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Abstract: Exponentially-modified logistic distribution is a new flexible modified distribution. It is regarded as a 
strong competitor for widely used classical symmetrical and non-symmetrical distributions such as normal, logistic, 
lognormal, and log-logistic. In this study, the unknown parameters of the distribution have been estimated using the 
maximum likelihood method. Meta-heuristic algorithms have been used to solve the nonlinear equations of this 
method. The algorithms used in this study are the Sine Cosine and the Particle Swarm Optimization Algorithms. 
The efficiencies of maximum likelihood estimates for these algorithms are compared via a Monte-Carlo simulation 
study. It has been seen that the likelihood estimates for the location α and scale β parameters of the exponentially-
modified logistic distribution developed with the Particle Swarm Optimization algorithm are more efficient than the 
Sine Cosine algorithm. 
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1. Introduction 

The logistic distribution is recognized to be similar 
to the normal distribution.  Both normal and logistic 
distribution are members of the location-scale family. 
However, the logistic distribution has heavier tails than 
the normal distribution [1]. The importance of logistic 
distribution is that it has the ability to be used in many 
scientific areas like physical science, finance, and many 
applications in reliability and survival analysis, besides 
the major utility of its distribution function in logistic 
regression, logit models, and neural networks [2]. For 
more properties and details about logistic distribution, 
see [3, 4]. On the other hand, the exponential 
distribution, which is concerned with the measurement 
of time needed until the occurrence of a specific event 
[2], was priviously the basis of reliability and life 
expectancy evaluation for many lifetime data 
distributions. For more details about the exponential 
distribution, see [5]. However, in further research in 
reliability theory, it was revealed that modeling by the 
exponential distribution is only useful for the first 
approximation and can't be enough for a lot of problems 
in many cases. In the last two decades, in order to give 
better-fitting solutions and increase fit effectiveness for 
model functions that have no closed-form and require a 
numerical method in lifetime data analysis, many 

generalizations and modified extensions of the 
exponential distribution have been suggested to become 
more flexible and capable for modeling real-world data, 
especially when the characteristics of classical 
distributions are limited  
and, practically, they cannot provide a good fit in many 
situations [2,6,7,8,9]. Various exponentiated 
distributions have been generalized; for instance, in 
1998, the exponentiated exponential distribution was 
introduced by Gupta and Kundu [10] and is considered 
the first extension of the exponential distribution 
family. The exponentiated Weibull distribution was 
extended in 2006 by Pal et al. [11], the exponentiated 
Gamma distribution was generalized in 2007 by 
Nadarajah and Gupta [12], another extension was 
proposed in 2011 by Nadarajah and Haghighi [13], the 
exponentiated log-logistic distribution with two 
parameters was extended in 2019 by Chaudhary [14], 
and many other well-known distributions have recently 
been extended and modified by the exponential 
distribution family. Reyes et al. (2018) have presented 
the two-parameter exponentially-modified logistic 
(EMLOG) distribution [15], which used the same 
methodology as Grushka, who constructed the 
exponentially-modified Gaussian (EMG) distribution 
by combining the normal and exponential distributions 
[16]. So, the only difference is that the logistic 
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distribution is used in place of the normal distribution. 
One of the advantages of the combined new probability 
distributions obtained is that they generally have longer 
tails than the originals without combining distributions, 
thus giving rise to better fits for empirical frequency 
distributions [15, 16].  
In general, there are many different statistical 
methodologies for estimating the parameters of any 
distribution, such as the Maximum Likelihood (ML) 
method, the Method of Moments (MOM), the Least 
Squares (LS) method, and so forth. ML is the most 
widely used methodology among all statistical methods 
because of its high performance and well-known 
asymptotic properties for parameter estimators such as 
bias, consistency, efficiency, and so forth in comparison 
with any other method [17]. The basic principle of the 
ML methodology is to find the estimator values for the 
parameters of concern that maximize the likelihood 
function of the model, but in most cases, an explicit 
solution is not available because of the presence of 
nonlinear functions. Therefore, iterative algorithms can 
be used to maximize the likelihood function [18]. 

The aim of this study is to obtain the maximum 
likelihood estimation of the location α and scale β 
parameters of the EMLOG distribution. However, for 
the two-parameter EMLOG distribution, explicit 
solutions to the likelihood equations do not exist, and 
this is the main problem highlighted by this study. In 
this study, to solve this problem, we have used the Sine 
Cosine (SC) algorithm and the Particle Swarm 
Optimization (PSO) algorithm. To the best of our 
knowledge, this is the first study to obtain the ML 
estimators in the context of parameter estimation for the 
EMLOG based on PSO and SC. However, it should be 
noted that this problem can also be tackled by using 
other meta-heuristic algorithms such as grey wolf 
optimization, whale optimization, etc. The SC and PSO 
algorithms have been compared by conducting a Monte 
Carlo simulation study. 

The rest of the article is organized as follows: In 
Section (2), the two-parameter EMLOG distribution has 
been introduced. In Section (3), the SCA and PSO 
algorithms that were applied for the ML estimation 
method in this study are introduced. In Section (4), the 
efficiencies of the parameter estimators are compared 
via a Monte-Carlo simulation study. In the last section, 
the conclusions are given. 

 

2. Two-Parameter Exponentially-

Modified Logistic Distribution 

The generalization of this distribution is made by 
the combination of a logistic distribution with 
parameters for location α and scale β and the same scale 

parameter for the exponential distribution. As a result, 
the two-parameter exponentially modified logistic 
distribution is produced, with the left tail influenced by 
exponential distribution and the right tail distributed by 
logistic distribution. For the sake of simplicity, in the 
remaining portion of the study, this distribution will be 
denoted by EMLOG distribution. 

If X is a random variable with a parameterized 
location α and scale β that follows an EMLOG 
distribution, X∼ EMLOG (α, β), then the probability 
density function (pdf) of X is:  

f(x;α,β)= 1

β(e
(
x-α
β )

+1)

 

[(e-(x-α
β )+1) log (e(

x-α
β )+1) -1] , x ∈R,   α∈R, β>0 (1) 

 

The ML estimation for the parameters of interest 
are the values in the parameter space that maximize the 
likelihood function; for calculation simplicity, the 
likelihood function's logarithm is used. In this study, the 
log-likelihood (ln L) function is given below for 
estimating the unknown parameters α and β for the 
EMLOG distribution. 

ln L(α,β) =-nlog(β)-
∑ log(e zi+1)n

i=1 + ∑ log[(e- zi+1)log(e zi+1)-1]n
i=1  (2) 

where zi=(xi-α)/β. In order to estimate the likelihood 
parameters for the ln L function for the EMLOG 
distribution, the partial derivatives with respect to the 
parameters of interest are taken and equated to zero. The 
likelihood equations are given as follows: 

  ∂ ln L(α,β)

∂α
= ∑

ezi

ezi+1
n
i=1 + ∑

e-zilog(ezi+1)-1
(e-zi+1)log(ezi+1)-1

= 0n
i=1  (3) 

and 

∂ ln L(α,β)

∂β
=-nβ+ ∑

(xi-α)ezi

ezi+1
n
i=1   + ∑

(xi-α)(ezi log(ezi+1)-1)

(e-zi+1)log(ezi+1)-1
n
i=1 =0 

 (4) 

As we can see from equations (3) and (4), they 
have nonlinear functions, and an explicit solution for 
the likelihood equations cannot be obtained. Therefore, 
iterative algorithms are needed to solve these equations 
and obtain ML estimates for the location and scale. In 
this study, SC, and PSO are some effective and 
powerful algorithms considered as numerical 
techniques for estimating the likelihood estimators for 
the EMLOG distribution, and they are briefly 
introduced in the next subsections. 
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2.1 Sine Cosine Algorithm 

The SC algorithm is a population-based meta-
heuristic technique proposed by Mirjalili in 2016, which 
is motivated by the mathematical trigonometric sine and 
cosine functions [19]. It's been utilized to overcome a 
wide range of optimization issues in several areas by 
initializing, within the search space, a collection of a 
population of solutions that are iteratively assessed in 
relation to the objective function under the control of a 
set of developed optimization parameters. After that, 
the algorithm keeps the better solution and continuously 
updates it until convergence is satisfied by reaching the 
maximum number of iterations. This updated best 
position represents the best solution [20, 21].  

SC algorithm steps: [22,23]  

The main two phases of the SC algorithm are 1) 
exploration (diversification), considered a global 
lookup search, and 2) exploitation (intensification), 
considered a local lookup search. The steps of these 
phases are summarized as follows: 

1. Initialize the position of N numbers of the 
population solutions randomly within the search 
space for the first iteration, as well as the random 
parameters r1, r2, r3, and r4 of this algorithm, which 
are incorporated to strike a balance between 
exploration and exploitation capabilities and thus to 
avoid settling for local optimums. The parameter r1 
helps in determining whether an updated solution 
position or the movement direction of the next 
position is towards the best solution in the search 
space (r1 < 1) or outwards from it (r1 > 1). The r1 
parameter falls linearly from a constant (a) to 0, as 
seen in the equation: 
 
 r1=a-t* (

a
Tmax

) (5) 
 

The parameter r2 is set within the interval, which 
helps in determining how large the extended 
movement of the solution towards or away from the 
intended target will be. The r3 parameter is a random 
weight score to emphasize (r3 > 1) or 
underemphasize (r3 < 1) the significant effect of the 
intended target on distance calculation. The final 
random parameter, which is a random value defined 
in [0, 1], can be considered a switch to choose 
between the trigonometric functions of sine and 
cosine elements. 

2. Evaluate the fitness value of each solution using the 
fitness effect represented by the objective function 
in this study. Each fitness value refers to the position 
of each solution. The best (highest) value in the 

population is found and saved. 
3. Update the main parameters, which are r1 by using 

equation (5), and r2, r3, and r4 randomly. 
4. Update the positions of all solution agents by 

utilizing the given equation: 
 

Xi
i+1= {

Xi
t +r1× sin(r2) ×|r3Pi

t-Xi
t|,     r4<0.5  

Xi
t +r1× cos(r2) ×|r3Pi

t-Xi
t|,     r4≥0.5

 (6) 

     where 𝑋𝑖
𝑡 denotes the position of the current solution 

in the ith dimension at the tth iteration and 𝑃𝑖
𝑡 denotes 

the position of the target destination point in the 
dimension. 

5. Loop back to step 2 to continue iterating until the 
maximum number of iterations is reached. The 
solution values are called the SC parameter 
estimates. 
 
2.2 Particle Swarm Optimization 

The PSO is considered one of the best-known 
population-based meta-heuristic algorithms dependent 
on swarm intelligence. It was proposed by Kenedy and 
Eberhart [24]. PSO is a simulation of the continuous 
movements of particles in a swarm in a specific search 
area that mimics the movement behavior of bird flocks 
in nature using certain formulas until finally reaching 
the optimal solution [25]. It can be used to solve various 
constrained or unconstrained optimization problems, 
multi-objective optimization, non-linear programming, 
probabilistic programming, and combinatorial 
optimization issues [26]. 

PSO algorithm steps: [27, 28]  

1. Initialize randomly the position and velocity of N 
number of population solutions (particles) for the 
first iteration as well as the algorithm parameters, 
which are c1, c2 representing acceleration 
coefficients, r1, r2 representing random numbers 
uniformly distributed among 0 and 1, and ω 
indicating the inertia weight parameter. 

2. Evaluate the fitness value of each solution (particle) 
by the fitness function ln L in this study. Each fitness 
value refers to the position of each solution. The best 
(highest) value of each particle in the population is 
found, compared with its previous historical 
movement, and then saved as a personal best 
solution (pbest) value. At the same time, the best 
fitness value for each particle is found, compared 
with the previous historical global best, and saved as 
a (gbest) value. 

3. Update each solution's position and velocity using 
the following equations: 

 Vi
t+1=ωVi

t+c1r1( pbesti
t-Xi

t)+ c2r2(gbestt -Xi
t) (7) 
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 xi
t+1=xi

t+Vi
t+1 (8) 

 
where 𝑉𝑖

𝑡  represents particle i's velocity at iteration 
t, 𝑋𝑖

𝑡 is the location of particle i during iteration t, 
𝑝𝑏𝑒𝑠𝑡𝑖

𝑡 is the best position of a particle at iteration, 
and 𝑔𝑏𝑒𝑠𝑡 is the most optimal (best) location of the 
group at iteration t. 

4. Loop back to step 2 again until the convergence is 
satisfied. The solution values are called the PSO 
parameter estimates. 
 
3. Monte Carlo Simulation Study 

In this section, a Monte-Carlo simulation study is 
carried out to compare the efficiencies of ML estimators 
of the model parameters for varying sample sizes, 
utilizing meta-heuristic algorithms such as the SC, and 
the PSO algorithm. All computations for the simulation 
study are made by Matlab R2021a software. Each 
Monte Carlo simulation run is replicated 1,000 times. 
The location α and scale β parameters are considered to 
be (α =1) and (β= 1, 2), respectively, for different values 
of sample size (n), which is taken as n = 30, 50, 100, 
150, and 200. The search space (SS) for both α and β 
parameters is selected to be [-20, 20]. The resulting 
estimates for location and scale parameters in the 
simulations are denoted by �̂�  and �̂�, respectively. To 
analyze and evaluate the estimators' performance, the 
simulated mean, bias, variance, mean square error 
(MSE), and deficiency (Def) values given by the 
equations (9–13) below are used. 

 Mean (θ̂)= ∑ θ̂i
n
i
n

 (9) 

 Bias(θ̂)=E(θ̂)- θ (10) 

 Var(θ̂) = 1
n-1

∑ (θî-Mean θ̂)
2n

i=1  (11) 
 

 MSE(θ̂)=Var(θ̂)+ (Bias(θ̂))
2
 (12) 

 Def(α̂ , β̂)= MSE(α̂)+MSE(β̂) (13) 
 

where, θ = (α , β)  ∈ R×R+. It can be seen from Table 
1 that, according to the bias, MSE, and deficiency 
criteria, using the PSO algorithm for ML estimation 
of the EMLOG distribution is more efficient than the 
SC algorithm. In other words, it's clear that for all n 
values, the simulated values show that the PSO 
provides noticeably better results than the SC 
algorithm. 
 

Table 1 is here 

4. Conclusion 

       The EMLOG distribution is a new 
distribution obtained by combining a logistic 
distribution with an exponential distribution. 
Because of its flexibility, this distribution can 
outperform many prominent distributions, such 
as gamma, weibull, logistic, and others, and be 
used as an alternative to them with a superior fit 
in many application cases. Thus, it has a wide 
range of use in many areas, such as engineering, 
medical science, technology, energy, marketing, 
biology, and psychology. In this study, ML 
estimates of the EMLOG distribution's location 
and scale parameters are investigated, which 
cannot be obtained explicitly because of the 
complication of finding a solution for their 
nonlinear likelihood equations. Using meta-
heuristic algorithms such as SCA and PSO can 
be considered a better alternative for finding ML 
estimators than other numerical algorithms. It is 
seen that, according to the simulation results, the 
ML estimates of the PSO algorithm show the 
best performance in comparison with the SCA 
algorithm. In our future study, this study will be 
expanded, and the ML estimates of the EMLOG 
distribution will be obtained with other efficient 
meta-heuristic algorithms like Grey Wolf 
Optimization (GWO) and Whale Optimization 
Algorithm (WOA) in addition to SCA and PSO 
algorithms. Then, the performance of the 
estimators will be compared and evaluated to 
determine the most efficient algorithm that can 
be used for estimating the parameters of the 
EMLOG distribution. Furthermore, some 
applications will be considered to show the 
flexibility of this distribution. 
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Table 1. Simulated Mean, Bias, Variance, MSE, and Def values for the ML estimators �̂� and �̂�. 
  �̂�  �̂�   

𝑛       
Method 

𝛼 = 1, 𝛽
= 1 

 

Mean 

 

Variance 

 

Bias 

 

MSE 

 

Mean 

 

Variance 

 

Bias 

 

MSE 

 

Def 

30 SC  
2.0237 

 
17.8320 

  
1.0237 

 
18.8800 

 
0.9270 

 
0.0652 

 -
0.0730 

 
0.0705 

 
18.9505 

 PSO  
0.9325 

 
0.3457 

 -
0.0675 

 
0.3503 

 
1.0387 

 
0.1069 

  
0.0387 

 
0.1084 

 
0.4587 

50 SC  
2.2017 

 
21.4220 

  
1.2017 

 
22.8661 

 
0.9408 

 
0.0688 

 -
0.0592 

 
0.0723 

 
22.9384 

 PSO  
0.9635 

 
0.1723 

 -
0.0365 

 
0.1736 

 
1.0285 

 
0.0419 

  
0.0285 

 
0.0427 

 
0.2163 

100 SC  
2.0745 

 
19.1190 

  
1.0745 

 
20.2736 

 
0.9394 

 
0.0546 

 -
0.0606 

 
0.0583 

 
20.3318 

 PSO  
0.9286 

 
0.2145 

 -
0.0714 

 
0.2196 

 
1.0408 

 
0.0784 

  
0.0408 

 
0.0801 

 
0.2997 

150 SC  
1.7817 

 
14.2310 

  
0.7818 

 
14.8422 

 
0.9598 

 
0.0400 

 -
0.0402 

 
0.0416 

 
14.8838 

 PSO  
0.9331 

 
0.2009 

 -
0.0669 

 
0.2054 

 
1.0434 

 
0.0665 

  
0.0434 

 
0.0684 

 
0.2738 

 
200 SC  

1.8953 
 

16.2030 
  

0.8953 
 

17.0046 
 

0.9519 
 

0.0445 
 -

0.0481 
 

0.0468 

 
17.0514 

 PSO  
0.9356 

 
0.1518 

 -
0.0644 

 
0.1559 

 
1.0407 

 
0.0550 

  
0.0407 

 
0.0567 

 
0.2126 

𝛼 = 1, 𝛽
= 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
30 SC  

1.7568 
 

13.7140 
  

0.7569 
 

14.2869 
 

1.8889 
 

0.2220 
 -

0.1111 
 

0.2343 
 

14.5212 
 PSO  

1.0185 
 

0.6051 
  

0.0185 
 

0.6054 

 
1.9751 

 
0.1007 

 -
0.0249 

 
0.1013 

 
0.7068 

50 SC  
1.4822 

 
9.1786 

  
0.4822 

 
9.4111 

 
1.9197 

 
0.1437 

 -
0.0803 

 
0.1501 

 
9.5613 

 PSO  
0.9932 

 
0.3727 

 -
0.0068 

 
0.3727 

 
1.9882 

 
0.0671 

 -
0.0118 

 
0.0672 

 
0.4400 

100 SC  
1.3018 

 
5.8544 

  
0.3018 

 
5.9455 

 
1.9517 

 
0.0862 

 -
0.0483 

 
0.0885 

 
6.0340 

 PSO  
0.9628 

 
0.2391 

 -
0.0372 

 
0.2405 

 
2.0028 

 
0.0449 

  
0.0028 

 
0.0449 

 
0.2854 

150 SC  
1.1800 

 
3.3322 

  
0.1800 

 
3.3646 

 
1.9667 

 
0.0506 

 -
0.0333 

 
0.0517 

 
3.4163 

 PSO  
0.9913 

 
0.1655 

 -
0.0087 

 
0.1656 

 
2.0034 

 
0.0369 

  
0.0034 

 
0.0369 

 
0.2025 

 
200 SC  

1.2482 
 

4.3658 
  

0.2483 
 

4.4275 
 

1.9562 
 

0.0565 
 -

0.0438 
 

0.0584 
 

4.4859 
 PSO  

0.9955 
 

0.1422 
 -

0.0045 
 

0.1422 

 
1.9972 

 
0.0294 

 -
0.0028 

 
0.0294 

 
0.1716 
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