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Abstract: - The paper describes a systematic approach for analysing and controlling limit cycles (LC) in three-
dimensional multivariable systems with memory nonlinearities. The main contributions of the paper can be 
summarized as follows: A novel graphical method is introduced, utilizing computer graphics and geometric tools 
to predict the occurrence of LC in systems with memory nonlinearities. This technique provides a systematic way 
of analysing the behaviour of these systems, particularly in the context of their dynamic response and limit cycle 
behaviour. Once limit cycles are detected in an autonomous system, the paper explores techniques for 
quenching/suppression these limit cycles. The primary technique proposed for quenching involves the application 
of high-frequency dither signals, which can be either deterministic or random. These signals help to stabilize the 
system and prevent undesirable oscillations. Another approach explored in the paper for suppressing limit cycles 
is the pole placement technique. This technique involves the arbitrary/optimal selection of a state feedback gain 
matrix K, satisfying state controllability conditions and using the Ricatti equation respectively. This modifies the 
system's dynamics to suppress the limit cycle behaviour. By adjusting the poles of the system's transfer function, 
the authors aim to shift the system's behaviour away from oscillatory states. To deal with the complexity of the 
nonlinearities (especially memory-type nonlinearities), the paper introduces a reduction in complexity through 
harmonic linearization or harmonic balance. This technique allows for a simplified model of the system by 
approximating nonlinear effects with harmonic terms, making the problem more tractable. The paper further 
simplifies the analysis by assuming that the three-dimensional system predominantly exhibits limit cycles at a 
single frequency. This assumption reduces the complexity of the system and makes the prediction of limit cycles 
more manageable. The proposed methods are validated through digital simulations, which were implemented 
using MATLAB codes and the SIMULINK Toolbox. These simulations serve as proof-of-concept for the 
proposed techniques, demonstrating their effectiveness in practical scenarios. The paper offers innovative 
methods for predicting, quenching, and suppressing LC in complex systems with memory nonlinearities. The use 
of graphical tools, high-frequency dithering, pole placement techniques, and harmonic linearization all contribute 
to a more efficient and understandable approach to controlling limit cycle behaviour in multivariable systems. 
The approach is validated through simulations, making it a promising framework for future applications in control 
systems and nonlinear dynamics. 
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1 Introduction 
Growing interest in estimation of Limit Cycles (L C) 
in 2X2 nonlinear systems have been noticed among 
researchers for several decades in the available 
literature [1-41].  

The problem is more notable and acute in the 
memory type of nonlinearity which has been 
addressed to a certain extent in [33,38,42,43,44]. The 

situation has become worse because available 
literature seldom discusses method of quenching self-
sustained oscillations in such systems under 
autonomous state which has been attempted in 
[5,39,44] using high frequency deterministic signals 
and in [40,45,46,47,48,49] using random signals.  

In the current literature multidisciplinary 
applications have been addressed where the limit 
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cycles are analyzed. In [50], a model has been 
developed empirically in natural systems to predict 
stable LC. In [51], three cases such as stable LC, 
Chaos exhibit in the natural flow and thermal 
dynamics of the system have been narrated. In [52], 
for the LC a cell model has been developed. In [53], 
a dynamic nature of nonlinear system has been 
reported which reverses between a steady 
equilibrium point and a stable LC. In [54], a stable 
LC has been reported in an auto catalytic system, 
attributed to the properties of a Hopf bifurcation. In 
[55], LC has been predicted in Biological Oscillators 
featuring both positive and negative regulatory loops.  

However, a few literatures available which 
addresses 3×3 nonlinear systems and discusses limit 
cycles and their quenching/suppression. The 
available papers such as [30,32,33,34,46] have 
attempted to focus their research in this area but are 
confined to non-memory type nonlinearity in 3×3 
systems. From this it has been reported and apparent 
that the manifestation of LC in 3×3 nonlinear 
systems, several cases resembling a boiler turbine 
unit is a 3×3 multivariable process showing nonlinear 
dynamics under a wide range of operating conditions, 
stated in [30]. Many of the chemical processes are 
multivariable, referring to a 3×3 model of nonlinear 
chemical process, the LC conditions have been 
observed in [34]. In [11], several industrial problems 
are considered to be multidimensional nonlinear 
systems.  

The estimation of LC through the describing 
function (DF) technique proves appropriate, which 
has been stated in [4,5,10,11,13,20,45]. Hence the 
exhibition of LC in 3×3 nonlinear systems which can 
suit the structure of a general three dimensional 
systems as in [44] and the same has been tried with 
the present work. The simplicity of expressions in the 
structure is lost completely for the system where 
memory type nonlinearities are considered, it is hard 
to formulate and simplify the expressions even using 
harmonic linearization as has been stated in [41]. 
Hence in the present work a formidable effort has 
been taken to develop a graphical technique for 
estimation of LC in 3×3 systems with memory 
nonlinearities.  

The common nonlinearity-like backlash present in 
several physical systems where the performance of 
speed and positions deteriorated, that has been 
elaborated in multivariable systems such as in 
[26,27,32,35,36,37,38,39,40,41]. Hence in the 
present work, the method developed is illustrated 
through backlash type memory nonlinearity.  

The proposed work is presented in the following 
sequences. Section 2 is a graphical technique 
developed for estimation of LC in 3×3 memory type 
nonlinear systems in the light of [44] in conjunction 
with the steps followed in [39]. Section 3 the signal 
stabilization which illustrates the procedure through 
memory type nonlinearities using 
deterministic/random (Gaussian) signals. Section 4 
depicts the suppression of LC adopting pole 
placement technique through state feedback with 
suitable state feedback gain matrix K selected 
arbitrarily or optimally using Riccati Equation. 

Section 3 considers the dynamic behaviour of 
general 3×3 nonlinear systems presented Figure 2 
(nle) and 3 (NP) as given in [44], which are 
equivalent representations of the multivariable 
system shown in Figure 1. The potential equations 
with limit cycling condition, referring to Figure 2 
(where the system is autonomous [44]). In the 
frequency response form C = GN (X) X and X = -HC 
and leading to X =AX, where A = -HGN (X), cited in 
[41], that helps in the determining the Eigen values 
of the multivariable systems (illustrated in 2.1 of 
[46]). Where, X1, X2, X3 and C1, C2, C3 are 
Amplitudes of respective Sinusoids, G1, G2, G3 and 
N1, N2, N3 are absolute values of respective DFs.   

It is worth mentioning under frequency response: 

Only sinusoidal input and steady state output are 

considered, which leads to s (Laplace Operator) is 

equal to jω only, and real part σ equal to 0. 

 

Figure. 1: A class of 3×3 multivariable nonlinear 

systems 
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Figure. 2: Input-Output characteristic of 

nonlinear elements N1, N2 and N3 

 

2 Prediction of Limit cycle in a class of 

3×3 systems with memory 

nonlinearities 
 

2.1 Graphical Technique 
Considering the complexity and much involved 
mathematical analysis as noted in [44,46] a graphical 
technique is opted for estimation of LC in 3×3 
nonlinear systems. Consider a system having three 
inter connected systems as given in Figure 1. In the 
system N1, N2 & N3 are 3 nonlinear elements (nle) 
with rectangular hysteresis type input / output 
characteristics as mentioned in Figure 2 (a), 2 (b) and 
2 (c) respectively. G1(s), G2(s) and G3(s) are transfer 
functions of three linear elements.  
The graphical technique using normalized phasor 
diagram [41] is adopted for estimation of LC in the 
system which are demonstrated in the Examples 1 
and 2. The whole system is assumed to show 
oscillation primarily at a single frequency, 
rectangular hysteresis nonlinearities contribute 
additional phase angle to the loop phase angle of G1 
(jω), G2 (jω) and G3 (jω) within subsystems S1, S2 
and S3. The nonlinear elements N1, N2, N3 as 
represented by their concerned DFs assume harmonic 
balance and the possibility of exhibition of limit 
cycles the following three conditions must be 
satisfied [44]. For memory type nonlinearities. 
(i) The Phase of the Loop should be 𝜃 = 180𝑜 =

∠𝐺1 + ∠𝐺2 + ∠𝐺3 + ∠𝑁1 + ∠𝑁2 + ∠𝑁3: jω 
contributes the phase angles of G and for the 
memory type DFs being complex contributes the 
phase shifts of N.  

(ii) The Gain condition: 𝐶1

𝑅1
×

𝐶2

𝑅2
×

𝐶3

𝑅3
= 1: where,  

𝐶1

𝑅1
=

𝐺1(𝑗𝜔)𝑁1(𝑋𝑚1,𝜔)

1+𝐺1(𝑗𝜔)𝑁1(𝑋𝑚1,𝜔)
; 𝐶2

𝑅2
=

𝐺2(𝑗𝜔)𝑁2(𝑋𝑚2,𝜔)

1+𝐺2(𝑗𝜔)𝑁2(𝑋𝑚2,𝜔)
  ; 

𝐶3

𝑅3
=

𝐺3(𝑗𝜔)𝑁3(𝑋𝑚3,𝜔)

1+𝐺3(𝑗𝜔)𝑁3(𝑋𝑚3,𝜔)
 

(iii) The Amplitude Ratio condition: 

𝑋1

𝑋2
=

𝑉1

𝑉2
 ; 𝑋2

𝑋3
=

𝑉2

𝑉3
; 𝑋3

𝑋1
=

𝑉3

𝑉1
 : where 𝑋1 = 𝑋𝑚1; 𝑋2 =

𝑋𝑚2; 𝑋3 = 𝑋𝑚3 and 𝑉1, 𝑉2 & 𝑉3 are the Eigen 
Vectors corresponding to the Eigen Values 𝜆1 𝜆2 and 
𝜆3 respectively of A (system matrix). 
 
2.1.1 Example 1 

Considering the system of Figure 1 with G1(s) = 
2

𝑠(𝑠+1)2; G2(s) = 1

𝑠(𝑠+4)
 ; G3(s) = 1

𝑠(𝑠+2)
 and the three 

nonlinear elements having rectangular hysteresis, 
characteristics with M1 = 1.0, M2 = M3 = 1.126 and H 
= 1.0 , h= H/2= 0.5 as represented in Figure 2 (a), (b) 
and (c).  

Describing function (DF) of the Rectangular 
Hysteresis type is Nonlinearities is denoted as:  

N (X m, ) = | 𝑌

𝑋𝑚
< |= 0, X<𝐻

2
                                      

   (1)   

4𝑀

ø𝑋
 < - sin -1 𝐻

2𝑋
,      X>𝐻

2
 

This is expanded as (𝑎 + 𝑗𝑏) form (c f Eqns. 23, 25 
and 27) 

𝑁1(𝑋1, 𝜔1) =
4𝑀1

𝜋𝑋1
[cos (𝑠𝑖𝑛−1 1

2𝑋1
) − 𝑗

1

2𝑋1
]    (2) 

𝑁1΄(𝑋1, 𝜔1) =
−4𝑀1

𝜋𝑋1
2 cos (𝑠𝑖𝑛−1 1

2𝑋1
) +

2

𝜋𝑋1
4 ×

1

√1−(1
4𝑋1

⁄ )
+ 𝑗

4𝑀1

𝜋𝑋1
3                                  (3) 

𝑁2(𝑋2, 𝜔2) =
4𝑀2

𝜋𝑋2
[cos (𝑠𝑖𝑛−1 1

2𝑋2
) − 𝑗

1

2𝑋2
]  (4) 

𝑁2΄(𝑋2, 𝜔2) =
−4𝑀2

𝜋𝑋2
2 cos (𝑠𝑖𝑛−1 1

2𝑋2
) +

2

𝜋𝑋2
4 ×

1

√1−(1
4𝑋2

⁄ )
+ 𝑗

4𝑀2

𝜋𝑋2
3                                (5) 

𝑁3(𝑋3, 𝜔3) =
4𝑀3

𝜋𝑋3
[cos (𝑠𝑖𝑛−1 1

2𝑋3
) − 𝑗

1

2𝑋3
] 

      (6) 

𝑁3΄(𝑋3, 𝜔3) =
−4𝑀3

𝜋𝑋3
2 cos (𝑠𝑖𝑛−1 1

2𝑋3
) +

2

𝜋𝑋3
4 ×

1

√1−(1
4𝑋3

⁄ )
+ 𝑗

4𝑀3

𝜋𝑋3
3    (7) 

For the solution Eqns. (2), (4) and (6) using Newton 
Raphson (NR) method, the phase angle is omitted 
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during the iterative process but the phase angles 
incorporated to the loop angles as seen in Eqns. (8) 
(9) and (10). However, for every iteration step, the 
phase angle condition (cf Eqn. (i): phase 𝜃 = 180𝑜 =
∠𝐺1 + ∠𝐺2 + ∠𝐺3 + ∠𝑁1 + ∠𝑁2 + ∠𝑁3 is to be 
checked. And the steps described and elaborated in 
section 3.2.1 of [44] are followed but extended 
memory type nonlinearities in 3×3 nonlinear 
systems. The phase diagrams in their normalized 
form (NP) are presented in three combinations as 
shown below:  
Combination 1: For subsystems S1, S2 & S3; C1 & 
C3 (+ve), C2 (-ve), shown in Figure 3 (a).  
Combination 2: For subsystems S2, S3 & S1: C2 & 
C1 (+ve), C3 (-ve), shown in Figure 3 (b). 
Combination 3: For subsystems S1, S3 & S2: C3 & 
C2 (+ve), C1 (-ve), shown in Figure 3 (c).   
For subsystem (S1) 

θL1
=  θN1(X1,ω) + θG1(jω) 

θL1
= − sin−1

H

2X1
−

π

2
− 2 tan−1 ω             (8) 

For subsystem (S2) 
θL2

=  θN2(X2,ω) + θG2(jω) 
or  θL2

=  − sin−1 H

2X2
−

π

2
− tan−1 ω

4
           (9) 

For subsystem (S3) 
θL3

=  θN3(X3,ω) + θG3(jω) 
or  θL3

=  − sin−1 H

2X3
−

π

2
− tan−1 ω

2
            (10) 

In [41] graphical method states, while θL1
traces a 

circle, θL2
traces a straight line in 2×2 systems. This 

has been extended for 3×3 systems where θL3
traces a 

straight line from opposite side of θL2
straight line. 

The intersection of both straight lines at the same 
point on the circumference of the circle confirms the 
exhibition of LC. Radius of the aforementioned circle 
is: 
 𝑟 =

1

2 sin 𝜃𝐿1

 and centre of the circle is at 

(0.5,
−1

2 tan 𝜃𝐿1

) … … … … … … … … … … … … … (11) 

Solving the system of equations for the circle and line 
will yield the intersection point (ui, vi), as 
demonstrated below: 

𝑢𝑖 =
𝑣𝑖

tan 𝜃𝐿2

− 1                 … … … … … … … . (12) 

And 𝑣𝑖 =

3 cot 𝜃𝐿2
+cot 𝜃𝐿1±√(3 cot 𝜃𝐿2+cot 𝜃𝐿1

)2−8𝑐𝑠𝑐2𝜃𝐿2

2𝑐𝑠𝑐2𝜃𝐿2

 … (13) 

 

  

 

 
Figure 3 represents the (a) Normalised Phase 

Diagram with C1, C2 & C3 for the combination 1, 

where C1 & C3 (+ve), C2 (-ve). (b): Normalised 

Phase Diagram with C1, C2 & C3 for the 

combination 2, where C2 & C1 (+ve), C3 (-ve). (c): 

Normalised Phase Diagram with C1, C2 & C3 for 

the combination 3, C3 & C2 (+ve), C1 (-ve) 

At a specific frequency ω, Figure 3 displays the 
normalized phase diagrams for the combinations of 
Subsystems 1, 2, and 3, shown in (a), (b), and (c), 
respectively. Importantly, any one of these 
combinations is sufficient to determine the limit 
cycling conditions and relevant parameters.  

(a) 

(b) 

(c) 
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Table 1a: Numerical values of the rectangular hysteresis demonstrated in Example 1 

N2=(11-32)2± √(11 − 32)4 −  8(2 + 16)(1 − 2)22      
(14), (1.10) of [44] 

N1= (
2−1)

8
 N2 + 9

2−4

8
      ⋯  (15), (1.8) of [44]  

𝑋1

𝑋2
 = 

(1+2)√[2(
2

+16−2𝑁2)+𝑁2
2]

2𝑁1√2+16
  ⋯ (16), (1.11) of 

[44] 

𝑋1

𝑋2
 = 𝐵𝐷𝑖

𝐴𝐷𝑖
 = √(1−𝑢𝑖)2+(𝑢𝑖)2

(1+𝑢𝑖)2+(𝑢𝑖)2         ⋯ (17), (1.18) of [44] 

Θ𝐿1=𝜃𝑁1(𝑋𝑚1,) + 𝜃𝐺1 , Θ𝐿2=𝜃𝑁2(𝑋𝑚2,) +

𝜃𝐺2 , Θ𝐿3=𝜃𝑁3(𝑋𝑚3,) + 𝜃𝐺3 , 𝑟1 = 1

2 𝑠𝑖𝑛 Θ𝐿1
  and 

Centre C(1

2
, −

1

2 𝑡𝑎𝑛 Θ𝐿1
) 

For combination 1: 

θL1
= − sin−1 H

2X1
−

π

2
− 2 tan−1 ω, θL2

=

 − sin−1 H

2X2
−

π

2
− tan−1 ω

4
   , θL3

=  − sin−1 H

2X3
−

π

2
− tan−1 ω

2
 

 

Table 1: shows the θ𝐿1 , θ𝐿2 , θ𝐿3 , radius (r), and the 
point of intersection of the straight lines and a circle 
with a fixed radius, 𝑟 =

1

2 sin 𝜃𝐿1

 for combinations 1, 

2, 3 corresponding to the example 1.  It is seen from 
Table 1(b): contain the values of  𝑋1

𝑋2
 for different  

using Eqn. (16) as well as from the graphical plots of 
Normalised Phase Diagrams. When 𝑋1

𝑋2
  calculated 

from Eqn. (16) matches with 𝑋1

𝑋2
  obtained from 

graphical plot (𝐁𝐃’

𝐀𝐃’
), confirms the limit cycling 

condition.  
Table 1 (a): Shows , N1 , N2 , N3, Xm1, Xm2, Xm3,  

𝜃𝐿1, 𝜃𝐿2, 𝜃𝐿3 , r (radius), and centre of the circle for 
combination 1 for example 1 (Rectangular 
Hysteresis). 
Table 1 (b): Shows , r (radius) and centre of the 
circle for combination 1 for example 1 (Rectangular 
Hysteresis), 𝑿𝟏

𝑿𝟐
 from Equation 16 and =

𝑿𝟏

𝑿𝟐
=  

𝐁𝐃’

𝐀𝐃’
 

.from plot 
 
 
 
 
 

 N1 N2 N3 Xm1 Xm2 Xm3 θL1 θL2 θL3 

Radius 

r 

Centre 

(𝟎. 𝟓,
−𝟏

𝟐 𝐭𝐚𝐧 𝜽𝑳𝟏

) 

0.60 0.3524 0.4547 0.4547 3.1528 3.6128 3.6128 -161.0 -106.4 -114.6 1.58 0.5, -1.46 

0.61 0.3647 0.4662 0.4662 3.0750 3.4911 3.4911 -162.1 -106.9 -115.2 1.63 0.5, -1.55 

0.62 0.3772 0.4779 0.4779 2.9997 3.3755 3.3755 -163.1 -107.3 -115.7 1.73 0.5, -1.66 

0.63 0.3899 0.4898 0.4898 2.9269 3.2656 3.2656 -164.1 -107.7 -116.2 1.83 0.5, -1.76 

0.64 0.4028 0.5019 0.5019 2.8564 3.1611 3.1611 -166.3 -108.1 -116.8 2.11 0.5, -2.05 

0.65 0.4159 0.5142 0.5142 2.7881 3.0600 3.0600 -166.3 -108.6 -117.4 2.12 0.5, -2.06 

0.70 0.4843 0.5788 0.5788 2.4771 2.6288 2.6288 -171.6 -110.8 -120.2 3.47 0.5, -3.40 
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Table 1b: Phase diagrams for different ω and its resulting values of r for example 1 (Rectangular 

Hysteresis) using graphical methods 

 

 

 

 

 

 
Radius 

r 

Centre 

(𝟎. 𝟓, 
−𝟏

𝟐 𝐭𝐚𝐧 𝜽𝑳𝟏

) 

𝑿𝟏

𝑿𝟐

=
𝐁𝐃’

𝐀𝐃’
 

From 

plot 

𝑿𝟏

𝑿𝟐

=
𝑿𝒎𝟏

𝑿𝒎𝟐
 

From 

Eqn. 

(37) 

𝑿𝟏

𝑿𝟑

=
𝐁𝐃’

𝐁′𝐃’
 

from 

plot 

𝑿𝒎𝟏

𝑿𝒎𝟑
 

From 

the 

table 

Phasor Diagram 

0.60 1.58 0.5, -1.46 

     

0.63 1.83 0.5, -1.76 0.97 

0.89 

(result 

matched 

with the 

plot) 

0.91 

0.89 

(result 

matched 

with the 

plot) 

 

0.64 2.11 0.5, -2.05 

     

0.65 2.12 0.5, -2.06 

     

OD’ = 3.57 = C1/R1 = C1 

OA = 1 = C2  

BB’ = 1= C3  

BD’ = 3.65 = X1   

AD’ = 3.76 = X2 

B’D’=3.99 = X3 

X1/X2 = BD’/AD’ = 0.97 

X1/X3 = B’D’/B’D’ = 0.91 
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2.1.2 Example 2 

Considering the system of Figure 1 having G1(s) =  
2

𝑠(𝑠+1)2; G2(s) = 1

𝑠(𝑠+4)
; G3(s) =  1

𝑠(𝑠+2)
 and the three 

nonlinear elements having backlash, characteristics 
with b1 = b2 = b3= 1.0 and K1 = 1.2 , K2 = K3 = 1.4  as 
shown in Figure.4.(a),(b) and (c).  
Describing function (DF) of the above Backlash 
Nonlinearities is expressed as:  
N (X m, ) =  | 𝑌

𝑋𝑚
< |    ………  (18), [44] 

or 

N(Xm,) = 
𝐾𝑋𝑚

𝜋
 √(

𝜋

2
 + 𝛽+

1

2
 𝑠𝑖𝑛2𝛽)2+cos4 𝛽

𝑋𝑚
 ∠- 

tan−1 (
cos2 𝛽

𝜋

2
+𝛽1+

1

2
𝑠𝑖𝑛2 𝛽

)          

Or 
N(𝑋𝑚,) =

 {
𝐾

𝜋
√(

𝜋

2
+ 𝛽 +

1

2
𝑠𝑖𝑛2 𝛽)2 + cos4 𝛽} ∠ −

tan−1 (
cos2 𝛽

𝜋

2
+𝛽+

1

2
𝑠𝑖𝑛2 𝛽

)    for   X m >  𝑏
2

 ⋯   ⋯ (19) 

                     = 0    𝑓𝑜𝑟 𝑋𝑚 <
𝑏

2
 

 And𝑁1(Xm,)=𝐾1

𝜋
 

√(
𝜋

2
+ 𝛽1 +

1

2
𝑠𝑖𝑛2 𝛽1)2 + cos4 𝛽1  … (20)  𝑎𝑛𝑑 

N2 (Xm2,)=𝐾2

𝜋
   √(

𝜋

2
+ 𝛽2 +

1

2
𝑠𝑖𝑛2 𝛽2)2 + cos4 𝛽2  

… (21)  𝑎𝑛𝑑 

N3(Xm3,) = 𝐾3

𝜋
  √(

𝜋

2
+ 𝛽3 +

1

2
𝑠𝑖𝑛2 𝛽3)2 + cos4 𝛽3   

…  (22) 
𝑁1΄(𝑋𝑚1, 𝜔) =

𝐾1

𝜋
×

1

√(
𝜋

2
+𝛽1+1

2⁄ sin 2 𝛽1)2+𝑐𝑜𝑠4𝛽1

×

(2 × (
𝜋

2
+ 𝛽1 +

1

2
sin 2 𝛽1) + (1 + cos 2𝛽1) + 2 ×

( cos 2𝛽1 + 1) × (−2𝑠𝑖𝑛2 𝛽1))     (23) 
𝑓1(𝑋𝑚1) =

 
𝐾1

𝜋
√(

𝜋

2
+ 𝛽1 + 1

2⁄ sin 2 𝛽1)2 + 𝑐𝑜𝑠4𝛽1 − 𝑁1(𝑋𝑚1)                                

(24) 
𝑓1΄(𝑋𝑚1) =

𝐾1

𝜋
×

1

√(
𝜋

2
+𝛽1+1

2⁄ sin 2 𝛽1)2+𝑐𝑜𝑠4𝛽1

× (2 ×

(
𝜋

2
+ 𝛽1 +

1

2
sin 2 𝛽1) + (1 + cos 2𝛽1) + 2 ×

( cos 2𝛽1 + 1) × (−2𝑠𝑖𝑛2 𝛽1)) 𝑁1΄(𝑋𝑚1)    (25) 
       
Again,𝑁2(𝑋𝑚2, 𝜔) =

𝐾2

𝜋
√(

𝜋

2
+ 𝛽2 + 1

2⁄ sin 2 𝛽2)2 + 𝑐𝑜𝑠4𝛽2    (26) 

Taking the derivative of DF yields: 
𝑁2΄(𝑋𝑚2, 𝜔) =

𝐾2

𝜋
×

1

√(
𝜋

2
+𝛽2+1

2⁄ sin 2 𝛽2)2+𝑐𝑜𝑠4𝛽2

×

(2 × (
𝜋

2
+ 𝛽2 +

1

2
sin 2 𝛽2) + (1 + cos 2𝛽2) + 2 ×

( cos 2𝛽2 + 1) × (−2𝑠𝑖𝑛2 𝛽2))    (27)  
𝑓2(𝑋𝑚2) =

 
𝐾2

𝜋
√(

𝜋

2
+ 𝛽2 + 1

2⁄ sin 2 𝛽2)2 + 𝑐𝑜𝑠4𝛽2 − 𝑁2(𝑋𝑚2)                         

 (28) 
𝑓2΄(𝑋𝑚2) =

𝐾1

𝜋
×

1

√(
𝜋

2
+𝛽2+1

2⁄ sin 2 𝛽2)2+𝑐𝑜𝑠4𝛽2

×

(2 (
𝜋

2
+ 𝛽2 +

1

2
sin 2 𝛽2) + (1 + cos 2𝛽2) +

 2( cos 2𝛽2 + 1) × (−2𝑠𝑖𝑛2 𝛽2)) −  𝑁1΄(𝑋𝑚1)(29) 
The relationships between N1 & X1; N2 & X2 and N3 
& X3 are not explicit (implicit/ 
transcendental)/memory type and therefore 
necessitating the use of third procedure outlined in 
[44] has to be adopted for obtaining the solution. 
Eqn. (24); Eqn. (26) and Eqn. (28) contain absolute 
values of 𝑁1; 𝑁2 and 𝑁3 respectively. At particular 
value of 𝜔 , 𝑁1, 𝑁2 and 𝑁3 are constants. The 𝑋2

𝑋1
 and 

𝑋3

𝑋1
 ratios are determined from NR method which are  

compared with that of  𝑋2

𝑋1
 and 𝑋3

𝑋1
 ratio obtained from 

graphical plot and at 𝜔 = 0.57 (c f Table. 2 a) they 
match and confirm the existence of LC. 
For the solution Eqns. (20), (21) and (22) using NR 
method, the phase angles are excluded from iterative 
calculation but are subsequently incorporated into the 
loop angles as seen in Eqns. (30) (31) and (32). 
However, for every iteration step, the phase angle 
condition (c f Eqn. (i): phase 𝜃 = 180𝑜 = ∠𝐺1 +
∠𝐺2 + ∠𝐺3 + ∠𝑁1 + ∠𝑁2 + ∠𝑁3[44] is to be 
checked. And the steps depicted and illustrated in 
section 3.2.1 are extended for 3×3 nonlinear systems 
[44]. Three specific combinations are utilized to 
construct the normalized phase diagrams, which are: 
Combination 1: For subsystems S1, S2 & S3; C1 & 
C3 (+ve), C2 (-ve), shown in Figure 5(a).  
Combination 2: For subsystems S2, S3 & S1: C2 & 
C1 (+ve), C3 (-ve), shown in Figure 5(b). 
Combination 3: For subsystems S1, S3 & S2: C3 & 
C2 (+ve), C1 (-ve), shown in Figure 5(c). 
Figure 5(a) represents a normalised phase diagram 
with C1, C2 and C3 for combination 1, where C1 & C3 
(+ve), C2(-ve). 
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(a)    (b)          (c) 

Figure 4: Input and output characteristics of nonlinear elements, N1, N2 and N3

 

𝜃𝐿1
= [−𝑡𝑎𝑛−1 (

𝑐𝑜𝑠2𝛽1
𝜋

2
+𝛽1+

1

2
𝑠𝑖𝑛2𝛽1

) −
𝜋

2
− 2𝑡𝑎𝑛−1𝜔] ,  

𝛽1 =  𝑠𝑖𝑛−1(1 −
𝑏1

𝑋𝑚1
);  (30) 

; 𝜃𝐿2
= [−𝑡𝑎𝑛−1 (

𝑐𝑜𝑠2𝛽2
𝜋

2
+𝛽2+

1

2
𝑠𝑖𝑛2𝛽2

) −
𝜋

2
− 𝑡𝑎𝑛−1 𝜔

4
]    ,     

𝛽2 =  𝑠𝑖𝑛−1(1 −
𝑏2

𝑋𝑚2
)     (31) 

𝜃𝐿3
= [−𝑡𝑎𝑛−1 (

𝑐𝑜𝑠2𝛽3
𝜋

2
+𝛽3+

1

2
𝑠𝑖𝑛2𝛽3

) −
𝜋

2
− 𝑡𝑎𝑛−1 𝜔

2
]     ,       

𝛽3 =  𝑠𝑖𝑛−1(1 −
𝑏3

𝑋𝑚3
)     (32) 

For subsystem (𝑠1):  𝜃𝐿1
 = 𝜃𝑁1(𝑋𝑚1,𝜔)+ 𝜃𝐺1(𝑗𝜔) 

Similarly, for subsystem (𝑠2):     𝜃𝐿2
 = 𝜃𝑁2(𝑋𝑚2,𝜔)+ 

𝜃𝐺2(𝑗𝜔) 

for subsystem (𝑠3):     𝜃𝐿3
 = 𝜃𝑁3(𝑋𝑚3,𝜔)+ 𝜃𝐺3(𝑗𝜔) 

𝐶1

𝑅1
=  

𝐶1

𝐶2
=

𝑌1𝐺1

𝑌2𝐺2
=

𝑋𝑚1𝑁1𝐺1

𝑋𝑚2𝑁2𝐺2
        (33) 

Or𝐶1

𝑅1
=

(𝑋𝑚1𝐺1)
𝐾1
𝜋

√(
𝜋

2
+𝛽1+1

2⁄ sin 2𝛽1)2+𝑐𝑜𝑠4𝛽1

(𝑋𝑚2𝐺2)
𝐾2
𝜋

√(
𝜋

2
+𝛽2+1

2⁄ sin 2𝛽2)2+𝑐𝑜𝑠4𝛽2

     (34) 

Or𝐶1

𝑅1
=

(𝐾1𝑋𝑚1𝐺1)√(
𝜋

2
+𝛽1+1

2⁄ sin 2𝛽1)2+𝑐𝑜𝑠4𝛽1

(𝐾2𝑋𝑚2𝐺2)√(
𝜋

2
+𝛽2+1

2⁄ sin 2𝛽2)2+𝑐𝑜𝑠4𝛽2

   (35) 

Where Y1, Y2, N1, N2 are amplitudes of respective 
sinusoids and G1 & G2 are absolute values of 
respective transfer function (TF). 

We get from Figure  4, 𝐾1 = 1.2, 𝐾2 = 𝐾3 = 1.4 

Since,      |𝐺1(𝑗𝜔)| =
2

𝜔(𝜔2+1)
   ;             |𝐺2(𝑗𝜔)| =

1

𝜔√16+𝜔2
    ;              |

𝐺1

𝐺2
| =

2√16+𝜔2

(𝜔2+1)
 

Eq. (56) can be written as: 𝐶1

𝑅1
=

1.714×𝑋𝑚1√16+𝜔2

𝑋𝑚2(𝜔2+1)

√(
𝜋

2
+𝛽1+1

2⁄ sin 2𝛽1)2+𝑐𝑜𝑠4𝛽1

√(
𝜋

2
+𝛽2+1

2⁄ sin 2𝛽2)2+𝑐𝑜𝑠4𝛽2

       (36) 

𝐶1

𝐶3
=

(𝐾1𝑋𝑚1𝐺1)√(
𝜋

2
+𝛽1+1

2⁄ sin 2𝛽1)2+𝑐𝑜𝑠4𝛽1

(𝐾3𝑋𝑚3𝐺3)√(
𝜋

2
+𝛽3+1

2⁄ sin 2𝛽3)2+𝑐𝑜𝑠4𝛽3

  

= 1.714×𝑋𝑚1√4+𝜔2

𝑋𝑚2(𝜔2+1)

√(
𝜋

2
+𝛽1+1

2⁄ sin 2𝛽1)2+𝑐𝑜𝑠4𝛽1

√(
𝜋

2
+𝛽3+1

2⁄ sin 2𝛽3)2+𝑐𝑜𝑠4𝛽3

  (37)

  
In the light of the normalized phase diagrams [39], 
(2018), for 3×3 systems (c f Figure. 1), the limit 
cycling condition are drawn with 3 combinations 
shown in Figure 5 (a), (b), (c): 

Table 2 (a): Shows , N1 , N2 , N3, Xm1, Xm2, Xm3,  
𝜃𝐿1, 𝜃𝐿2, 𝜃𝐿3 , r (radius), and centre of the circle for 
combination 1 for the example 2 (Backlash). 
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Figure 5 (a): Normalised Phase Diagram with C1, 

C2 & C3 for the combination 1, where C1 & C3 

(+ve), C2 (-ve). 

Figure5(b): Normalised Phase Diagram with C1, 

C2 & C3 for the combination 2, where C2 & C1 

(+ve), C3 (-ve). 

 

 

Figure 5 (c): Normalised Phase Diagram with C1, 

C2 & C3 for the combination 2, where C2 & C2 

(+ve), C1 (-ve). 

𝑋2

𝑋1
 = 𝐴𝐷′

𝐵𝐷′
 from graphical plot ……………… (38) 

𝑋𝑚2

𝑋𝑚1
 = 𝑋2

𝑋1
 from N.R. method i.e. from Table 2(a) (39) 

𝑋3

𝑋1
 = 𝐵′𝐷′

𝐵𝐷′
 from graphical plot …………… (40) 

𝑋𝑚3

𝑋𝑚1
 = 𝑋3

𝑋1
 from N.R. method i.e. from Table 2(a) (41) 

 

Table 2a: Numerical Values of Example 2 (Backlash) 

 

Table 2b: Shows r (radius), and centre of the circle 
for combination 1 for the example 2 (Backlash), 
Xm2/Xm1 from Eqn. 39:  and Xm2/Xm1 = AD́/BD́ 

(from plot), Xm3/Xm1 (from Table), X3 / X1 = B́ D́ / 
BD́ 

 N1 N2 N3 Xm1 Xm2 Xm3 θL1 θL2 θL3 
Radius 

r 

𝑋𝑚2

𝑋𝑚1

 

From Table 

𝑋𝑚3

𝑋𝑚1

 

From Table 
0.525 1.302 1.262 1.262 3.85 2.85 2.85 -154.45 -110.83 -117.81 -1.182   
0.550 1.114 1.251 1.251 3.57 2.55 2.55 -157.99 -112.51 -120.05 -1.324   
0.570 1.290 1.230 1.230 3.30 2.30 2.30 -160.62 -114.38 -122.18 -1.510 0.93 0.93 

0.575 1.286 1.225 1.225 3.27 2.25 2.25 -161.15 -114.80 -122.66 -1.550   

0.600 0.252 1.7160 1.7160 2.97 1.95 1.95 -164.44 -117.60 -128.36 -1.865 0.65 0.65 

0.625 0.284 1.790 1.790 2.63 1.67 1.67 -168.16 -120.1 -129.38  0.63 0.63 

0.650 0.319 1.862 1.862 2.34 1.47 1.47 -172.04 -123.9 -132.72  0.62 0.62 

0.675 0.311 2.576 2.576 2.34 1.43 1.43 -174.03 -124.9 -133.99  0.61 0.61 

0.6955 0.305 3.244 3.244 2.34 1.47 1.4 -175.63 -125.19 -134.51  0.628 0.628 

0.6961 0.305 3.263 3.263 2.34 1.43 1.4 -175.67 -125.2 -134.52  0.610 0.610 

0.7000 0.3055 3.3844 3.3844 2.340 1.43 1.43 -175.975 -125.26 -134.62  0.628  
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Table 2b Phase diagrams for different ω and its resulting values of r for example 2 (Backlash) using 

graphical methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Radius 

r 

Centre 

(𝟎. 𝟓,
−𝟏

𝟐 𝐭𝐚𝐧 𝜽𝑳𝟏

) 

𝑿𝒎𝟐

𝑿𝒎𝟏

 

𝒇𝒓𝒐𝒎  
𝒑𝒍𝒐𝒕 

𝑿𝒎𝟐

𝑿𝒎𝟏

 

𝒇𝒓𝒐𝒎 

Table 

6a 

𝑿𝒎𝟑

𝑿𝒎𝟏

 

from 

plot 

𝑿𝒎𝟑

𝑿𝒎𝟏

 

From 

Table 

6a 

Phasor Diagram 

0.525 -1.182 0.5, -1.073  0.740   

 

0.550 -1.324 0.5, -1.237  0.714   

 

0.570 -1.506 0.5, -1.42 1.07 1.07 1.13 1.13 

 

0.600 -1.865 0.5, -1.797  0.657   

 

0.625 2.4387 0.5, -2.387  0.636   
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2.2 Computerized simulation 

I. Problem with Numerical Examples  

Examples 1 & 2 are revisited: A 3×3 system shown 
in Figure 1 includes three nonlinear elements 
(detailed in Figure 2 of Example 1 and Figure 4 of 
Example 2) and three linear transfer functions are  
𝐺1(𝑠) =

2

𝑠(𝑠+1)2  ; 𝐺2(𝑠) =
2

𝑠(𝑠+4)
 𝑎𝑛𝑑 𝐺3(𝑠) =

1

𝑠(𝑠+2)
 

Partial Fraction Expansion of G1(s), G2(s) and G3(s):  

𝐺1(𝑠) =
𝐴

𝑠
+

𝐵

𝑠 + 1
+

𝐶

(𝑠 + 1)2

=
𝐴 (𝑠 + 1)2 + 𝐵𝑠(𝑠 + 1) + 𝐶𝑠

𝑠(𝑠 + 1)2
 

 

𝑂𝑟
   (A + B)s2 + (2A + B + C)s + A

s (s + 1)2
=

2

s(s + 1)2
 

 

Or A=2, B=-A =-2, C=-2 

Hence G1(s) =
2.0

s
−

2.0

s + 1
−

2.0

(s + 1)2

∶
2

s
,

−2

s + 1
,

−2

s + 1
(

1

s + 1
) 

𝐺2(𝑠) =
4𝐴 + 𝑠(𝐴 + 𝐵)

𝑠(𝑠 + 4)
 

𝑂𝑟 4𝐴 = 1: 𝐴 =
1

4
, 𝐴 + 𝐵 = 0: 𝐵 = −𝐴 = −

1

4
 

Hence G2(s) =
0.25

s
−

0.25

s + 4
 

𝐺3(𝑠) =
2𝐴 + (𝐵 + 𝐴)𝑠

𝑠(𝑠 + 2)
 

Or 2A = 1: A =
1

2
, A + B = 0: B = −A = −

1

2
.  

Hence G3(s) =
0.5

s
—

0.5

s + 2
 

When the sampling period T is extremely short, 
TG(z) closely approximates G(s). Figures 6 and 7 
illustrate the canonical and digital equivalents of 
Figure 6, respectively, for Examples 1 and 2.  

 
Figure 6: Equivalent Canonical form of Figure 1 for Ex.1 
& 2 

 
Figure 7: The Digital representation of Figure 1 for Ex. 1 
& 2                                                     
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These are Z-domain transfer functions derived from 
Laplace domain functions: 

𝐺1(𝑠): 
2

𝑠


2𝑧

𝑧 − 1
;

−2

𝑠 + 1


−2𝑧

𝑧 − 𝑒−𝑇  
;  

−2

(𝑠 + 1)2


−2𝑇𝑧 𝑒−𝑇

(𝑧 − 𝑒−𝑇)2
 

𝐺2(𝑠):
0.25

𝑠


0.25𝑧

(𝑧 − 1)
;
−0.25

𝑠 + 4


−0.25𝑧

𝑧 − 𝑒−4𝑇
; 

𝐺3(𝑠): 0.5𝑠0.5𝑧(𝑧 − 1); −0.5𝑠 + 2− 0.5𝑧𝑧 − 𝑒 − 2𝑇 
From the Figure 6 following algorithm has been 
derived:     

(1)  
OW1(z)

Y1(z)
=

2z

z − 1
⟹ 2Y1(z)

= OW1(z) − z−1OW1(z) 
Applying inverse z-transform (IZT): OW1 (n T) = 
2Y1 (n T) + OW1(n − 1̅̅ ̅̅ ̅̅ ̅T) 

(2)  
OW2(z)

Y1(z)
=

−2z

z − e−T
⟹ −2Y1(z)

= OW2(z) − z−1e−TOW2(z) 
Taking IZT: OW2 (n T) = -2Y1 (n T) +e−T 
OW2(n − 1̅̅ ̅̅ ̅̅ ̅T) 

(3)  
OW3(z)

Y1(z)
=

−2Tze−T

(z − e−T)2
⟹ −2Tze−TY1(z) =

= z∗OW3(z) − 2e−T OW3(z)
+ e−2Tz−1OW3(z) 

Or -2Te−Tz−1Y1(z)=OW3 (z) -2e−Tz−1OW3 (z) 
+ e−2Tz−2 OW3 (z) 
Taking IZT: OW3 (n T) = -2Te−TY1(n − 1̅̅ ̅̅ ̅̅ ̅T)+2e−T 
OW3(n − 1̅̅ ̅̅ ̅̅ ̅T) - e−2TOW3 (n − 2̅̅ ̅̅ ̅̅ ̅T) 

(4)
𝑇𝑈1(𝑧)

𝑌2(𝑧)
=

0.25𝑧

(𝑧 − 1)
⇒ 0.25 𝑌2(𝑧)

=
𝑧 − 1

𝑧
𝑇𝑈1(𝑧) − 𝑧−1𝑇𝑈1(𝑧) 

Taking IZT: TU1 (n T) = 0.25Y2 (n T) 
+TU1(n − 1̅̅ ̅̅ ̅̅ ̅T) 
(5)  𝑇𝑈2(𝑧)

𝑌2(𝑧)
=

−0.25𝑧

(𝑧−e−4T)
⇒ −0.25 𝑌2(𝑧) = 𝑇𝑈2(𝑧) −

𝑧−1e−4T𝑇𝑈2(𝑧) 
Taking IZT: TU2 (n T) = -0.25Y2 (n T) + 
e−4TTU2(n − 1̅̅ ̅̅ ̅̅ ̅T) 
(6)  𝑇𝑉1(𝑧)

𝑌3(𝑧)
=

0.5𝑧

(𝑧−1)
⇒ 0.5 𝑌3(𝑧) = 𝑇𝑉1(𝑧) −

𝑧−1𝑇𝑉1(𝑧) 
Taking IZT: TV1 (n T) =0.5Y3 (n T) +TV1(n − 1̅̅ ̅̅ ̅̅ ̅T) 
(7) 𝑇𝑉2(𝑧)

𝑌3(𝑧)
=

−0.5𝑧

(𝑧−e−2T)
⇒ −0.5 𝑌3(𝑧) = 𝑇𝑉2(𝑧) −

𝑧−1 ∗ 𝐴𝐾2 ∗ 𝑇𝑉2(𝑧) 
Taking IZT: TV2 (n T) = -0.5Y3 (n T) + AK2* 
TV2(n − 1̅̅ ̅̅ ̅̅ ̅T) 
Assume (n − 1̅̅ ̅̅ ̅̅ ̅T) & nT are the zeroth and first 
instant time respectively, so we can write:  

OW1(n − 1̅̅ ̅̅ ̅̅ ̅T) = OW1NOW1N; OW1 (n T) = 
OW1N1; OW2(n − 1̅̅ ̅̅ ̅̅ ̅T) = OW2NOW2N; OW2 
(n T) = OW2N1. 
OW3(n − 2̅̅ ̅̅ ̅̅ ̅T) = OW3N (-1)OW3NN; OW3 
(n − 1̅̅ ̅̅ ̅̅ ̅T) = OW3N OW3N ; OW3 (nT)=OW3N1 
=T∗[2Y1 (nT) + OW1N-2Y1 (nT)+ AK∗OW2N– 
2∗T∗ AK1 ∗  OY1N + 2∗AK1∗OW3N - AK2∗OW3 
NN] =OWN1=C1 
Similarly,  TU1(n − 1̅̅ ̅̅ ̅̅ ̅T) = TU1N  TU1N; TU1 
(nT) = TU1N1, TU2(n − 1̅̅ ̅̅ ̅̅ ̅T) = TU2N; TU2 (nT) = 
TU2N1. Now C2 (nT) = TUN1 = C2 
Similarly, TV1(n − 1̅̅ ̅̅ ̅̅ ̅T) = TV1N  TV1N; TV1 (n 
T) = TV1N1 
TV2(n − 1̅̅ ̅̅ ̅̅ ̅T) = TV2N  TV2N; TV2 (nT) = 
TV2N1 
Now C3 (n T) = TVN1 = C3 
Next Run:R1=ORN1=C3 – C2 =TVN1 – TUN1;  R2 
= TRN1 = C1 – C3 = OWN1 – TVN1 
R3 = THRN1= C2 – C1 = TUN1 – OWN1 
X1 = ORN1 – OWN1, OYN1 = OF (OXN1); X2 = 
TRN1 – TUN1, TYN1 = TF (TXN1) 
X3 = THRN1 – TVN1, THYN1 = THF (THXN1) 
2.3.1 Usage of SIMULINK Tool Box in MATLAB 

SIMULINK Toolbox aids in finding X1, X2, X3, C1, 

C2 & C3 for Examples 1 and 2 and the resulting values 
are then correlated to those obtained through 
graphical analysis and computerized simulation. 
 

Figure 8 represents the SIMULINK application 

for prediction of LC in Example 1 (Rectangular 

Hysteresis) 
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2.3.2 Usage of SIMULINK Tool Box in MATLAB 

 

SIMULINK Toolbox aids in finding X1, X2, X3, C1, 

C2 & C3 for Examples 1 and 2 and the resulting values 
are then correlated to those obtained through 
graphical analysis and computerized simulation. 
 
Computerized simulation and SIMULINK results, 
generated by a MATLAB program of the algorithm, 
are presented as images in Figures 10 (a) and (b) and 
11 (a), (b) for Examples 1 and 2, respectively. The 
associated numerical values are provided in Tables 
3a and 3b 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 represents the SIMULINK application 

for prediction of LC in Example 2 (Backlash). 
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Figure 10 (a): Results from computerized simulation and for C1, C2, C3, X1, X2 and X3 of 

Example 1 (Rectangular Hysteresis) 

 

Figure 10 (b): Results from SIMULINK and for C1, C2, C3, X1, X2 and X3 of Example 1 

(Rectangular Hysteresis) 
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Figure 11 (a): Results from computerized simulation and for C1, C2, C3, X1, X2 and X3 of 

Example 2 (Backlash). 
 

 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11 (b): Results from SIMULINK and for C1, C2, C3, X1, X2 and X3 of Example 2 (Backlash) 
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Table 3 (a): Results of Graphical, Computerized Simulation, and Using SIMULINK TOOL BOX OF 

MATLAB corresponding to Rectangular Hysteresis for Example-1 

Sl. 

No 
Methods C1 C2 C3 X1 X2 X3  

1 Graphical 3.57 1.00 1.00 3.65 3.76 3.99 0.63 

2 Computerized 
Simulation 3.02 0.75 1.30 3.00 3.48 3.50 0.63 

3 Using 
SIMULINK  3.10 1.50 1.30 3.50 3.50 3.50 0.60 

Table.3. (b): Results of Graphical, Computerized Simulation, and Using SIMULINK TOOL BOX OF 

MATLAB corresponding to Example 2 

3 Signal stabilization in 3×3 nonlinear 

system 

3.1 Using Deterministic signal  

When it is confirmed that the system shown in Figure 
1 with Examples 1 & 2 exhibit a LC in the 
autonomous state (U=0), quenching/mitigation of the 
self-sustained oscillations has been examined by 
applying high frequency (hf) signal normally more 
than 10 times of ωs signals [5], at any one input or/and 
all the three input points (U1, U2, U3). When the 
signal amplitude of B1 of the sinusoidal input 
B1sinωft is progressively increased while 
maintaining the amplitude of forcing signal B2 sin ωft 
and B3sinωft fixed or zero, the system would exhibit 
complex oscillations [39]. The dependent variables at 
different points in the system will consist of signals 
of forcing input frequency ωf and the self-oscillations 
frequency ωs and combined frequencies, represented 
as k1ωf ± k2ωs, where k1 and k2 are integers [39]. 

In the second scenario, where all three inputs (U1, 
U2, and U3) are identical (Bsinωft), as depicted in 
Figure 12(a) and 12(b) for Examples 1 and 2 
respectively, we gradually increased the amplitude 
(B). This resulted in a gradual change in the self-
oscillation frequency (ωs). Eventually, the system 
synchronized with the forcing frequency (ωf), 
effectively quenching the self-oscillation and leading 
to forced oscillations at ωf.  
Computerized simulation yields results for 
signal stabilization under deterministic input 
signals of Examples 1 & 2 are shown in Figures 
13 & 14 respectively.  
The steady state values C1ss, C2ss, C3ss and X1ss, 
X2ss, X3ss are shown with their corresponding 
frequencies, , which closely approximates f 

 
 

Sl. 

No 
Methods C1 C2 C3 X1 X2 X3  

1 Graphical 2.94 1.00 1.00 3.00 3.20 3.37 0.57 

2 Computerized 
Simulation 2.80 0.31 1.10 2.80 2.70 2.60 0.62 

3 Use of  
SIMULINK  3.40 1.00 0.70 3.20 3.40 3.70 0.60 
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Figure 12 (a): The equivalent representation of 

the Figure 1 system, used in Example 1, designed 

to achieve forced oscillations (signal stabilization) 

through a deterministic input (Rectangular 

Hysteresis) 

 

Figure 12 (b): The equivalent representation of 

the Figure 1 system, used in Example 2, designed 

to achieve forced oscillations (signal stabilization) 

through a deterministic input (Backlash) 
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Figure 13: Example 1 (Rectangular Hysteresis) demonstrates forced oscillations achieved through signal 

stabilization using a deterministic input: U = 5sin (ωft), where ωf = 8.0 rad/sec 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

Kartik Chandra Patra, Asutosh Patnaik
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 110 Volume 10, 2025



 

 
 

Figure 14: Example 2 (Backlash) demonstrates forced oscillations achieved through signal 

stabilization using a deterministic input: U = 5 sin (ωft), where ωf = 10.0 rad/sec
 

3.2 Applying Gaussian signal 

While stabilization of SISO nonlinear systems 
subjected to random inputs signals has been explored, 
[45, 47, 48], and current research emphasizes 
robustness in the presence of uncertainty, signal 
stabilization with random signals for memory 
multivariable nonlinear systems, also in 2×2 systems, 
was previously lacking [40, 49]. This work aims to 
address this gap by investigating limit cycle 
quenching in a 3×3 nonlinear system using a random 
signal.Revisiting the Examples-1, 2. These systems 
show LC under an autonomous state. A Gaussian 
signal with predefined mean and variance is 
introduced at U1, U2 & U3 of subsystems for 
stabilizing the system / quenching the self-sustained 
oscillations. At a suitable value of mean () and 

variance (), the self-sustained oscillations vanish / 
the system is synchronised to high frequency forcing 
input. 

Figures 15 and 16 shows the results for Examples 1 
& 2 respectively. It displays the computerized 
simulation results under Gaussian random signals in 
examples 1 and 2  replacing B sin ft using a suitable 
random signals in Figure 12 (a) & 12 (b). 
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Figure 15a: Forced oscillation (signal stabilization) of the equivalent system in Figure 1, with a 

Gaussian input signal: mean 60, variance 0.05 (Example 1: Rectangular Hysteresis)
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Figure 15b: Forced oscillations in Example 1 (Rectangular Hysteresis) with signal stabilization, 

driven by a Gaussian input (mean 60, variance 0.05)
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Figure 16a: Forced oscillation (signal stabilization) of the equivalent system in Figure 1, with a 

Gaussian input signal: mean 300, variance 0.025 (Example 2: Backlash).
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Figure 16b: Simulating forced oscillations via signal stabilization, employing a Gaussian input 

signal (mean 300, variance 0.025), applied to Example 2's backlash

4 Suppression of LC in 3×3 nonlinear system 

using pole placement technique 

The challenge of suppressing LC in a 3x3 system 
can be addressed using pole placement, a method 
initially developed for SISO systems [38]. This 
approach requires calculating a state feedback 
gain matrix K [k1, k2, k3] to place the closed-loop 
poles at specific locations. For arbitrary pole 
placement, the system must be completely state 
controllable [56]. The Riccati Equation [41, 57] 
offers an alternative for optimal K selection. 

4.1 Suppression of LC in 3×3 Nonlinear system 

using arbitrary Pole Placement by state 

feedback: 

The pole placement technique using state feedback 
involves calculating the system's eigenvalues or 
poles. These eigenvalues contribute to limit cycles 
(LC) within the system. Since complete elimination 
of these self-oscillations might be unfeasible, the pole 
locations must be adjusted to suppress the LC. The 

most general multivariable nonlinear system [44], is 
shown in Figure 17 (a). For the existence of LC, an 
autonomous system (U=0). Figure 17 (a) can also be 
represented in simplified form as shown in Figure 17 
(b).  
Applying first harmonic linearization to the nonlinear 
elements, we can represent the system in Figure 17(b) 
using a matrix equation:  
X = -HC, where C = GN(x) X.  Hence, 
X = AX                                        ⋯                        (42) 
Where, A = -HGN(x) 
The transformation of vector X onto itself, as defined 
by Equation (42), requires two conditions to be 
satisfied for a limit cycle to exist [46],  
(i) A non-zero solution of X implies that matrix 

A has an eigenvalue λ = 1, and 
(ii) The Eigen vector of matrix A associated with 

the eigenvalue 1 align with the vector X. 
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4.1.1: Employing arbitrary pole placement for 

suppression limit cycles (LC) within Example 1 

Rectangular Hysteresis Type Nonlinear Systems     

Complete state controllability is required for arbitrary 
pole placement to suppress the limit cycle [56].  

The controllability matrix  S = [B AB A2B … … ]                        
⋯                            (43) 

Where, A = [

−N1G1 −N2G2 N3G3

N1G1 −N2G2 −N3G3

−N1G1 N2G2 −N3G3

];  

B = [
0
0
1

] ;  H = [
1 1 −1

−1 1 1
1 −1 1

] ;  

G(ω) = [

G1(ω) 0 0

0 G2(ω) 0

0 0 G3(ω)
] ; 

N(X) = [

N1(X1) 0 0

0 N2(X2) 0

0 0 N3(X3)
];  

X = [
X1

X2

X3

] ;  C = [

C1

C2

C3

] 

From Table 1a for Example 1 (Rectangular 
Hysteresis), LC exhibits at, ω = 0.63 rad/sec 
Xm1= 2.9269, Xm2= 3.2656, Xm3 =3.2656 
N1(Xm1, ω) = 0.3899; N2(Xm2 , ω) = 0.4898, 
N3(Xm3, ω) = 0.4898 
𝐴𝑡 ω = 0.63, |G1(jω)| = 2

√(ω−ω3)2+(2ω2)2
=

2

ω(ω2+1)
 

= 2.2726 
|G2(jω)| = 1

√(ω2)2+(4ω)2
 = 

1

ω√16+ω2
 = 0.392; 

|G3(jω)| =
1

ω√ω2+4
 = 0.757 

 

A = [

−N1G1 −N2G2 N3G3

N1G1 −N2G2 −N3G3

−N1G1 N2G2 −N3G3

]; B = [
0
0
1

] ;  

H = [
1 1 −1

−1 1 1
1 −1 1

] ;  

G(ω) = [

G1(ω) 0 0

0 G2(ω) 0

0 0 G3(ω)
] 

On substitution of the numerical values:  

A = [
−0.8861 −0.192 0.371
0.8861 −0.192 −0.371

− 0.8861 0.192 −0.371
] ; AB = 

[
−0.8861 −0.192 0.371
0.8861 −0.192 −0.371

− 0.8861 0.192 −0.371
] [

0
0
1

] = [
0.371

−0.371
−0.371

]; 

𝐴2B = [
−0.3951521
0.5376161

−0.1198788
], 

The controllability matrix, S, is given by  
S = [B    AB     A2B……] 

S = [
0 0.371 −0.3951521
0 −0.371 0.5376161
1 −0.371 −0.1198788

] 

Or |S| = 0.3460569651 ≠ 0 (The system is completely 

state controllable) 

Therefore, arbitrary pole placement can be achieved 
[56].  
d

dt
[x(t)]=AX + Bu                    ⋯                           (44)      

The system's behaviour in an autonomous state is 
illustrated in Figure 18. 

 
Figure 17 (a): A block diagram model 

illustrating the behaviour of a generalized 

nonlinear multivariable system 

 
Figure 17 (b): Simplified representation of the 

system in Figure 17(a) when the input (U) is 

zero 
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Figure 18: A system utilizing state feedback 

Let’s take Figure 18: 

The control law is stated as u = −KX                                                            
⋯              (45) 

Where K, the feedback matrix is given by[ 
k1 k2    k3 ]. 

Exchanging K from Eqn. (44) to Eqn. (45), we get, 
d

dt
[x(t)]= (A-BK) X         

   ⋯               (46) 

By substituting the numerical values into matrices A, 
B, and K, we obtain the Characteristic Equation (CE) 
as 

⟦𝐼 − (𝐴 − 𝐵𝐾)⟧ = 0 𝑜𝑟                                                                                                    

⌊[
λ 0 0
0 λ 0
0 0 λ

] − [

−N1G1 −N2G2 N3G3

N1G1 −N2G2 −N3G3

−N1G1 N2G2 −N3G3

] −

[
0
0
1

] [ k1 k2    k3 ]⌋ = 0    

Hence    

[

( + N1G1) N2G2 −N3G3

−N1G1 ( + N2G2) N3G3

N1G1 + k1 −N2G2 − k2  + N3G3 + k3

] = 

( + N1G1)  |
 + N2G2 N3G3

−N2G2 − k2  + N3G3 + k3
|                                                                 

 −N2G2  |
−N1G1 N3G3

N1G1 + k1  + N3G3 + k3
| −N3G3  

|
−N1G1 ( + N2G2)

N1G1 + k1 −N2G2 − k2
|=  

=( + N1G1){( ( + N2G2)(  + N3G3 +
k3)+ N3G3(N2G2 + k2)} 
−N2G2{(−N1G1(  + N3G3 + k3) - 
N3G3(N1G1+k1)} 
−N3G3{N1G1(N2G2 + k2) - ( + N2G2) 
(N1G1+k1)} 
={3+2N3G3-2k3+2N2G2+N2N3G2G3-
k3N2G2+N2N3G2G3+k2N3G3+2N1G1+
N1N3G1G3-
k3N1G1+N1N2G1G2+N1N2N3G1G2G3-

k3N1N2G1G2+N1N2N3G1G2G3+k2N1N3G1G3}+{
N1N2G1G2+N1N2N3G1G2G3-
k3N1N2G1G2+N1N2N3G1G2G3-k1N2N3G2G3} +
{−N1N2N3G1G2G3-k2N1N3G1G3+N3G3(N1G1-
k1+N1N2G1G2-k1N2G2) 
=3 +


2(N3G3+k3+N2G2+N1G1)+(N2N3G2G3+k3N2G2

+N2N3G2G3+k2N3G3+N1N3G1G3-
+k3N1G1+N1N2G1G2+N1N2G1G2+N1N3G1G3-
k1N3G3)+ N1N2N3G1G2G3-
k3N1N2G1G2G3+k2N1N3G1G3+N1N2N3G1G2G3-
k3N1N2G1G2+N1N2N3G1G2G3-k1N2N3G2G3-
N1N2N3G1G2G3-k2N1N3G1G3+N1N2N3G1G2G3-
k1N2N3G2G3 
=3+2(N1G1+N2G2+N3G3+k3)+(2N1N2G1G2+2
N1N3G1G3+2N2N3G2G3+ k1N3G3+k3N1G1+
k3N2G2+k2N3G3)+(4N1N2N3G1G2G3+
2k3N1N2G1G2+2k1N2N3G2G3)=0⋯ ⋯ ⋯ (47) (CE)  
By substituting the values of N1,G1, N2, G2 and 
N3, G3 in Eqn. (68), we get, 


3+2(0.8861+0.192+0.371+k3)+{0.3402624+0.5
74862+0.142464+ k1 ×  0.371 + k3(0.8861 +
0.192)+ k2 ×
 0.371}+(0.2524747008+0.0.3402624+k1 ×
0.142464)=0          Or 


3+2(1.4491+k3)+(1.0575884 + 0.371k1 +
0.371k2 + 1.0781k3) +
 (0.2524747+0.402624k3 + 0.142464k1)=0 
⋯       (48) 
If the poles are selected arbitrarily at λ1, λ2, λ3 =
−2, −2 & − 3 respectively, the characteristic 
equation becomes: 
( + 2) ( + 2) ( + 3) = 

3+72+8+12=0         
⋯         (49) 
By comparing the Eq. (49) with Eq. (69), and 
equating coefficients of like powers of  we get: 
7 = 1.4491 + k3, whence k3 = 4.831 ⋯ ⋯  ⋯ ⋯  
⋯ ⋯     ⋯ ⋯     ⋯ ⋯          (50) 
12 = (0.2524746 + 0.3402624k3 + 0.142464k1) = 
0.2524746+0.8679753562+0.142464k1, whence, 
k1 = 70.92 ⋯ ⋯    ⋯ ⋯            (51) 
8 = (1.0575884 +0.371 k1 + 0.371k2 
+1.0781 k3) = 1.0575884 + 26.31213314 +
0.371k2 + 5.2083011, whence k2 =
 −66.24803946   ………………………… (52) 

Hence K=[
0 0 0
0 0 0

k1 k2 k3
]= 

[
0 0 0
0 0 0

70.92 −66.25 +4.831
] ⋯ ⋯ (53) 
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From Eqn. (46), (A – BK) = A1, with shifted poles for 
Example 1. Or 

A1 = [
−N1G1 −N2G2 N3G3

N1G1 −N2G2 −N3G3

−N1G1 − k1 N2G2 − k2 −N3G3 − k3

]  

= [
−0.8861 −0.192 0.371
0.8861 −0.192 −0.371

−0.8861 − 70.92 −0.192 + 66.25 −0.371 − 4.831
] ⋯ ⋯ 

(54) 

The images C = [

C1

C2

C3

] = [

N1G1x1

N2G2x2

N3G3x3

] , X = [

x1

x2

x3

] in the 

autonomous state (U=0) obtained from computerized 
simulation for A1 of Example 1, are shown in Figure 
19.  

Figure 19: Implementing state feedback with 

a freely chosen feedback gain matrix to 

achieve limit cycle (LC) suppression in 

Example 1. 

4.1.2 Implementing arbitrary pole placement for 

suppression limit cycles (LC) within Example 2's 

backlash-type nonlinear systems: 

From Table 2a for Example 2 (Backlash), LC 
exhibits at ω = 0.57 rad/sec. 
N1(Xm1, ω) = 1.290, N2(Xm2, ω) = 1.230, N3(Xm3, ω) 
= 1.230 
Xm1 = 3.0, Xm2 = Xm3 =2.3, θL1 = -160.62o, θL2 = -
114.38o, θL3 = -122.18o 
At ω = 0.57 rad/sec 
|G1(jω)| = 2

√(ω−ω3)2+(2ω2)2
=

2

ω(ω2+1)
 = 2.1565 

|G2(jω)| = 1

√(ω2)2+(4ω)2
 = 

1

ω√16+ω2
 = 0.4342 

|G3(jω)| =
1

ω√ω2+4
 = 0.8436 

A = [

−N1G1 −N2G2 N3G3

N1G1 −N2G2 −N3G3

−N1G1 N2G2 −N3G3

]; B = [
0
0
1

] ;  

H = [
1 1 −1

−1 1 1
1 −1 1

] ;  

G(ω) = [

G1(ω) 0 0

0 G2(ω) 0

0 0 G3(ω)
] 

On substitution of the numerical values:  

A = [
−2.782 −0.534 1.038
2.782 −0.534 −1.038

− 2.782 0.534 −1.038
] ; AB = 

[
−2.782 −0.534 1.038
2.782 −0.534 −1.038

− 2.782 0.534 −1.038
] [

0
0
1

] = [
1.038

−1.038
−1.038

]; 

𝐴2B = [
−2.782 −0.534 1.038
2.782 −0.534 −1.038

− 2.782 0.534 −1.038
] [

1.038
−1.038
−1.038

] = 

[
−3.411
4.519

−2.364
], 

The matrix S, known as the controllability matrix, is 
expressed as S = [B    AB     A2B……] 

S = [
0 1.038 −3.411
0 −1.038 4.519
1 −1.038 −2.364

] 

Or |S| = 1.151 ≠ 0 (The system possesses complete 

state controllability) 
Therefore, arbitrary pole placement can be achieved 
[56]. The system is under autonomous state (U=0) as 
shown in figure 18 where the state equation with state 
feedback is represented by equation (46): d

dt
[x(t)]= 

(A-B×K)×X . On substitution of A, B and K the CE 
is represented as Equation (47): 


3+2(N1G1+N2G2+N3G3+k3)+(2N1N2G1G2+2
N1N3G1G3+2N2N3G2G3+ k1N3G3+k3N1G1+
k3N2G2+k2N3G3)+(4N1N2N3G1G2G3+
2k3N1N2G1G2+2k1N2N3G2G3)=0  
Substituting the numerical values of N1(Xm1, ω), 
N2(Xm2, ω), and N3(Xm3, ω), |G1(jω)|, |G2(jω)| 
|G3(jω)| for Example 4 at ω = 0.57 rad/sec in 
Equation (47), we get,  


3+2(N1G1+N2G2+N3G3+k3)+(2N1N2G1G2+2
N1N3G1G3+2N2N3G2G3+ k1N3G3+k3N1G1+
k3N2G2+k2N3G3)+(4N1N2N3G1G2G3+
2k3N1N2G1G2+2k1N2N3G2G3)=0  
Or 


3+2(2.782+0.534+1.038+k3)+(2.971+5.775+1.
1086+ 1.038k1+3.316k3 +
1.038k2)+(6.168+2.971k3+1.10861k1)=0 …(55) 
If the poles are selected arbitrarily at λ1, λ2, λ3 =
−3, −3 & − 4 respectively, the characteristic 
equation becomes: 
( + 3) ( + 3) ( + 4) = 3+102+33+36=0   (56) 
By comparing Equation (56) to Equation (55) and then 
equating the coefficients of corresponding powers of , we 
obtain: 
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10 = 4.354 + k3, whence k3 = 5.646 
36 = (6.168 + 2.971k3 + 1.086k1)  whence, k1 = 12.024  
33 = 2.971 + 5.775 + 1.1086 + 1.038k1 +
3.316k3 + 1.038k2, whence k2 =  −7.763    

Hence K = [
0 0 0
0 0 0

k1 k2 k3
]  

= [
0 0 0
0 0 0

12.024 −7.763 +5.646
] … … (57) Eqn. (46), 

implies (A – BK) = A2, indicating a pole shift for 
Example 2. Or 

A2 = [
−N1G1 −N2G2 N3G3

N1G1 −N2G2 −N3G3

−N1G1 − k1 N2G2 − k2 −N3G3 − k3

]  

= [
−2.782 −0.534 1.038
2.782 −0.534 −1.038

−14.806 7.763 −6.684
] … … … … .. (58) 

 

The images C = [

C1

C2

C3

] =  [

N1G1x1

N2G2x2

N3G3x3

] , X = [

x1

x2

x3

] in the 

autonomous state (U=0) obtained from computerized 
simulation for A2 of Example 2, are shown in Figure 
20. 

Figure 20: Implementing state feedback with 

a freely chosen feedback gain matrix to 

achieve limit cycle (LC) suppression in 

Example 2. 
4.2.1 Optimal feedback gain matrix selection for 

Example 1 via the Riccati equation 
The Riccati Equation is expressed as A′P+PA-
 PBR−1B′P+Q=0 ⋯ ⋯ (59)  
And Feedback gain matrix K, is defined as R−1 B′P 
⋯ ⋯ (60) 

Assuming R = 1, B=[
0
0
1

], Q = [
1 0 0
0 0 0
0 0 0

] , A =  

[

−N1G1 −N2G2 N3G3

N1G1 −N2G2 −N3G3

−N1G1 N2G2 −N3G3

] 

Let P=[

p11 p12 p13

p21 p22 p23

p31 p32 p33

], considering P to be 

symmetric matrix: p21=p12, p31 = p13, p32 = p23 

Hence P = [
p11 p12 p13

p12 p22 p23

p13 p23 p33

]  

 

A′P=[

−N1G1 N1G1 −N1G1

−N2G2 −N2G2 N2G2

N3G3 −N3G3 −N3G3

] [
p11 p12 p13

p21 p22 p23

p31 p32 p33

] 

=  
[

(−𝐍𝟏𝐆𝟏𝐩𝟏𝟏 + 𝐍𝟏𝐆𝟏𝐩𝟐𝟏 − 𝐍𝟏𝐆𝟏𝐩𝟑𝟏) (−𝐍𝟏𝐆𝟏𝐩𝟏𝟐 + 𝐍𝟏𝐆𝟏𝐩𝟐𝟐 − 𝐍𝟏𝐆𝟏𝐩𝟑𝟐) (−𝐍𝟏𝐆𝟏𝐩𝟏𝟑 + 𝐍𝟏𝐆𝟏𝐩𝟐𝟑 − 𝐍𝟏𝐆𝟏𝐩𝟑𝟑)

(−𝐍𝟐𝐆𝟐𝐩𝟏𝟏 − 𝐍𝟐𝐆𝟐𝐩𝟐𝟏 + 𝐍𝟐𝐆𝟐𝐩𝟑𝟏) (−𝐍𝟐𝐆𝟐𝐩𝟏𝟐 − 𝐍𝟐𝐆𝟐𝐩𝟐𝟐 + 𝐍𝟐𝐆𝟐𝐩𝟑𝟐) (−𝐍𝟐𝐆𝟐𝐩𝟏𝟑 − 𝐍𝟐𝐆𝟐𝐩𝟐𝟑 + 𝐍𝟐𝐆𝟐𝐩𝟑𝟑)

(+𝐍𝟑𝐆𝟑𝐩𝟏𝟏 − 𝐍𝟑𝐆𝟑𝐩𝟐𝟏 − 𝐍𝟑𝐆𝟑𝐩𝟑𝟏) (+𝐍𝟑𝐆𝟑𝐩𝟏𝟐 − 𝐍𝟑𝐆𝟑𝐩𝟐𝟐 − 𝐍𝟑𝐆𝟑𝐩𝟑𝟐) (+𝐍𝟑𝐆𝟑𝐩𝟏𝟑 − 𝐍𝟑𝐆𝟑𝐩𝟐𝟑 − 𝐍𝟑𝐆𝟑𝐩𝟑𝟑)
] 

     ⋯ ⋯ (61) 

PA= [

p11 p12 p13

p21 p22 p23

p31 p32 p33

] [

−N1G1 −N2G2 N3G3

N1G1 −N2G2 −N3G3

−N1G1 N2G2 −N3G3

] 

=  
[

(−𝐍𝟏𝐆𝟏𝐩𝟏𝟏 + 𝐍𝟏𝐆𝟏𝐩𝟏𝟐 − 𝐍𝟏𝐆𝟏𝐩𝟏𝟑) (−𝐍𝟐𝐆𝟐𝐩𝟏𝟏 − 𝐍𝟐𝐆𝟐𝐩𝟏𝟐 + 𝐍𝟐𝐆𝟐𝐩𝟏𝟑) (+𝐍𝟑𝐆𝟑𝐩𝟏𝟏 − 𝐍𝟑𝐆𝟑𝐩𝟏𝟐 − 𝐍𝟑𝐆𝟑𝐩𝟏𝟑)

(−𝐍𝟏𝐆𝟏𝐩𝟐𝟏 + 𝐍𝟏𝐆𝟏𝐩𝟐𝟐 − 𝐍𝟏𝐆𝟏𝐩𝟐𝟑) (−𝐍𝟐𝐆𝟐𝐩𝟐𝟏 − 𝐍𝟐𝐆𝟐𝐩𝟐𝟐 + 𝐍𝟐𝐆𝟐𝐩𝟐𝟑) (+𝐍𝟑𝐆𝟑𝐩𝟐𝟏 − 𝐍𝟑𝐆𝟑𝐩𝟐𝟐 − 𝐍𝟑𝐆𝟑𝐩𝟐𝟑)

(−𝐍𝟏𝐆𝟏𝐩𝟑𝟏 + 𝐍𝟏𝐆𝟏𝐩𝟑𝟐 − 𝐍𝟏𝐆𝟏𝐩𝟑𝟑) (−𝐍𝟐𝐆𝟐𝐩𝟑𝟏 − 𝐍𝟐𝐆𝟐𝐩𝟑𝟐 + 𝐍𝟐𝐆𝟐𝐩𝟑𝟑) (+𝐍𝟑𝐆𝟑𝐩𝟑𝟏 − 𝐍𝟑𝐆𝟑𝐩𝟑𝟐 − 𝐍𝟑𝐆𝟑𝐩𝟑𝟑)
] 

   ⋯ ⋯ (62) 

PBR−1B′P=[

p11 p12 p13

p21 p22 p23

p31 p32 p33

] [
0
0
1

],

[0 0 1] [

p11 p12 p13

p21 p22 p23

p31 p32 p33

]= 

[

p11 p12 p13

p21 p22 p23

p31 p32 p33

] [
0
0
1

] [(0xp11 + 0xp21 + 1xp31) (0xp12 + 0xp22 + 1xp32)     (0xp13 + 0xp23 + 1xp33]

=[

p13p31 p13p32 p13p33

p23p31 p23p32 p23p33

p33p31 p33p32 p33p33

]      ⋯ ⋯ (63) 

When the numerical values corresponding to 
Example 1 are substituted into Equation 61, it can be 
expressed as  
[

(−𝟎. 𝟖𝟖𝟔𝟏𝐩𝟏𝟏 + 𝟎. 𝟖𝟖𝟔𝟏𝐩𝟐𝟏 − 𝟎. 𝟖𝟖𝟔𝟏𝐩𝟑𝟏) (−𝟎. 𝟖𝟖𝟔𝟏𝐩𝟏𝟐 + 𝟎. 𝟖𝟖𝟔𝟏𝐩𝟐𝟐 − 𝟎. 𝟖𝟖𝟔𝟏𝐩𝟑𝟐) (−𝟎. 𝟖𝟖𝟔𝟏𝐩𝟏𝟑 + 𝟎. 𝟖𝟖𝟔𝟏𝐩𝟐𝟑 − 𝟎. 𝟖𝟖𝟔𝟏𝐩𝟑𝟑)

(−𝟎. 𝟏𝟗𝟐𝐩𝟏𝟏 − 𝟎. 𝟏𝟗𝟐𝐩𝟐𝟏 + 𝟎. 𝟏𝟗𝟐𝐩𝟑𝟏) (−𝟎. 𝟏𝟗𝟐𝐩𝟏𝟐 − 𝟎. 𝟏𝟗𝟐𝐩𝟐𝟐 + 𝟎. 𝟏𝟗𝟐𝐩𝟑𝟐) (−𝟎. 𝟏𝟗𝟐𝐩𝟏𝟑 − 𝟎. 𝟏𝟗𝟐𝐩𝟐𝟑 + 𝟎. 𝟏𝟗𝟐𝐩𝟑𝟑)

(+𝟎. 𝟑𝟕𝟏𝐩𝟏𝟏 − 𝟎. 𝟑𝟕𝟏𝐩𝟐𝟏 − 𝟎. 𝟑𝟕𝟏𝐩𝟑𝟏) (+𝟎. 𝟑𝟕𝟏𝐩𝟏𝟐 − 𝟎. 𝟑𝟕𝟏𝐩𝟐𝟐 − 𝟎. 𝟑𝟕𝟏𝐩𝟑𝟐) (+𝟎. 𝟑𝟕𝟏𝐩𝟏𝟑 − 𝟎. 𝟑𝟕𝟏𝐩𝟐𝟑 − 𝟎. 𝟑𝟕𝟏𝐩𝟑𝟑)
] 

 = A′ P   ⋯ ⋯ (64) 
 When the numerical values corresponding to 
Example 1 are substituted into Equation 62, it can be 
expressed as: 

[

(−𝟎. 𝟖𝟖𝟔𝟏𝐩𝟏𝟏 + 𝟎. 𝟖𝟖𝟔𝟏𝐩𝟏𝟐 − 𝟎. 𝟖𝟖𝟔𝟏𝐩𝟏𝟑) (−𝟎. 𝟏𝟗𝟐𝐩𝟏𝟏 − 𝟎. 𝟏𝟗𝟐𝐩𝟏𝟐 + 𝟎. 𝟏𝟗𝟐𝐩𝟏𝟑) (+𝟎. 𝟑𝟕𝟏𝐩𝟏𝟏 − 𝟎. 𝟑𝟕𝟏𝐩𝟏𝟐 − 𝟎. 𝟑𝟕𝟏𝐩𝟏𝟑)

(−𝟎. 𝟖𝟖𝟔𝟏𝐩𝟐𝟏 + 𝟎. 𝟖𝟖𝟔𝟏𝐩𝟐𝟐 − 𝟎. 𝟖𝟖𝟔𝟏𝐩𝟐𝟑) (−𝟎. 𝟏𝟗𝟐𝐩𝟐𝟏 − 𝟎. 𝟏𝟗𝟐𝐩𝟐𝟐 + 𝟎. 𝟏𝟗𝟐𝐩𝟐𝟑) (+𝟎. 𝟑𝟕𝟏𝐩𝟐𝟏 − 𝟎. 𝟑𝟕𝟏𝐩𝟐𝟐 − 𝟎. 𝟑𝟕𝟏𝐩𝟐𝟑)

(−𝟎. 𝟖𝟖𝟔𝟏𝐩𝟑𝟏 + 𝟎. 𝟖𝟖𝟔𝟏𝐩𝟑𝟐 − 𝟎. 𝟖𝟖𝟔𝟏𝐩𝟑𝟑) (−𝟎. 𝟏𝟗𝟐𝐩𝟑𝟏 − 𝟎. 𝟏𝟗𝟐𝐩𝟑𝟐 + 𝟎. 𝟏𝟗𝟐𝐩𝟑𝟑) (+𝟎. 𝟑𝟕𝟏𝐩𝟑𝟏 − 𝟎. 𝟑𝟕𝟏𝐩𝟑𝟐 − 𝟎. 𝟑𝟕𝟏𝐩𝟑𝟑)
] 

               = PA                           ⋯ ⋯ (65)  
When the values from Equations (63), (64), and (65), 
as well as the assumed value of Q, are substituted into 
Riccati Equation (59), it produces: 
(-1.7722p11 + 1.7722p12-1.7722p13 -p13

2 +1)= 0
    ⋯ ⋯ (66) 
(-0.8861p12-0.192p11+0.8861p22-
0.192p13+0.8861p23-p13 p23)=0  ⋯ ⋯ (67) 
(-1.2571p13+0.371 p11+0.8861 p23-0.371 p12-0.8861 
p33- p13 p33)=0               ⋯ ⋯ (68) 
(-0.192 p11-1.0781 p12+0.8861 p22+ 0.192p13 – 
0.8861p23 - p13 p23)= 0         ⋯ ⋯ (69) 
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(-0.384 p12-0.384 p22+0.384 p23-p23
2)=0 ⋯ ⋯ (70) 

(-0.192 p13+0.371 p21-0.192 p23- 0.371p22+0.192p33 - 
p23 p33 ) = 0             ⋯ ⋯ (71) 
0.371 p11 – 1.2571 p13 + 0.8861 p23 – 0.371 p12 - 
0.8661 p33 - p13 p33 = 0 ⋯ ⋯ (72) 
0.371 p12 – 0.371 p22 - 0.192 p13 – 0.563 p23 + 0.192 
p33 – p23 p33 = 0 ⋯ ⋯ (73) 
0.742 p13 – 0.742 p23 - 0.742 p33 – p33

2  = 0⋯ ⋯ (74) 
From Equation (71) and (73), by subtracting, we get, 
p23 =  p32 = 0 
From Equation (68) and (72), by subtracting, we get 
a trivial solution.  
From Equation (67) and (69), by subtracting, we get, 
p12 =  2p13 
From Equation (70), we get, p22 =  −p12 …… (75) 
From Equation (74), we get, 0.472 (p13 – p33) = p33

2 
(76)  
From Equation (71), we get, - 0.192p13 +
0.371p21 − 0.371p22 + 0.192p33 = 0 …… (77) 
From Equation (67) p11 = −9.731p12 
From Equation (66) 34.49513 − 177 p13 − p13

2 +
1 = 0, whence p13= 32.75 or – 0.31 
Other values are p12 = 0.31 or − 0.061, p22 =
 −65.50 or 0.361, p33 =  −341.14 or 0.032 
p11 = −637.074 or − 0.594, p23 = 0 

P = [
p11 p12 p13

p21 p22 p23

p31 p32 p33

]= [
p11 p12 p13

p12 p22 0
p13 0 p33

] 

From Equation (60), K =R−1 B′P = 1 [0 0 

1] [
p11 p12 p13

p21 p22 0
p31 0 p33

] 

Or [k1 k2 k3] = [p13 p23 p33] = [p13  0  p33] whence 
k1 = 32.75 or – 0.031, k2 = 0, k3 = -341.144 or 0.032.  
----------- (78) 
Hence A – BK = A3 = 

[

−N1G1 −N2G2 N3G3

N1G1 −N2G2 −N3G3

−N1G1 − k1 N2G2 − k2 −N3G3 − k3

]  

When the numerical values for Example 1 are 
substituted, the result for A3 is  

 A3= [
−0.8861 −0.192 0.371
0.8861 −0.192 −0.371

−33.63 or − 0.8551 0.192 340.78 or − 0.403
] 

But admissible value, A3 = [
−0.8861 −0.192 0.371
0.8861 −0.192 −0.371

−0.8551 0.192 −0.403
] 

 

The images C = [
C1

C2

C3

] = [

N1G1x1

N2G2x2

N3G3x3

] and X = [
x1

x2

x3

] in the 

autonomous state (U=0), obtained from 

computerized simulation for Example 1, are shown in 
Figure 21. 

Figure 21: Achieving limit cycle (LC) 

suppression in Example 1 through state 

feedback with an optimal feedback gain 

matrix, K.  
4.2.2 Optimal Selection of Feedback gain Matrix 

using Riccati Equation for Example 2 

The Riccati Equation is A′P+PA- PBR−1B′P+Q=0 
⋯ ⋯ (59)  
And K = Feedback gain matrix = R−1 B′P ⋯ ⋯ (60) 

Assuming R=1, B=[
0
0
1

], Q=[
1 0 0
0 0 0
0 0 0

], 

A =  [
−N1G1 −N2G2 N3G3

N1G1 −N2G2 −N3G3

−N1G1 N2G2 −N3G3

] 

Let P=[

p11 p12 p13

p21 p22 p23

p31 p32 p33

], considering P to be 

symmetric matrix 

Hence P = [
p11 p12 p13

p12 p22 p23

p13 p23 p33

]  

A′P=[

−N1G1 N1G1 −N1G1

−N2G2 −N2G2 N2G2

N3G3 −N3G3 −N3G3

] [
p11 p12 p13

p21 p22 p23

p31 p32 p33

] 

=  
[

(−𝐍𝟏𝐆𝟏𝐩𝟏𝟏 + 𝐍𝟏𝐆𝟏𝐩𝟐𝟏 − 𝐍𝟏𝐆𝟏𝐩𝟑𝟏) (−𝐍𝟏𝐆𝟏𝐩𝟏𝟐 + 𝐍𝟏𝐆𝟏𝐩𝟐𝟐 − 𝐍𝟏𝐆𝟏𝐩𝟑𝟐) (−𝐍𝟏𝐆𝟏𝐩𝟏𝟑 + 𝐍𝟏𝐆𝟏𝐩𝟐𝟑 − 𝐍𝟏𝐆𝟏𝐩𝟑𝟑)

(−𝐍𝟐𝐆𝟐𝐩𝟏𝟏 − 𝐍𝟐𝐆𝟐𝐩𝟐𝟏 + 𝐍𝟐𝐆𝟐𝐩𝟑𝟏) (−𝐍𝟐𝐆𝟐𝐩𝟏𝟐 − 𝐍𝟐𝐆𝟐𝐩𝟐𝟐 + 𝐍𝟐𝐆𝟐𝐩𝟑𝟐) (−𝐍𝟐𝐆𝟐𝐩𝟏𝟑 − 𝐍𝟐𝐆𝟐𝐩𝟐𝟑 + 𝐍𝟐𝐆𝟐𝐩𝟑𝟑)

(+𝐍𝟑𝐆𝟑𝐩𝟏𝟏 − 𝐍𝟑𝐆𝟑𝐩𝟐𝟏 − 𝐍𝟑𝐆𝟑𝐩𝟑𝟏) (+𝐍𝟑𝐆𝟑𝐩𝟏𝟐 − 𝐍𝟑𝐆𝟑𝐩𝟐𝟐 − 𝐍𝟑𝐆𝟑𝐩𝟑𝟐) (+𝐍𝟑𝐆𝟑𝐩𝟏𝟑 − 𝐍𝟑𝐆𝟑𝐩𝟐𝟑 − 𝐍𝟑𝐆𝟑𝐩𝟑𝟑)
] 

     ⋯ ⋯ (61) 

PA= [

p11 p12 p13

p21 p22 p23

p31 p32 p33

] [

−N1G1 −N2G2 N3G3

N1G1 −N2G2 −N3G3

−N1G1 N2G2 −N3G3

] 

=  
[

(−𝐍𝟏𝐆𝟏𝐩𝟏𝟏 + 𝐍𝟏𝐆𝟏𝐩𝟏𝟐 − 𝐍𝟏𝐆𝟏𝐩𝟏𝟑) (−𝐍𝟐𝐆𝟐𝐩𝟏𝟏 − 𝐍𝟐𝐆𝟐𝐩𝟏𝟐 + 𝐍𝟐𝐆𝟐𝐩𝟏𝟑) (+𝐍𝟑𝐆𝟑𝐩𝟏𝟏 − 𝐍𝟑𝐆𝟑𝐩𝟏𝟐 − 𝐍𝟑𝐆𝟑𝐩𝟏𝟑)

(−𝐍𝟏𝐆𝟏𝐩𝟐𝟏 + 𝐍𝟏𝐆𝟏𝐩𝟐𝟐 − 𝐍𝟏𝐆𝟏𝐩𝟐𝟑) (−𝐍𝟐𝐆𝟐𝐩𝟐𝟏 − 𝐍𝟐𝐆𝟐𝐩𝟐𝟐 + 𝐍𝟐𝐆𝟐𝐩𝟐𝟑) (+𝐍𝟑𝐆𝟑𝐩𝟐𝟏 − 𝐍𝟑𝐆𝟑𝐩𝟐𝟐 − 𝐍𝟑𝐆𝟑𝐩𝟐𝟑)

(−𝐍𝟏𝐆𝟏𝐩𝟑𝟏 + 𝐍𝟏𝐆𝟏𝐩𝟑𝟐 − 𝐍𝟏𝐆𝟏𝐩𝟑𝟑) (−𝐍𝟐𝐆𝟐𝐩𝟑𝟏 − 𝐍𝟐𝐆𝟐𝐩𝟑𝟐 + 𝐍𝟐𝐆𝟐𝐩𝟑𝟑) (+𝐍𝟑𝐆𝟑𝐩𝟑𝟏 − 𝐍𝟑𝐆𝟑𝐩𝟑𝟐 − 𝐍𝟑𝐆𝟑𝐩𝟑𝟑)
] 

    ⋯ ⋯ (62) 

PBR−1B′P=[

p11 p12 p13

p21 p22 p23

p31 p32 p33

] [
0
0
1

], 
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[0 0 1] [

p11 p12 p13

p21 p22 p23

p31 p32 p33

]= 

[

𝐩𝟏𝟏 𝐩𝟏𝟐 𝐩𝟏𝟑

𝐩𝟐𝟏 𝐩𝟐𝟐 𝐩𝟐𝟑

𝐩𝟑𝟏 𝐩𝟑𝟐 𝐩𝟑𝟑

] [
𝟎
𝟎
𝟏

] [(𝟎𝐱𝐩𝟏𝟏 + 𝟎𝐱𝐩𝟐𝟏 + 𝟏𝐱𝐩𝟑𝟏) (𝟎𝐱𝐩𝟏𝟐 + 𝟎𝐱𝐩𝟐𝟐 + 𝟏𝐱𝐩𝟑𝟐)     (𝟎𝐱𝐩𝟏𝟑 + 𝟎𝐱𝐩𝟐𝟑 + 𝟏𝐱𝐩𝟑𝟑]= 

[

p11 p12 p13

p21 p22 p23

p31 p32 p33

] [

0xp31 0xp32 0xp33

0xp31 0xp32 0xp33

1xp31 1xp32 1xp33

]= 

 

=[

p13p31 p13p32 p13p33

p23p31 p23p32 p23p33

p33p31 p33p32 p33p33

]                 ⋯ ⋯ (63) 

By substituting the numerical values of Example 2, 
where  

A = [
−2.782 −0.534 1.038
2.782 −0.534 −1.038

− 2.782 0.534 −1.038
]  and Eqn.61 can 

be written as  
[

(−𝟐. 𝟕𝟖𝟐𝐩𝟏𝟏 + 𝟐. 𝟕𝟖𝟐𝐩𝟏𝟐 − 𝟐. 𝟕𝟖𝟐𝐩𝟏𝟑) (−𝟐. 𝟕𝟖𝟐𝐩𝟏𝟐 + 𝟐. 𝟕𝟖𝟐𝐩𝟐𝟐 − 𝟐. 𝟕𝟖𝟐𝐩𝟐𝟑) (−𝟐. 𝟕𝟖𝟐𝐩𝟏𝟑 + 𝟐. 𝟕𝟖𝟐𝐩𝟐𝟑 − 𝟐. 𝟕𝟖𝟐𝐩𝟑𝟑)

(−𝟎. 𝟓𝟑𝟒𝐩𝟏𝟏 − 𝟎. 𝟓𝟑𝟒𝐩𝟏𝟐 + 𝟎. 𝟓𝟑𝟒𝐩𝟏𝟑) (−𝟎. 𝟓𝟑𝟒𝐩𝟏𝟐 − 𝟎. 𝟓𝟑𝟒𝐩𝟐𝟐 + 𝟎. 𝟓𝟑𝟒𝐩𝟐𝟑) (−𝟎. 𝟓𝟑𝟒𝐩𝟏𝟑 − 𝟎. 𝟓𝟑𝟒𝐩𝟐𝟑 + 𝟎. 𝟓𝟑𝟒𝐩𝟑𝟑)

(𝟏. 𝟎𝟑𝟖𝐩𝟏𝟏 − 𝟏. 𝟎𝟑𝟖𝐩𝟏𝟐 − 𝟏. 𝟎𝟑𝟖𝐩𝟏𝟑) (𝟏. 𝟎𝟑𝟖𝐩𝟏𝟐 − 𝟏. 𝟎𝟑𝟖𝐩𝟐𝟐 − 𝟏. 𝟎𝟑𝟖𝐩𝟐𝟑) (𝟏. 𝟎𝟑𝟖𝐩𝟏𝟑 − 𝟏. 𝟎𝟑𝟖𝐩𝟐𝟑 − 𝟏. 𝟎𝟑𝟖𝐩𝟑𝟑)
] 

 = A′ P    ⋯ ⋯ (79) 
 Similarly, on substitution of numerical values of 
Example 2, and Eqn. 62 can be written as: 

[

(−𝟐. 𝟕𝟖𝟐𝐩𝟏𝟏 + 𝟐. 𝟕𝟖𝟐𝐩𝟏𝟐 − 𝟐. 𝟕𝟖𝟐𝐩𝟏𝟑) (−𝟎. 𝟓𝟑𝟒𝐩𝟏𝟏 − 𝟎. 𝟓𝟑𝟒𝐩𝟏𝟐 + 𝟎. 𝟓𝟑𝟒𝐩𝟏𝟑) (−𝟏. 𝟎𝟑𝟖𝐩𝟏𝟏 − 𝟏. 𝟎𝟑𝟖𝐩𝟏𝟐 − 𝟏. 𝟎𝟑𝟖𝐩𝟏𝟑)

(−𝟐. 𝟕𝟖𝟐𝐩𝟏𝟐 + 𝟐. 𝟕𝟖𝟐𝐩𝟐𝟐 − 𝟐. 𝟕𝟖𝟐𝐩𝟐𝟑) (−𝟎. 𝟓𝟑𝟒𝐩𝟐𝟏 − 𝟎. 𝟓𝟑𝟒𝐩𝟐𝟐 + 𝟎. 𝟓𝟑𝟒𝐩𝟐𝟑) (𝟏. 𝟎𝟑𝟖𝐩𝟐𝟏 − 𝟏. 𝟎𝟑𝟖𝐩𝟐𝟐 − 𝟏. 𝟎𝟑𝟖𝐩𝟐𝟑)

(−𝟐. 𝟕𝟖𝟐𝐩𝟏𝟑 + 𝟐. 𝟕𝟖𝟐𝐩𝟐𝟑 − 𝟐. 𝟕𝟖𝟐𝐩𝟑𝟑) (−𝟎. 𝟓𝟑𝟒𝐩𝟏𝟑 − 𝟎. 𝟓𝟑𝟒𝐩𝟐𝟑 + 𝟎. 𝟓𝟑𝟒𝐩𝟑𝟑) (𝟏. 𝟎𝟑𝟖𝐩𝟑𝟏 − 𝟏. 𝟎𝟑𝟖𝐩𝟐𝟑 − 𝟏. 𝟎𝟑𝟖𝐩𝟑𝟑)
] 

     = PA         ⋯ ⋯ (80) 
When the values derived from Equations (63), (79), 
and (80), and the assumed Q value are substituted 
into Riccati Equation (59), the outcome is: 
(-5.564p11 + 5.564p12-5.564p13 -p13

2 +1)= 0 (81) 
(–3.316p12–2.782p23+2.782p22-
0.534p11+0.534p13-p13 p23)=0  ⋯ ⋯ (82) 
(–3.82p13+2.782 p23–2.782 p33–1.038p11–1.038 p12– 
p13 p33)=0                       ⋯ ⋯ (83) 
(–0.534 p11-3.316p12+0.534p13+ 2.782p22 – 2.782p23 
– p13 p23)= 0                   ⋯ (84) 
(–1.068p12–1.068p22+1.068p23-p23

2)=0 ⋯ ⋯ (85) 
(-0.534p13–1.572p23+0.534p33+ 1.038p12-1.038p22 - 
p23 p33 ) = 0             ⋯ ⋯ (86) 
1.038p11 – 1.038p12 – 3.82p13 + 2.782p23 – 2.782p33 
– p13 p33 = 0               ⋯ ⋯ (87) 
1.038p12 – 1.038p22 – 1.572p23 – 0.534p13 + 0.534p33 
– p23 p33 = 0              ⋯ ⋯ (88) 
2.076p13 – 2.076p23 – 2.076p33 – p33

2  = 0⋯ ⋯ (89) 
Subtracting, Equation (84) from Equation (82), we 
get a trivial solution.  
Subtracting, Equation (88) from Equation (86), we 
get a trivial solution. 
Subtracting, Equation (87) from Equation (83), we 
get, p11 = 0.  
Equation (81), in conjunction with Equation (82) – 
(89) yields, p13 = 1.01, p12 = 1.0136. 
Similarly, equation (85) in conjunction with others 
yields p23 = 2.036 or – 0.97. And equation (89) in 
conjunction with others yields p33 = 0.393 or – 2.115.  

From Eqn. (60), K = R−1 B′P = 1 ⌈001⌉ 

[

p11 p12 p13

p12 p22 p23

p13 p23 p33

] 

Or⌈k1k2 k3⌉=⌈(0xp11 + 0xp12 +
1xp13)      ( 0xp12 + 0xp22 + 1xp23)    ( 0xp13 +
0xp23 + 1xp33) ⌉  
Or⌈k1k2 k3⌉=⌈(p13)      ( p23)    (p33) ⌉ 
=  ⌈1.01      2.036 or − 0.97   0.393 or − 2.115 ⌉ , 
 Whence, k1 = 1.01, k2 = 2.036 or − 0.97and k3 = 
0.393 or − 2.115    ⋯ ⋯ (90) 
Hence, A – BK = A4 =  

[

−N1G1 −N2G2 N3G3

N1G1 −N2G2 −N3G3

−N1G1 − k1 N2G2 − k2 −N3G3 − k3

] 

When the numerical values for Example 1 are 
substituted, the result for A4 is:  
A4 =  [

−𝟐. 𝟕𝟖𝟐 −𝟎. 𝟓𝟑𝟒 𝟏. 𝟎𝟑𝟖
𝟐. 𝟕𝟖𝟐 −𝟎. 𝟓𝟑𝟒 −𝟏. 𝟎𝟑𝟖

−𝟐. 𝟕𝟖𝟐 − 𝟏. 𝟎𝟏 𝟎. 𝟓𝟑𝟒 − 𝟐. 𝟎𝟑𝟔 𝐨𝐫 + 𝟎. 𝟗𝟕 −𝟏. 𝟎𝟑𝟖 − 𝟎. 𝟑𝟗𝟑 𝐨𝐫 + 𝟐. 𝟏𝟏𝟓
]  

 

= [
−2.782 −0.534 1.038
2.782 −0.534 −1.038

−3.792 −1.502 or 1.504 −1.431 or 1.077
]  

⋯ ⋯ (91) 

The images C = [
C1

C2

C3

] = [

N1G1x1

N2G2x2

N3G3x3

] and X = [
x1

x2

x3

] in the 

autonomous state (U=0), obtained from 
computerized simulation for Example 2, are shown in 
Figure 22. 

 

Figure 22: Achieving limit cycle (LC) 

suppression in Example 2 through state 

feedback with an optimal feedback gain 

matrix 
 
5. Conclusion: 

Limit cycles (LC), a fundamental cause of instability 
in modern systems, severely restrict performance in 
areas like robotics and automation. Despite existing 
solutions for SISO and 2×2 systems, the effective 
quenching of LC in 3×3 systems has remained a 
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significant challenge. This research addresses this 
gap by graphically demonstrating and digitally 
validating the successful quenching of LC in 3×3 
systems. Key novelties include: (i) Signal 
stabilization with both deterministic and random 
(Gaussian) signals, and (ii) Limit cycle suppression 
via state feedback pole placement, using both 
arbitrary and optimal gain matrix K selection.  
A key contribution of this work is the effective 
elimination of limit cycles in 3×3 systems through 
state feedback pole placement, a method previously 
un-attempted. This involves strategically relocating 
the system's poles, either through arbitrary selection 
while maintaining complete state controllability, or 
through Riccati equation-based optimal gain matrix 
K selection. 
There is a significant opportunity to extend this work 
to signal stabilization and LC quenching/mitigation 
in 3×3 memory nonlinear systems with potential 
further extension to n×n multivariable nonlinear 
systems. Tracking of synchronization and 
desynchronization under signal stabilization process 
can be extended both analytically and experimentally 
in such types of systems. 
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