
The main challenge in the field of naval architecture is

to design a Remotely Operated Vehicle (ROV) that can

be controlled directly by humans through remote control

from the surface, enabling access to go places where hu-

mans cannot go or where it is too dangerous to explore.

ROVs play a vital role in various underwater missions,

including ship hull inspections, recovering objects from

the ocean floor, assisting in the development of offshore

oil fields 1, inspecting subsea structures and pipelines,

photographing deep-sea animals, recovering torpedoes,

servicing underwater oil and gas structures, and locating

historic shipwrecks. They are also instrumental in subse-

quent repair, maintenance, and the study of marine life
2..

Various methods are available for studying ROV mo-

tions, such as time domain and strip theory, the latter be-

ing known for its simplicity and efficiency in calculations
3. The strip theory method, based on Lewis transforma-

tion mapping 4 , has been adapted and compared with

Maxsurf results in this work. Maxsurf packages, utilizing

strip theory algorithms, offer powerful three-dimensional

surface modeling systems for use in naval architecture

design.

Dynamic behavior variations over time, influenced

by uncertainties in hydrodynamic coefficients and envi-

ronmental disturbances, often complicate controller de-

sign procedures. In this context, the influence of hydro-

dynamic coefficients on the dynamic behavior of AUVs

was analyzed under different forward speeds and stan-

dard maneuvers 5. An experimental determination of

the longitudinal and lateral hydrodynamic coefficients of

a low-speed UUV was proposed by6. Various control

schemes, including PID controllers, have been applied

to heading to track different paths.7 and 8 have derived

mathematical models of underwater remotely operated

vehicles with interval parametric uncertainty and utilized

PID controller synthesis. The estimation of added mass

coefficient and hydrodynamics damping and the stability

of the ROV were performed by 9 using the PID control.
10 present a computer effective nonlinear time-domain

strip theory formulation for dynamic positioning (DP)

and low-speed maneuvering with the following assump-

tions : the fluid flow around ships is usually considered to

be inviscid and irrotational, the fluid is irrotational and

the motion amplitudes and velocities are small enough.

The design and implementation of guidance and con-

trol systems for ROVs have been addressed by several re-

searchers. Model-free second-order sliding mode control,

along with ocean currents as disturbances and thruster

dynamics, has been elaborated by 11 . Affected by hy-

drodynamic forces, ROV dynamics are nonlinear, multi-

variable, and subject to parameter uncertainties and ex-

ternal disturbances. Hence, controlling the ROV requires

the ability to handle nonlinearity and adaptivity toward

changing parameters and environmental disturbances.

Furthermore, recent advancements in ROV control

strategies have shown promising results. LQR control

with pole placement adjustment has demonstrated supe-

rior system response and reduced error indices, suggest-

ing its potential to enhance ROV performance in real-

world applications 15. Similarly, the development of a

decoupled nonlinear PID (NLPID) controller for under-

water vehicle trajectory tracking has shown increased ro-
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bustness through the introduction of adaptive nonlinear

functions 16. Real-time experiments confirm the effec-

tiveness of the NLPID against disturbances and uncer-

tainties, offering promising prospects for future underwa-

ter control research.

In parallel, robust control methods for autonomous

underwater vehicles (AUVs) are being explored. One ap-

proach utilizes an online optimized PID controller with

a hybrid PSO algorithm, while the other employs state

feedback with linear matrix inequalities 17. Both ap-

proaches have been evaluated for controlling depth and

attitude, showing that the optimized PID controller of-

fers better robustness and superior performance com-

pared to LMI-based state feedback.

Another significant advancement concerns the H-

infinity approach for attitude control of autonomous un-

derwater vehicles (UUVs)18. This method offers in-

creased stability, particularly crucial for roll angles.

Furthermore, a control approach based on second-

order sliding mode ensures precise position tracking with-

out the need for acceleration measurements or knowledge

of robot dynamics 19 .

Efforts are also underway to model AUVs more ac-

curately, using computational fluid dynamics software to

estimate key hydrodynamic parameters and developing

nonlinear compensators to improve control robustness 20.

In this paper an optimal feedback controller based on

backstepping techniques is developed to track predefined

position trajectories. A local output feedback controller

is derived by means of the differential riccati equations.

This will emphasize not only the robustness performance

but the choice of the adaptation matrix also 12 . Simula-

tion results has been presented to show the effeteness of

the proposed methode.

The three coordinate systems are introduced; the earth-

fixed frame and the body-fixed frame shown in Fig-(1).

The earth-fixed frame is regarded as a space-fixed inertial

frame, and its origin and direction are the same as those

of the body-fixed frame at initial time of maneuver. The

maneuvering motion in three degrees of freedom in the

horizontal plane is represented by Newton’s second law:

Thrusters are usually in a balanced vector configura-

tion to provide the most precise control possible. With-

out having the proper thrust, the ROV can be over-

whelmed by the environmental conditions and thus un-

able to perform the desired tasks. Adding the hydrody-

Figure 1. Design of ROV

namic, hydrostatic, and propulsion forces and moments

yield the total forces and moments acting on the ROV’s

body. These total forces and moments determine the

position and orientation of the ROV. This last will ma-

neuver through the water with five electric bilge pumps

motors. The bilge pumps have been modified and refit-

ted with propellers attached to its shaft for thrust gen-

eration, instead of impellors. to allow the pump to push

water in both directions rather than just one.Two of the

motors (4,5) will be used for movement in the XY-plane,

with one mounted on each corner of the ROV frame.

Three motors (1,2,3) will be mounted vertically making

triangular form, to control movement in the Z-direction

(Fig-1). The ROV will be slightly positively buoyant

overall, to allow recovery in the case of a catastrophic fail-

ure underwater. The Z-plane motors will provide thrust

downward or upward to keep the ROV in a spcified un-

derwater deep during operation.To analyze the maneu-

vering performance, a mathematical model with optimal

hydrodynamic parameters must be developed to describe

precisely the motion 13 . The desired trajectory is a func-

tion of time in terms of generalized positions and their

corresponding velocities and accelerations. Thus, it is of

interest to develop consistent control methods that yield

good performance on real systems.

Let the system be represented as:∙ 
= (2)

̇ =−1(̇)( − (

) −() − ())

¸
(1)

with  =
£
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¤
; 1 =
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¤
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and 2 denote the linear and angular velocity vector re-
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spectively with coordinates in the body-fixed frame.  is

used to describe the forces and moments acting on the

vehicle in the body-fixed frame with:

 =

∙
1
2

¸
=

∙
1
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¸
 (2)

and
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¤
; 1 and 2 denote the position and orienta-

tion vector with coordinates in the earth-fixed frame.

and
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¸
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with 1(2) and 2(2) is the transformation ma-

trix related to Euler angles
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  +   − 
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(4)
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⎡⎣1  

0  −
0  

⎤⎦ ;  6=

2
± (5)

where  = cos(); = sin(); = tan() .

Let the system be represented in hierarchical form :

̇1 = 133 (6)

̇2 = 244

̇3 = 333 +344 +311 +322 + 313

̇4 = 433 +444 +411 +422 + 414

with 1 = 1;2 = 2;3 = 1;4 = 2;

The controller performance was studied for labora-

tory prototype of the ROV with the constant parameters

:  = 135820;  = −0087;  = 0;  = 0;  =

−0087;  = 0;  = −0027;  = 02429;  =

08794;  = 10570; 1 = 016; 2 = 014; 3 =

0185; 4 = 035; 5 = 012; = 135820;  =

−0087;  = 0;  = 0;  = −0087;  =

0;  = −0027;  = 02429;  = 08794;  =

10570; 1 = 016; 2 = 014; 3 = 0185; 4 = 035; 5 =

012;

the matrices  (3×3) are represented as follow:

13= 1(2);24= 2(2);

33_11 = −4947− 001 − 0198
33_12 = 872 − 00149

33_13 = −1025− 852 + 0046

33_21 = −1052 − 00893− 0573
33_22 = −8128− 0215 − 2417 + 0208

33_23 = 688− 0335 + 1558
33_31 = −0085 + 0571 − 0169

33_32 = 00149 − 0592
33_33 = −9343 + 000201 + 00395

34_11 = −0022 − 0001+ 00205
34_12 = 0297 +−00788 − 0634 + 000254

34_13 = −0088 − 00581+ 0389
34_21 = −0205− 0205 + 0564 − 0089

34_22 = −0254 + 0245 + 0025
34_23 = 0722 + 0085+ 1219 + 0305

34_31 = −0077 − 0043− 0254
34_32 = 0042 − 0011 − 3453 + 01

34_33 = −0002 + 0004− 001

43_11 = −3761 − 032− 2052
43_12 = −29058− 5258 − 44234 + 0744

43_13 = −1119− 6126 + 2853
43_21 = 155 + 17 + 3186

43_22 = −0273 + 0232
43_23 = −0047 + 16352− 0745
43_31 = −2684 − 1073− 6885

43_32 = −5052 + 0672 − 3181 + 2497
43_33 = 0904− 0441 + 2052
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44_11 = −0735 + 2015 − 3757− 032
44_12 = −4654 + 5806 + 0089

44_13 = 14215 + 3879+ 4356 + 5578

44_21 = 0358 + 0017− 0332
44_22 = 0008 + 0198 − 4816− 004

44_23 = 0027 − 007+ 0192
44_31 = −3377 − 0457 − 0270− 1072

44_32 = −0335 − 0632 + 03
44_33 = 095 + 0112− 8293 + 0401

31 =

⎡⎣0064 0 0001

0 0069 0

0001 0 0044

⎤⎦

32 =

⎡⎣ 0 −002 0

0245 0 009

0 −0017 0

⎤⎦

41 =

⎡⎣ 0 0245 0

−002 0 −0017
0 009 0

⎤⎦

42 =

⎡⎣4483 0 0032

0 0323 0

0323 0 1082

⎤⎦

31 =

⎡⎣−0075 0 0

0 0913 0

−0064 0 0

⎤⎦

41 =

⎡⎣ 0 16623 0

1205 0 0

0 1187 0

⎤⎦

3 = 4 =

⎡⎣ 





⎤⎦
1 = 1;2 = 2

. Assuming that system is stabilizable, then the following

theorem is established 14.

Theorem 1 Consider the hierarchical system 6 with the

assumption that pair (, ) has to be stabilizable;

then there exists a virtual control  and a positive semi-

definite matrix  such that the subsystem can be repre-

sented in the form

̇() = ()−−1()− ̇−1()

−()()− ()

with the new variable  defined as

() = −1()− −1()

and the virtual backstepping controller  :

()()=  ()
−1
 ()


() () + ̇−1()

−−1()− 
−1
 

() −1−1()

which asymptotically stabilizes the disturbance free sys-

tem.

Proof. Let the cost function with constrain :

̄(  ) = ( )+

Z 2

1

()

((  )− ̇)() (7)

With

 ×  3 ( )→ ( ) = ((2) 2)+

Z 2

1

(() () )

(8)

Let

(() () () ) = (() () ) + ()

(  )

(9)

the Hamiltonian of problem 7. Note that the conditions

of optimality are:

̇ = ( ) + 1( ) + 2( ) (10)

(0)=  0

̇()

= −


(  )

 ( ) =
(( )  )

( )




= 0

the proof will de detailled in step(1 to 4):

3.1 step1

Let

̇1 = 131 (11)

1 = 1 − 1

̇1 = ̇1 − ̇1 = ̇1 −131

Let

̇1 = 11 +11 −111 (12)

with

1= 0; 1= ;11= 0; 1= ̇1−131
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taking

1=
1

2
1 11+

1

2
111−21

1 1 (13)

and

1(1 ) =
1

2
1 11 (14)

the hamiltonian for 1 variable will be :

1 =
1

2
1 11+

1

2
1 11−

1

2
21


1 1+


1 ̇1 (15)

1 =
1

2
1 11+

1

2
1 11−

1

2
21


1 1

+1 (11 +11 −111) (16)

Applying the optimality conditions leads:

̇1 = −
µ
1

1

¶
= −11 −

1 1 (17)

1 =
1(1 )

1
= 11 (18)

control law is deduced from hamiltonian equation which

reflect the ∞ control law (optimality condition):

1

1
+
1

1
= 0⇒ 11+


1 1−211−

111= 0 (19)

taking the worst case

1= − 1
2


111= −

1

21

1111 (20)

leeds to

1= −−11 
1 1= −−11 

1 11

differentiating 18 :

̇1 = 1̇1 + ̇11

comparing with 17 leads to:

1̇1 + ̇11 = −11 −
1 1

hence

̇11= − 1 (11 +11)−11−
1 1

replacing with equation 12 and 20 the followng equation

is obtained:

̇11 = − 1
µ
11+1

¡−−11 
1 11

¢
+
1

21
11


1111

¶
−11−

1 11

so

−̇ 1=  11+

1 1+ 1

µ
1

21
11


11−1

−1
1 

1

¶
1+1

(21)

for 1 = 0; 1 =  and 11 = 0; the riccati equation

became

−̇1 = −1−11 1 +1 (22)

with 1 a symmetric matrix,1 is a diagonal matrix;

then the control law is calculated as:

1 = −−11 11 = ̇1 −131

Since 13 = 1(2) and −11 (2) = 1(2) then:

1= 1 (2 )
¡
−11 11+̇1

¢
(23)

3.2 Step2

Let

̇2 = 242

2 = 2 − 2

̇2 = ̇2 − ̇2 = ̇2 −242

following the procedure as step1 then the virtual control

is obtained:

2=
−1
2 (2)

¡
−12 22+̇2

¢
3.3 step3

̇3= 333+344+311+322+313

Let

3 = 1 − 3; 4 = 2 − 4

̇3 = ̇1 − ̇3; ̇4 = ̇2 − ̇4

̇3 = ̇1− (333+344+311+322+313)(24)

̇3 = ̇1+33 (3 − 1)+34 (4 − 2)

− (311+322)−313 (25)

writing equation 24 as:

̇3= 33+33−313
with 3 =  3 is obtained:

3= ̇1−331+344−342− (311+322)

Let

3 =
1

2
1 11+

1

2
3 33+

1

2
1 11 (26)

+
1

2
333−

1

2
21


1 1−

1

2
23


3 3
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and

3 =
1

2
1 11 +

1

2
3 33 (27)

the hamiltonian for 3 variable will be :

3 =
1

2
1 11+

1

2
3 33+

1

2
1 11+

1

2
3 33 (28)

−1
2
21


1 1−

1

2
23


3 3+


1 ̇1+


3 ̇3

3 =
1

2
1 11+

1

2
3 33+

1

2
1 11+

1

2
3 33−

1

2
21


1 1−

1

2
23


3 3+


1 1+


3 (33 +33 −313)

Applying the optimality conditions leads:

̇1+̇3= −
µ
3

1

¶
−
µ
3

3

¶
= −11−33−

3 3

(29)

1 + 3 =
3
1

+
3
3

= 11 + 33 (30)

control law is deduced from hamiltonian equation (opti-

mality condition):

3

1
+

3

3
+

3

1
+

3

3
= 0

ce 3

3
+ 3

3
= 1

1
+ 1

1
= 0 then

3

3
+
3

3
= 0⇒ 33+


3 3−233−

313= 0

taking the worst case for perturbation

3 = − 1
23


313 = −

1

23

3133

will give

3 = −−13 
3 33

from 30

̇1 + ̇3 = 1̇1 + 3̇3 + ̇11 + ̇33 (31)

equalizing 29 and 31 gives:

1̇1+ 3̇3+̇ 11+̇ 33= −11−33−
3 3

̇33 = − 3 (33 +33 −313)−̇ 11
− 11−11−33−

3 33

̇33= − 3(33+3−−13 
3 33) +

1

23
31


3133

̇33 = −( 33+
3 3− 33−13 

3 3

+
1

23
331


313+3)3

+
³
−̇ 1+ 1−11 1−1

´
1

taking into account 22 ,3 matrix is computed through

the riccati equation written as:

−̇ 3 = 33+

3 3 (32)

+ 3

µ
1

23
31


31−3

−1
3 

3

¶
3+3

3 is chosen to be a symmetric matrix. So the control

is:

3 = ̇1−331+344−342− (311 +322)

= −−13 
3 33

Let

1=(311 +322)

So

1= ̇1−331+344−342+−13 
3 33

3.4 step4

̇4= 433+444+411+422+414

following the procedure as step3 then the virtual control

is obtained:

2= ̇2−442+433−431+−14 
4 44 (33)

Finally ∙
1
2

¸
=

∙
31 32
41 42

¸ ∙
1
2

¸

Hence ∙
1
2

¸
=

∙
31 32
41 42

¸−1 ∙
1
2

¸
(34)
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The controller performance was studied for laboratory

prototype of the ROV with the constant parameters :

 = 135820;  = −0087;  = 0;  = 0;  =

−0087;  = 0;  = −0027;  = 02429;  =

08794;  = 10570;

1 = 016; 2 = 014; 3 = 0185; 4 = 035; 5 = 012;

the ROV was required to move to  = 1 :  = 1;  =

4
 An external perturbation of 01 which reflect sea

wave has been introduced in the three directions:  =

01(−25);  = 01(−30);  = 01(−35) ()
is the unit step. The desired and measured mouvements

and their tracking errors are represented in figures(2, 3

,4).The attitude angles  and  are represented in figure(

5). The control inputs represented by forces are repre-

sented in figure (6). It is concluded from these figures

that ∞ controller that the choice of the pertubation

vector  does not affect the performance of the controller

and the technique proposed is able to catch up and follow

the desired trajectory even with external perturbation.
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An optimal controller based on backstepping technique

for un derwater remotely operated system has been pro-

posed to track predefined position trajectories. The pa-

per addresses the development of a nonlinear optimal

controller which can reject from the nominal model the

effect of pertur bations. Even though the mathematical

model was highly nonlinear and the environmental dis-

turbances are always presents; the proposed model rep-

resentation which look linear in its parameters vector has

made the hierarchical methodology of the combined con-

troller easier to achieve. It is shown that the all over

system is able to track the predefined trajectory with

a truncation in the model and an environmental chosen

perturbation of 01 in amplitude.

Further investigation will focus on solving algebraic

state dependent riccati equation to reach global stabil-

ity. The problem of state observer will be considered.

A validation with real time experiments with the ROV

prototype will be set to demonstrate the applicability of

the considered control strategy.
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