claimed that 
under a Dirichlet process prior unobserved random 
effects contribute to unequal variance of the error 
terms among sampling units and therefore, smooth 
nonparametric estimate of mixture distribution can 
be derived as an approximate nonparametric Bayes 
estimate. Also, in Michelle et al. (2004) with the aids 
of Monte Carlo experiment, the relative power of 
paired parametric and nonparametric tests was 
assessed. The outcome of their results revealed that, 
in given situation each statistic was more powerful. 
Ayinde et al. (2016) conducted a simulation study 
one the performance of some one-sample inferential 
statistics in the presence of outliers whereby some 
one sample parametric, semi-parametric and 
nonparametric test statistics were investigated. 
Meanwhile, Ajiboye et al. (2017), investigated the 
robustness of matched-pairs tests statistics for paired 
sampled problem at different degrees of correlations, 
sample sizes. Results from the simulation studies 
revealed that t-tests performed below expectation in 
terms of type I error rates performance. Presence of 
extreme observation in the data set may be inevitable 
even in paired observations, this made Yuen (1974) 
to examine the performance of some paired 
inferential statistics in the presence of outliers where 
Paired t-test, Wilcoxon sign rank test, Rank 
transformation t - test and Trimmed t-test were 
considered as inferential statistics. Through 
simulation studies, data were obtained from Gaussian 
distribution and polluted with degrees of outliers and 
multicollinearities. Under different levels of 
multicollinearities and alpha levels, they concluded 

that Rank transformation test, Distribution Sign test 
and Trimmed t-test statistics respectively can 
accommodate outliers. More recently is the research 
of Hasan et al. (2024) who conducted a simulation 
study on a Robust High-Dimensional Test for Two-
Sample Comparisons in order to address the 
limitation of two samples Hotelling T2 inferential 
statistics in multivariate distribution. In their study, a 
robust permutation test based on the minimum 
regularized covariance determinant estimator was 
introduce. In the literature, authors have examined 
the robustness of some inferential statistics in the 
presence of outliers in one and paired samples 
problem at different levels of multicollinearity and 
significance levels when data are only generated 
from normal distribution whereas other distributions 
were not put into consideration. Hence, to bridge this 
gap, this study examines the robustness of some two-
sample inferential test statistics when data comes 
from mixture distribution. The distribution 
considered in the study where data was generated are 
normal, exponential and Cauchy distributions. 
Without any loss of generality, this study in the long 
run was able to identify some non-parametric and 
semi-parametric inferential test statistics that are 
robust when data comes from mixture distribution at 
different sample sizes and levels of significance. The 
distributions and the simulation procedures are 
discussed as follows. 

2. Materials and methods   

2.1 Distributions used for the Study 

In this study, data were generated from four 
distributions, namely; the normal distribution, the 
Cauchy distribution, gamma distribution and the 
exponential distribution. 

(i) Normal distribution: 

The normal distribution is the most widely known 
and used of all distribution and because it can 
approximate many natural phenomena so well, it has 
developed into a standard of reference for many 
probability problems. Properties of the Normal 

distribution  

i. It is symmetric about the mean and has bell 
shaped  

ii. Its random variable ranges from -∞to ∞ 
iii. It has two parameters, µ and σ.  

The normal density function is  

Taiwo J. Adejumo et al.
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 135 Volume 10, 2025



𝑓(𝑥: 𝜇, 𝜎2) =
1

√2𝜋𝜎2
𝑒−(𝑥−𝜇)2 2𝜎2⁄    (1) 

(ii) Gamma Distribution 

Gamma distribution is a two-parameter family of 
continuous probability distributions. The exponential 
distribution, Erlang distribution, and chi-squared 
distribution are special cases of the gamma 
distribution. There are three different parameterizations 
in common use: 

i. With a shape parameter k and a scale 
parameter θ. 

ii. With a shape parameter α = k and an inverse 
scale parameter β = 1/θ, called a rate 
parameter. 

iii. With a shape parameter k and a mean 
parameter μ = kθ = α/β. 

We say that a random variable X is distributed 
gamma if  

X ~ Gamma (α, β) 

xxxf 





 


 )1(

)(
),,(       (2) 

0 < x < ∞, α > 0, β > 0  

where, mean = 


  and variance = 2


  

(iii) Exponential Distribution 

A continuous random variable X is said to have an 
Exponential (λ) distribution if it has probability 
density function 

𝑓𝑋(𝑥|𝜆) =  {
𝜆𝑒−𝜆𝑥, 𝑓𝑜𝑟 𝑥 > 0
0            𝑓𝑜𝑟 𝑥 ≤ 0

                            (3) 

where λ > 0 is called the rate of the distribution. In 
the study of continuous-time stochastic processes, 
the exponential distribution is usually used to 
model the time until something happens in the 
process. The mean is 1/λ and the variance is 1/λ2 

2.2 Review of some inferential Statistic 

(i) Trimmed t-test for two independent two- 

samples 

Yuen (1974) proposed the Trimmed t-test for the 
independent two-sample case, under unequal 
population variances. The trimmed mean is an 

attractive alternative to the mean and the median, 
because it effectively deals with outliers without 
discarding most of the information in the data set. 
Research has shown that the use of trimming (and 
other modern procedures) results in substantial gains 
in terms of control of Type I error, power, and 
narrowing confidence intervals (Keselman et al., 
2008). Also, if data are normally distributed, the 
mean and the trimmed mean will be the same. 
(Ayinde, et al. 2016). 

In each sample, the trimmed mean is computed by 
removing g-observations from each tail of the 
distribution: 

Given the Winsorized mean, the Winsorized sum-of-
squared derivation is computed as: 

SSDw = [g + 1][xg+1 − X̅w]
2

+ [xg+2 − X̅w]
2

+

⋯ + [g + 1][xn−g − X̅w]
2   

     (4)  

The trimmed t is obtained by dividing the difference 
between the trimmed means by the estimated 
standard error of the difference: 

𝑡 =  
X̅t1 − X̅t2

√
𝑆𝑤1

2

𝑛1− 2𝑔
+ 

𝑆𝑤2
2

𝑛2− 2𝑔

    (5) 

 where; 𝑆𝑤1
2 =

𝑆𝑆𝐷𝑤1

𝑛1−2𝑔−1
, 𝑆𝑤2

2 =
𝑆𝑆𝐷𝑤2

𝑛2−2𝑔−1
 

The degrees of freedom are obtained from  

1

𝑑𝑓
=  

𝐶2

𝑛1 − 2𝑔 − 1
+  

(1 − 𝐶)2

𝑛2 − 2𝑔 − 1
 

 where 𝐶 =  

𝑆𝑤1
2

(𝑛1− 2𝑔−1)

[
𝑆𝑤1

2

(𝑛1− 2𝑔−1)
]+ [

𝑆𝑤2
2

(𝑛2− 2𝑔−1)
]

 

(ii) Wilcoxon rank sum test 

Wilcoxon rank sum test is a quick and easy test for 
two independent samples. It is a good alternative test 
to the t-test when the data don’t meet the 
assumptions of the test. (It is numerically equivalent 
to the Mann-Whitney U test). This test can also be 
performed if only rankings (i.e., ordinal data) are 
available. It tests the null hypothesis that the two 
distributions are identical against the alternative that 
the two distributions differ only with respect to the 
median. In order words, Wilcoxon rank sum test 
compares two distributions to assess whether one has 
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systematically larger values than the other. The 
Wilcoxon test is based on the Wilcoxon rank sum 
test statistic W, which is the sum of the ranks of one 
of the samples. 

 Assumptions for Wilcoxon rank sum test: 

(i.) Within each samples the observations are 
independently and identically distributed. 

(ii.) The two samples must be independent of 
each other. 

(iii.) The error terms are mutually independent. 
(iv.) The shapes and spreads of the distributions 

are the same. 

 The procedures: 

(i.) Rank all the data values by assigning rank1 
to the smallest data, 2 to the next smallest 
up to the largest. 

(ii.) If one group has fewer values than the 
other e.g., n1<n2, add the ranks in the 
smaller group to get the test statistic W. If 
n1= n2, add the ranks in the group 
containing the smallest ranks. 

(iii.) Enter the appropriate table for W, based on 
sample sizes and determine the probability 
for W. 

(iv.) Based on the p-value, reject H0 or accept 
H0. 

The rank sum statistic W becomes approximately 
normal as the two sample sizes increase. The test 
Z-statistic by standardizing W is;  

Z =  
𝑊−𝜇𝑤

𝜎𝑤
~𝑁(0,1)         (6) 

where 𝜇𝑤 =  
𝑛1(𝑁+1)

2
 , 𝜎𝑤 = √

𝑛1𝑛2(𝑁+1)

12
 and 

 𝑁 = 𝑛1 + 𝑛2. 

p-value for the Wilcoxon test is based on the 
sampling distribution of the rank sum statistic W 
when the null hypothesis (no difference in 
distributions) is true. P-value can be calculated 
from special tables, software or a normal 
approximation (with continuity correction). 

(iii) Wilcoxon signed rank test (Asymptotic)  

Wilcoxon signed-rank test is named after Wilcoxon 
(1945) who in a single paper proposed both the test 
and rank-sum test for two independent samples. The 
test was further popularized by Siegel (1956) who 
used the symbol T for value related to, but not the 

same.  The asymptotic distribution of Wilcoxon 
signed rank test is: 

𝑇 =
𝑇+−𝐸0(𝑇+)

√𝑉0(𝑇+)
~𝑁(0,1)       (7) 

where 𝐸0(𝑇+) =
(𝑛+1)

4
 and 𝑉0(𝑇+) =  √

𝑛(𝑛+1)(2𝑛+1)

24
 

Algorithm for simulation 

How data were generated from different distributions 
and subjected to the inferential test statistics 
including the estimation of Type I error rates using 
Monte Carlo procedures with the aid of R-
programming codes are hereby discussed. 

Source of Data 

The following parameters were used to generate data 
for two samples problems with the aid of R-
statistical programming package. 

i. Sample size(n) = 10, 20, 30, 40, 50, 60, 70, 
80 and100 

ii. Replications (RR) = 5000 
iii. Hypothesized median (md) = 0 
iv. Standard deviation (δ) = 1 
v. Correlation (ρ) = 0, 0.3, 0.6, 0.9, 0.95 and 

0.99 
vi. α-level considered are 0.1, 0.05 and 0.01 

Distributions used for Two Samples Problem 

The data were generated from the following 
distributions 

i. Normal distribution with mean (μ) = 0 and 
standard deviation (δ) = 1 

ii. Gamma distribution (n, 0.5)  
iii. Exponential distribution (n, 0.5) 

where n is the sample size. 

The Test Statistics used for Two Samples problem 

The test statistics used in the two samples 
problem are as follows: 

i. T-test for Rank transformation (Rt) in two 
sample by Conover and Iman (1981) 

ii. Wilcoxon sum Rank test (Distribution 
(WSD) and Asymptotic (WSA)) by 
Wilcoxon (1945) 

iii. Trimmed t-test (Tt) by Yuen (1974) 

2.3 Procedures for Monte Carlo Experiment 

The procedures for data generation and estimation of 
Type I error rate in two samples mixture distribution 
are as follows: 
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i. Choose a sample size(n)  
ii. Generate random sample size from the 

distributions under consideration, X ~ N (n, 
0, 1) and Gamma distribution (n, 0.5), Y ~ N 
(n, 0, 1) and Exponential distribution (n, 
0.5). 

iii. X and Y are now polluted with correlated 
observations using equations derived by 
Ayinde, (2007) as in equation Jinseo et al 

(2018) and Michael (2002): 

𝑋 =  𝜇1 +  𝜎1𝑍1    (8)  
      𝑌 =  𝜇2 +  𝜌12𝜎2𝑍1 + √𝑚22𝑍2  (9) 

where  𝑍1~𝑁(0, 1), 𝑍2~𝑁(0, 1), and 𝑚22 =  𝜎2
2(1 −

𝜌12
2 ) 

In this study, 12   0, 0.3, 0.6, 0.9, 0.95 and 0.99.  
iv. Combine the data generated in step (ii). 
v. Subject the various test statistics and 

document their p-values 
vi. For each inferential test statistics in step(IV) 

defined as; 

     𝐻𝑖 =  {
1, 𝑖𝑓 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < ∝
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            

                     

(10) 

      
  

 where α = 0.1, 0.05 and 0.01 are the level of 
significance 

vii. From step(ii) to (v) repeat up to 5000 times, 
RR=5000 

viii. For each of the inferential statistics, sum the 
results obtained in step (vi) as in the equation 
below; 

         𝐻 =  ∑ 𝐻𝑖
𝑅𝑅
𝑖=1     (11)

        
   

viii. For each of the inferential statistics, divide the 
result in step (vii) by the number of replications to 
estimate the type I error of the test statistics as given 
as follows: 

𝐾∝ =  
∑ 𝐻𝑖

𝑅𝑅
𝑖=1

𝑅𝑅
=  

𝐻

𝑅𝑅
      (12) 

  ix. Choose another sample size (n) to work with and 
repeat step (ii) to step (ix) until all sample sizes are 
exhausted. 

2.4 Examination of Robustness of the Test 

Statistics  

Robustness of the inferential statistics was investigated 
in mixture distribution. Any calculated Type 1 error 
rates of the test that falls within the range of 0.095 – 
0.14, 0.045 – 0.054 and 0.005 – 0.014 for 0.1, 0.05 and 
0.01 respectively at different alpha level (α)and sample 
sizes (n) which was adopted by Ajiboye et al. (2017), 
used by Adejumo et al. (2022). Also, a test statistic 
that has the highest number of counts is considered 
robust. 
 
3. Results and Discussion 
Here, the results of simulation for all the inferential 
statistics in mixture distribution of two sample 
problem including graphical representation are 
discussed. 

 
Table 1: Simulation Results at 0.1 Level of Significance 

α = 0.1 
    Rt WSD WSA Tt     Rt WSD WSA Tt 

rho=0 

10 1 0.2002 1 0.1158 

rho=0.9 

10 1 0.066 1 0.0602 

20 1 0.382 1 0.2988 20 1 0.2174 1 0.2002 
30 1 0.5308 1 0.4586 30 1 0.4474 1 0.4128 
40 1 0.6644 1 0.6028 40 1 0.6768 1 0.6214 
50 1 0.7634 1 0.7206 50 1 0.831 1 0.7806 
60 1 0.8276 1 0.7984 60 1 0.9256 1 0.889 
80 1 0.8798 1 0.8546 80 1 0.9886 1 0.9764 
100 1 0.965 1 0.9592 100 1 0.9994 1 0.9972 

    Rt WSD WSA Tt     Rt WSD WSA Tt 
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rho=0.3 

10 1 0.197 1 0.12 

rho=0.95 

10 1 0.0278 1 0.0352 
20 1 0.4286 1 0.3356 20 1 0.102 1 0.114 

30 1 0.619 1 0.5346 30 1 0.2596 1 0.2582 
40 1 0.7732 1 0.7114 40 1 0.4514 1 0.4384 
50 1 0.8696 1 0.8264 50 1 0.6392 1 0.6054 
60 1 0.9242 1 0.895 60 1 0.7974 1 0.7536 
80 1 0.954 1 0.9356 80 1 0.952 1 0.9258 
100 1 0.996 1 0.991 100 1 0.9948 1 0.9858 

    Rt WSD WSA Tt     Rt WSD WSA Tt 

rho=0.6 

10 1 0.16 1 0.1128 

rho=0.99 

10 1 0.0024 1 0.0038 
20 1 0.4188 1 0.3334 20 1 0.0064 1 0.012 
30 1 0.6538 1 0.573 30 1 0.012 1 0.0228 
40 1 0.8204 1 0.7624 40 1 0.0274 1 0.042 
50 1 0.9118 1 0.873 50 1 0.0518 1 0.0766 

60 1 0.963 1 0.9402 60 1 0.101 1 0.1264 

80 1 0.9936 1 0.9872 80 1 0.2548 1 0.2592 
100 1 0.9996 1 0.998 100 1 0.4678 1 0.4312 

 

 
Figure 1a: Graphical Representation of Type I Error rate of Two Sample Statistics in Mixture 

Distribution across Levels of Multicollinearity and Sample Sizes when α = 0.1 
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Figure 1a: Graphical Representation of Type I Error rate of Two Sample Statistics in Mixture 

Distribution across Levels of Multicollinearity and Sample Sizes when α = 0.1 

 

 

 

Table 2: Times Type I Error rates approximate to α = 0.1, 0.05 and 0.01 

 

α = 0.1 
  Test Statistics 10 20 30 40 50 60 80 100 SUM RANK 

Rt 0 0 0 0 0 0 0 0 0 3.5 
WSD 1 1 0 0 1 1 0 0 4 2 
WSA 

  
0 0 

  
0 0 0 3.5 

Tt 4 1 0 0 1 1 0 0 7 1 

 
α = 0.05 

  Test Statistics 10 20 30 40 50 60 80 100 SUM RANK 
Rt 0 0 0 0 0 0 0 0 

 
3 

WSD 0 0 0 0 0 0 0 0 
 

3 
WSA 0 0 0 0 0 0 0 0 

 
3 

Tt 3 0 0 0 0 0 0 0 3 1 

 
α = 0.01 

  Test Statistics 10 20 30 40 50 60 80 100 SUM RANK 
Rt 0 0 0 0 0 0 0 0 

 
3.5 

WSD 1 2 0 1 0 0 0 0 4 2 
WSA 0 0 0 0 0 0 0 0 

 
3.5 

Tt 2 2 1 0 0 0 0 1 6 1 
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Figure 1c. Bar Chart Indicating Total Times Type I Error rates approximate to α = 0.1 

Table 3: Two Sample Simulation Result at 0.05 Level of Significance 

α = 0.05 
    Rt WSD WSA Tt     Rt WSD WSA Tt 

rho = 0 

10 1 0.109 1 0.048 

rho = 0.9 

10 1 0.0196 1 0.0214 
20 1 0.255 1 0.1678 20 1 0.0776 1 0.0802 
30 1 0.3942 1 0.3018 30 1 0.2098 1 0.2004 
40 1 0.517 1 0.4352 40 1 0.396 1 0.3694 
50 1 0.6278 1 0.5552 50 1 0.5898 1 0.5406 
60 1 0.714 1 0.655 60 1 0.7526 1 0.7074 
80 1 0.7838 1 0.7352 80 1 0.933 1 0.8976 
100 1 0.926 1 0.9086 100 1 0.992 1 0.9798 

    Rt WSD WSA Tt     Rt WSD WSA Tt 

rho = 0.3 

10 1 0.0984 1 0.0492 

rho = 0.95 

10 1 0.0062 1 0.0094 
20 1 0.273 1 0.1828 20 1 0.0278 1 0.0386 
30 1 0.4486 1 0.3518 30 1 0.0816 1 0.102 
40 1 0.6198 1 0.5258 40 1 0.1824 1 0.2036 
50 1 0.7468 1 0.667 50 1 0.3258 1 0.3342 
60 1 0.8406 1 0.7836 60 1 0.4898 1 0.4942 
80 1 0.8952 1 0.8564 80 1 0.7782 1 0.7308 
100 1 0.9832 1 0.9724 100 1 0.9378 1 0.9024 

    Rt WSD WSA Tt     Rt WSD WSA Tt 

rho = 0.6 

10 1 0.0728 1 0.0442 

rho = 0.99 

10 1 0 1 6.00E-04 
20 1 0.2376 1 0.1658 20 1 6.00E-04 1 0.002 
30 1 0.4488 1 0.3564 30 1 0.0018 1 0.0048 
40 1 0.6504 1 0.5608 40 1 0.0032 1 0.0092 
50 1 0.7946 1 0.7174 50 1 0.0056 1 0.0148 
60 1 0.89 1 0.8382 60 1 0.0136 1 0.0306 
80 1 0.9738 1 0.9528 80 1 0.0438 1 0.0744 
100 1 0.9958 1 0.9894 100 1 0.1202 1 0.1506 

0
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7
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Figure 2a: Graphical Representation of Type I Error rate of Two Sample Statistics in Mixture 

Distribution across Levels of Multicollinearity and Sample Sizes when α = 0.05 

 

 
Figure 2b: Graphical Representation of Type I Error rate of Two Sample Statistics in Mixture 

Distribution across Levels of Multicollinearity and Sample Sizes when α = 0.05 

 

Figure 1c. Bar Chart Indicating Total Times Type I Error rates approximate to α = 0.05 

 
 

Table 4: Two Sample Simulation Result at 0.01 Level of Significance 

Alpha = 0.01 
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    Rt WSD WSA Tt     Rt WSD WSA Tt 

Rho=0 

10 1 0.0214 1 0.0074 

Rho=0.9 

10 1 0.0012 1 0.0022 
20 1 0.073 1 0.0346 20 1 0.0056 1 0.0086 

30 1 0.1654 1 0.1028 30 1 0.0168 1 0.023 
40 1 0.291 1 0.1904 40 1 0.053 1 0.0688 
50 1 0.4142 1 0.3018 50 1 0.122 1 0.1394 
60 1 0.5406 1 0.4348 60 1 0.223 1 0.2386 
80 1 0.6514 1 0.5474 80 1 0.5082 1 0.479 
100 1 0.8878 1 0.8332 100 1 0.762 1 0.7178 

    Rt WSD WSA Tt     Rt WSD WSA Tt 

Rho=0.3 

10 1 0.0092 1 0.0052 

Rho=0.95 

10 1 2.00E-04 1 8.00E-04 
20 1 0.0482 1 0.028 20 1 4.00E-04 1 0.003 
30 1 0.1316 1 0.0878 30 1 0.0032 1 0.0082 

40 1 0.2584 1 0.1888 40 1 0.0104 1 0.0218 
50 1 0.4026 1 0.3114 50 1 0.0266 1 0.0542 
60 1 0.5596 1 0.4706 60 1 0.0592 1 0.0942 
80 1 0.8108 1 0.7292 80 1 0.197 1 0.2428 
100 1 0.9316 1 0.8846 100 1 0.426 1 0.4488 

    Rt WSD WSA Tt     Rt WSD WSA Tt 

Rho=0.6 

10 1 0.0012 1 0.0022 

Rho=0.99 

10 1 0 1 0 
20 1 0.0056 1 0.0086 20 1 0 1 2.00E-04 
30 1 0.0168 1 0.023 30 1 0 1 0 
40 1 0.053 1 0.0688 40 1 0 1 4.00E-04 
50 1 0.122 1 0.1394 50 1 2.00E-04 1 6.00E-04 
60 1 0.223 1 0.2386 60 1 0 1 8.00E-04 
80 1 0.5082 1 0.479 80 1 0 1 0.0028 
100 1 0.762 1 0.7178 100 1 0.001 1 0.0082 

 
Figure 3a: Graphical Representation of Type I Error rate of Two Sample Statistics in Mixture 

Distribution across Levels of Multicollinearity and Sample Sizes when α = 0.01 
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Figure 3b: Graphical Representation of Type I Error rate of Two Sample Statistics in Mixture 

Distribution across Levels of Multicollinearity and Sample Sizes when α = 0.01 

 

Figure 3c. Bar Chart Indicating Total Times Type I Error rates approximate to α = 0.01 

 

4. Discussion 

The simulation results for Type I error rates of two-
sample inferential tests, as presented in Table 1 and 
graphically depicted in Figures 1a and 1b, revealed 
the following: at α=0.1, the Tt-test and the WSD, in 
this order, exhibit superior Type I error rates as 
multicollinearity and sample sizes increase, while the 
Rt and WSA tests show lower Type I error rates. 
Furthermore, when aggregated across all levels of 
multicollinearity for each sample size, as shown in 
Table 2 and Figure 1c, the Tt-test performs better 
than the other tests at the α=0.1significance level. 
Similarly, the results for α=0.05, presented in Table 3 
and illustrated in Figures 2a and 2b, indicate that only 
the Tt-test maintains superior Type I error rates as 
multicollinearity and sample sizes increase. 

Aggregated results across all levels of 
multicollinearity for each sample size, as depicted in 
Table 2 and Figure 2c, further confirm that the Tt-test 
outperforms all other test statistics considered in the 
study. At α=0.01, as shown in Table 4 and 
graphically in Figures 3a and 3b, the Tt-test and 
WSD, in this order, achieve better Type I error rates 
as multicollinearity and sample sizes increase. When 
aggregated across all multicollinearity levels for each 
sample size, as shown in Table 2 and Figure 3c, the 
Tt-test emerges as the top performer at the α=0.01 
significance level. 
Overall, the investigation of simulation results for 
two-sample inferential statistics across different 
significance levels and multicollinearity conditions, 
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as detailed in Tables 1, 3, and 4 and graphically 
represented in Figures 1, 2, and 3, highlights the 
robustness of the Tt-test and WSD. Additionally, the 
frequency with which the Type I error rates of the test 

statistics fall within the preferred interval has been 
summarized in Table 5. This table ranks the 
robustness of the two-sample inferential statistics for 
mixture distributions in order of importance. 

 

Table 5. Total number Times Type I error rate approximates to true error rates when counted across the 

sample sizes 

Test 
Statistics 10 20 30 40 50 60 80 100 SUM RANK 

Rt 0 0 0 0 0 0 0 0 0 3.5 

WSD 2 3 0 1 1 1 0 0 8 2 

WSA 0 0 0 0 0 0 0 0 0 3.5 

Tt 6 3 1 0 1 1 0 1 13 1 

 
Figure 4. Bar chart indicating overall total times Type I error rates approximates to the true error rates 

across all sample sizes 

Table 6. Overall Summary of Robustness of the inferential Statistics in Mixture Distribution 

Alpha Level              Test statistics 

0.1              WSD and Tt 

0.05              Tt 

0.01             Tt and WSD 
Overall             Tt and WSD 
 

5. Conclusion 
The simulation results demonstrate that the Trimmed t-
test (Tt-test) and the Wilcoxon Sum Rank Test (WSD) 
exhibit robust Type I error rates across varying levels 
of significance, sample sizes, and multicollinearity in 
mixture distributions. When results are aggregated 

across all levels of multicollinearity and sample sizes, 
the Tt-test consistently demonstrates superior 
robustness, with the WSD also performing reliably in 
certain conditions. These findings, summarized in 
Table 5, provide a clear ranking of robustness for the 
test statistics in mixture distributions, highlighting the 
effectiveness of the Tt-test as the most reliable option 
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across the evaluated conditions. Overall, this study 
underscores the importance of selecting robust 
inferential statistics like the Tt-test and WSD for 
accurate hypothesis testing in complex data scenarios, 
such as mixture distributions, particularly when 
standard assumptions are not met. 
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