On Semisimple Semigroups Characterized in Terms Interval valued Q-Fuzzy interior ideals with thresholds $(\overline{\alpha}, \overline{\beta})$

KASITRA NEANHEAN, THITI GAKETEM

Department of Mathematics, School of Science, University of Phayao, Phayao 56000, THAILAND

Abstract: In this article, we provide relationship be- tween interval valued Q-fuzzy interior ideals with thresholds $(\bar{\alpha}, \bar{\beta})$ and interval valued Q-fuzzy ideals with thresh- olds $(\bar{\alpha}, \bar{\beta})$. In the goal results, we proceed to characterize the simisimple semigroup by using interval valued Q-fuzzy interior ideals with thresholds $(\bar{\alpha}, \bar{\beta})$.

Keywords Interval-valued Q-fuzzy ideals with thresholds ($\bar{\alpha}, \bar{\beta}$), Interval-valued Q-fuzzy interior ideals with thresholds ($\bar{\alpha}, \bar{\beta}$), left regular, regular, intra-regular and semisimple semigroup

Received: May 17, 2021. Revised: February 10, 2022. Accepted: March 12, 2022. Published: April 5, 2022.

1 Introduction and preliminaries

As a generalization of fuzzy set interval valued fuzzy set was conceptualized by Zadeh in 1975[16]. This concept is not only used in mathematics and logic but also in medical science [5], image processing [3] and decision making method [18] etc. In 1994, Biswas [4] used the ideal of interval valued fuzzy sets to interval valued subgroups. In 2006, Narayanan and Manikantan [13] were studied interval valued fuzzy subsemigroups and types interval valued fuzzy ideals in semigroups. In 2014, Aslam et al. [2], gave the concept interval valued ($\overline{\alpha}, \overline{\beta}$)-fuzzy ideals of LA-semigroups where $\overline{\alpha}, \overline{\beta} \in {\overline{\epsilon}, \overline{\epsilon}, \forall \overline{q}}$ and he characterized regular LA-semigroups by using interval valued ($\overline{\alpha}, \overline{\beta}$)-fuzzy ideals. In 2017, Murugads et al. [11] studied interval valued Q-fuzzy subsemigroup of ordered semigroup.

In the same year Abdullah et al. [1] gave the definition of $(\overline{\alpha}, \overline{\beta})$ -interval valued fuzzy subsemigroups where $\overline{\alpha} \prec \overline{\beta}$, which are generalization of interval valued fuzzy subsemigroups and they characterized regular semigroups in terms of $(\overline{\alpha}, \overline{\beta})$ -interval valued fuzzy subsemigroups. In 2019, Murugads and Arikrishnan [12] gave concept of interval valued Q-fuzzy ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ where $\overline{\alpha} \prec \overline{\beta}$ and characterized regular semigroups in terms of interval valued Q-fuzzy ideal with thresholds $(\overline{\alpha}, \overline{\beta})$.

In this article, we provide relationship between interval valued Q-fuzzy interior ideals with thresholds $(\overline{\alpha}, \overline{\beta})$ and interval valued Q-fuzzy ideals with thresholds $(\overline{\alpha}, \overline{\beta})$. In the goal results, we proceed to characterize the simisimple semigroup by using interval valued Q-fuzzy interior ideals with thresholds $(\overline{\alpha}, \overline{\beta})$.

2 Preliminaries

In this topic, we give some basic definitions which will be helpful in next topic. By a subsemigroup of a semigroup S we mean a nonempty subset K of S such that $K^2 \subseteq K$. A non-empty subset K of a semigroup S is called a *left* (right) ideal of Sif $SK \subseteq K$ ($KS \subseteq K$). By an *ideal* K of a semigroup S we mean a left ideal and a right ideal of S. A subsemigroup K of a semigroup S is called an *interior ideal* of S if $SKS \subseteq K$. A semigroup S is called an *interior ideal* of S if if for each $u \in S$, there exists $a \in S$ such that $u = au^2$ $(u = u^2a)$. A semigroup S is said to be *intra-regular* if for each $u \in S$, there exist $a, b \in S$ such that $u = au^2b$. A semigroup S is called *semisimple* if every ideal of S is an idempotent. It is evident that S is semisimple if and only if $u \in (SuS)(SuS)$ for every $u \in S$, that is there exist $w, y, z \in S$ such that u = wuyuz.

For any $m_i \in [0, 1], i \in \mathcal{A}$, define

$$\bigvee_{i \in \mathcal{A}} m_i := \sup_{i \in \mathcal{A}} \{ m_i \} \text{ and } \bigwedge_{i \in \mathcal{A}} m_i := \inf_{i \in \mathcal{A}} \{ m_i \}.$$

We see that for any $m, n \in [0, 1]$, we have

 $m \lor n = \max\{m, n\}$ and $m \land n = \min\{m, n\}.$

We use C to denote the set of all closed subintervals in [0, 1], i.e.,

$$C = \{\overline{m} := [m^-, m^+] \mid 0 \le m^- \le m^+ \le 1\}.$$

We note that $[m, m] = \{m\}$ for all $m \in [0, 1]$. For m = 0 or 1 we shall denote $\overline{0} = [0, 0] = \{0\}$ and $\overline{1} = [1, 1] = \{1\}$.

For any two interval numbers \overline{m} and \overline{n} in C, define the operations " \preceq ", "=", " λ " " γ " as follows:

- 1. $\overline{m} \preceq \overline{n}$ if and only if $m^- \leq n^-$ and $m^+ \leq n^+$
- 2. $\overline{m} = \overline{n}$ if and only if $m^- = n^-$ and $m^+ = n^+$
- 3. $\overline{m} \downarrow \overline{n} = [(m^- \land n^-), (m^+ \land n^+)]$

The following proposition is a tool used to prove the section 4 and 5.

Proposition 2.1. [6] For any elements $\overline{m}, \overline{n}$ and \overline{p} in C, the following properties are true:

- 1. $\overline{m} \downarrow \overline{m} = \overline{m}$ and $\overline{m} \curlyvee \overline{m} = \overline{m}$,
- 2. $\overline{m} \downarrow \overline{n} = \overline{n} \downarrow \overline{m}$ and $\overline{m} \curlyvee \overline{n} = \overline{n} \curlyvee \overline{m}$,
- 3. $(\overline{m} \land \overline{n}) \land \overline{p} = \overline{m} \land (\overline{n} \land \overline{p}) \text{ and } (\overline{m} \lor \overline{n}) \lor \overline{p} = \overline{m} \lor (\overline{n} \lor \overline{p}),$
- 4. $(\overline{m} \land \overline{n}) \lor \overline{p} = (\overline{m} \lor \overline{p}) \land (\overline{n} \lor \overline{p}) \text{ and } (\overline{m} \lor \overline{n}) \land \overline{p} = (\overline{m} \land \overline{p}) \curlyvee (\overline{n} \land \overline{p}),$
- 5. If $\overline{m} \preceq \overline{n}$, then $\overline{m} \land \overline{p} \preceq \overline{n} \land \overline{p}$ and $\overline{m} \lor \overline{p} \preceq \overline{n} \lor \overline{p}$.

For each interval $\{\overline{m}_i := [m_i^-, m_i^+] \mid i \in \mathcal{A}\}$ be a family of closed subintervals of [0, 1]. Define $\forall \overline{m}_i = [\land m_i^-, \land m_i^+]$ and $\forall \overline{m}_i = [\lor m_i^-, \lor m_i^+]$.

$$\underset{i \in \mathcal{A}}{\wedge} m_i = [\underset{i \in \mathcal{A}}{\wedge} m_i, \underset{i \in \mathcal{A}}{\wedge} m_i] \text{ and } \underset{i \in \mathcal{A}}{\vee} m_i = [\underset{i \in \mathcal{A}}{\vee} m_i, \underset{i \in \mathcal{A}}{\vee} m_i]$$

Definition 2.1. Let S be a semigroup and Q be a non-empty set. A Q-fuzzy subset (Q-fuzzy set) of a set T is a function $f: S \times Q \rightarrow [0, 1]$

Definition 2.2. [15] Let T be a non-empty set. An interval valued fuzzy subset (shortly, IVF subset) of T is a function $\overline{f}: T \to C$

Definition 2.3. [11] Let S be a semigroup and Q be a nonempty set. An interval valued Q-fuzzy subset (shortly, IVQF subset) of T is a function $\overline{f}: S \times Q \to C$

Definition 2.4. [11] Let K be a non-empty subset of a semigroup S and Q be a non-empty set . An interval valued characteristic function $\overline{\lambda}_K$ of K is defined to be a function $\overline{\lambda}_K : S \times Q \to \mathcal{C}$ by

$$\overline{\lambda}_K(u,q) = \begin{cases} \overline{1} & \text{if } u \in K \\ \overline{0} & \text{if } u \notin K \end{cases}$$

for all $u \in T$.

For two IVQF subsets \overline{f} and \overline{g} of a semigroups S, define

- (1) $\overline{f} \sqsubseteq \overline{g} \Leftrightarrow \overline{f}(u,q) \preceq \overline{g}(u,q)$ for all $u \in S$ and $q \in Q$,
- (2) $\overline{f} = \overline{g} \Leftrightarrow \overline{f} \sqsubseteq \overline{g} \text{ and } \overline{g} \sqsubseteq \overline{f},$
- (3) $(\overline{f} \sqcap \overline{g})(u,q) = \overline{f}(u,q) \land \overline{g}(u,q)$ for all $u \in S$ and $q \in Q$.

For two IVQF subsets \overline{f} and \overline{g} of a semigroup S. Then the product $\overline{f} \circ \overline{g}$ is defined as follows for all $u \in S$ and $q \in Q$,

$$(\overline{f} \circ \overline{g})(u,q) = \begin{cases} \Upsilon \\ (y,z) \in F_u \\ \overline{0} \end{cases} \quad \text{if} \quad F_u \neq \emptyset, \\ \text{if} \quad F_u = \emptyset, \end{cases}$$

where $F_u := \{(y, z) \in S \times S \mid u = yz\}.$

Next, we shall give definitions of various types of IVQF subsemigroup of a semigroups.

Definition 2.5. [12] An IVF subset \overline{f} of a semigroup S is said to be

- (1) an *IVQF* subsemigroup of S if $\overline{f}(uv,q) \succeq \overline{f}(u,q) \land \overline{f}(v,q)$ for all $u, v \in S$ and $q \in Q$,
- (2) an IVQF left (right) ideal of S if $\overline{f}(uv,q) \succeq \overline{f}(v,q)$ ($\overline{f}(uv,q) \succeq \overline{f}(u,q)$) for all $u, v \in S$ and $q \in Q$. An IVQF ideal of S if it is both an IVQF left ideal and an IVQF right ideal of S, ISSN: 2367-895X

International Journal of Mathematical and Computational Methods http://www.iaras.org/iaras/journals/ijmcm

- (3) an *IVQF* generalized bi-ideal of S if $\overline{f}(uvw,q) \succeq \overline{f}(u,q) \land \overline{f}(w,q)$ for all $u, v, w \in S$ and $q \in Q$,
- (4) an *IVQF bi-ideal* of S if \overline{f} is an IVQF subsemigroup of S and $\overline{f}(uvw,q) \succeq \overline{f}(u,q) \land \overline{f}(w,q)$ for all $u, v, w \in S$ and $q \in Q$,
- (5) an *IVQF interior ideal* of S if if \overline{f} is an IVQF subsemigroup of S and $\overline{f}(uav,q) \succeq \overline{f}(a,q)$ for all $a, u, v \in S$ and $q \in Q$,
- (6) an *IVQF* quasi-ideal of S if $\overline{f}(u,q) \succeq (\overline{S} \circ \overline{f})(u,q) \land (\overline{f} \circ \overline{S})(u,q)$, for all $u \in S$ and $q \in Q$ where \overline{S} is an IVQF subset of S mapping every element of S on $\overline{1}$.

The thought of an IVQF subsemigroup with thresholds $(\overline{\alpha}, \overline{\beta})$ where $\overline{\alpha} \prec \overline{\beta}$ as follows:

Definition 2.6. [12] An IVF subset \overline{f} of a semigroup S and $\overline{\alpha} \prec \overline{\beta}$ and $\overline{\alpha}, \overline{\beta} \in \mathcal{C}$ is said to be

- (1) an *IVQF* subsemigroup with thresholds $(\overline{\alpha}, \overline{\beta})$ of S if $\overline{f}(uv, q) \lor \overline{\alpha} \succeq \overline{f}(u, q) \land \overline{f}(v, q) \land \overline{\beta}$ for all $u, v \in S$ and $q \in Q$,
- (2) an *IVQF* left (right) ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of S if $\overline{f}(uv, q) \vee \overline{\alpha} \succeq \overline{f}(v, q) \land \overline{\beta}$ ($\overline{f}(uv, q) \vee \overline{\alpha} \succeq \overline{f}(u, q) \land \overline{\beta}$) for all $u, v \in S$ and $q \in Q$. An *IVQF* ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of S if it is both an IVF left ideal and an IVF right ideal of S,
- (3) an *IVQF* generalized bi-ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of S if $\overline{f}(uvw, q) \lor \overline{\alpha} \succeq \overline{f}(u, q) \land \overline{f}(w, q) \land \overline{\beta}$ for all $u, v, w \in S$ and $q \in Q$,
- (4) an *IVQF bi-ideal with thresholds* $(\overline{\alpha}, \overline{\beta})$ of *S* if \overline{f} is an IVQF subsemigroup with thresholds $(\overline{\alpha}, \overline{\beta})$ of *S* and $\overline{f}(uvw, q) \\ \overline{\alpha} \succeq \overline{f}(u, q) \\ \land \overline{f}(w, q) \\ \land \overline{\beta}$ for all $u, v, w \in S$ and $q \in Q$,
- (5) an *IVQF* interior ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of *S* if \overline{f} is an IVQF subsemigroup with thresholds $(\overline{\alpha}, \overline{\beta})$ of *S* and $\overline{f}(uav, q) \land \overline{\alpha} \succeq \overline{f}(a, q) \land \overline{\beta}$ for all $a, u, v \in S$ and $q \in Q$,
- (6) an *IVQF* quasi-ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of S if $\overline{f}(u, q) \\ \overline{\alpha} \succeq (\overline{S} \circ \overline{f})(u, q) \land (\overline{f} \circ \overline{S})(u, q) \land \overline{\beta}$, for all $u \in S$ and $q \in Q$.

Remark 2.1. [12] It is clear to see that every IVQF bi-ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ is an IVQF generalized bi-ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of S, every IVQF ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ is an IVQF interior ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of S and IVQF quasi-ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ is an IVQF bi-ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of S.

The following theorem is easy to prove.

Theorem 2.2. [12] Every IVQF ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of a semigroup S is an IVQF interior ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of S.

Example 2.1. Consider a semigroup $S = \{0, a, b, c\}$ and Q be any non-empty set

•	0	a	b	c
0	0	0	0	0
a	0	0	0	0
b	0	0	0	a
c	0	$egin{array}{c} a \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	a	b
0		0		5

Let \overline{f} be an IVQF subset of S such that $\overline{f}(0,q) = [0.7, 0.8], \overline{f}(a,q) = [0.4, 0.5], \overline{f}(b,q) = [0.6, 0.7], \overline{f}(c,q) = \overline{0}$ and let $\overline{\alpha} = [0.3, 0.3], \overline{\beta} = [0.5, 0.5]$. Then \overline{f} is not an IVQF interior ideal with $(\overline{\alpha}, \overline{\beta})$ of S. But the $\overline{\lambda}$ is an IVQF ideal with $(\overline{\alpha}, \overline{\beta})$ of S, because $\overline{f}(bc, q) \vee \overline{\alpha} = \overline{f}(a, q) \vee \overline{\alpha} = [0.4, 0.5] \not\succeq [0.5, 0.5] = \overline{f}(b, q) \land \overline{\beta}$. Thus \overline{f} is not an IVQF right ideal subsemigroup with $(\overline{\alpha}, \overline{\beta})$ of S.

25

The following theorem show that the IVQF interior ideals with thresholds $(\overline{\alpha}, \overline{\beta})$ and IVQF ideals with thresholds $(\overline{\alpha}, \overline{\beta})$ coincide for some types of semigroups. The proof of this theorem is straightforward and simple.

Lemma 2.3. Let S be a semigroup. If S is left (right) regular, then every IVQF interior ideals with thresholds $(\overline{\alpha}, \overline{\beta})$ of S is thresholds $(\overline{\alpha}, \overline{\beta})$ -IVF ideal of S.

Proof. Suppose that \overline{f} is an IVQF interior ideals with thresholds $(\overline{\alpha}, \overline{\beta})$ of S and let $u, v \in S$ and $q \in Q$. Since S is left regular, there exists $k \in S$ such that $u = ku^2$. Thus, $\overline{f}(uv, q) \vee \overline{\alpha} = \overline{f}((ku^2)v, q) \vee \overline{\alpha} = \overline{f}(kuuv, q) \vee \overline{\alpha} = \overline{f}((ku)uv, q) \vee \overline{\alpha} \succeq \overline{f}(u, q) \land \overline{\beta}$. Hence \overline{f} is an IVQF right ideals with $(\overline{\alpha}, \overline{\beta})$ of S. Similarly, we can show that \overline{f} is an IVQF left ideals with $(\overline{\alpha}, \overline{\beta})$ of S. \Box

Lemma 2.4. Let S be a semigroup. If S is intra-regular, then every IVQF interior ideals with $(\overline{\alpha}, \overline{\beta})$ of S is an IVQF ideal thresholds $(\overline{\alpha}, \overline{\beta})$ of S.

Proof. Suppose that \overline{f} is an IVQF interior ideals with $(\overline{\alpha}, \overline{\beta})$ of semigroup S and let $u, v \in S$ and $q \in Q$. Since S is intraregular, there exist $x, y \in S$ such that $u = xu^2y$. Thus, $\overline{f}(uv, q) \, \curlyvee \, \overline{\alpha} = \overline{f}((xu^2y)v, q) \, \curlyvee \, \overline{\alpha} = \overline{f}((xuuy)v, q) \, \curlyvee \, \overline{\alpha} = \overline{f}((xuuy)v, q) \, \curlyvee \, \overline{\alpha} = \overline{f}((xuuy)v, q) \, \curlyvee \, \overline{\alpha} = \overline{f}((xu)u(yv), q) \, \curlyvee \, \overline{\alpha} \succeq \overline{f}(u, q) \, \land \overline{\beta}$. Hence \overline{f} is an IVQF right ideals with $(\overline{\alpha}, \overline{\beta})$ of S. Similarly, we can show that \overline{f} is an IVQF ideals with $(\overline{\alpha}, \overline{\beta})$ of S.

Lemma 2.5. Let S be a semigroup. If S is semisimple, then every IVQF interior ideals with $(\overline{\alpha}, \overline{\beta})$ of S is is an IVQF ideal thresholds $(\overline{\alpha}, \overline{\beta})$ of S.

Proof. Suppose that \overline{f} is an IVQF interior ideals with $(\overline{\alpha}, \overline{\beta})$ of S and let $u, v \in S$ and $q \in Q$. Since S is semisimple, there exist $x, y, z \in S$ such that u = xuyuz. Thus, $\overline{f}(uv, q) \vee \overline{\alpha} = \overline{f}((xuy)u(zv), q) \vee \overline{\alpha} \succeq \overline{f}(u, q) \land \overline{\beta}$. Hence \overline{f} is an IVQF right ideals with $(\overline{\alpha}, \overline{\beta})$ ideal of S. Similarly, we can show that \overline{f} is an IVQF left ideals with $(\overline{\alpha}, \overline{\beta})$ of S. Thus \overline{f} is an IVQF ideals with $(\overline{\alpha}, \overline{\beta})$ of S.

By Lemma 2.3, 2.4 and 2.5 we have Theorem 2.6.

Theorem 2.6. In left (right) regular, intra-regular and semisimple semigroup, the IVQF interior ideals with $(\overline{\alpha}, \overline{\beta})$ and the is an IVQF ideal thresholds $(\overline{\alpha}, \overline{\beta})$ coincide.

In this ensuing theorem is present relationship between types ideals of a semigroup S and the interval valued characteristic function.

Theorem 2.7. [12] If K is a left ideal (right ideal generalized bi-ideal, bi-ideal, interior ideal, quasi-ideal) of S, then characteristic function $\overline{\chi}_K$ is an IVQF left ideal (right ideal, generalized bi-ideal, bi-ideal, interior ideal, quasi-ideal) with thresholds $(\overline{\alpha}, \overline{\beta})$ of S for all $\overline{\alpha} \prec \overline{\beta}$ and $\overline{\alpha}, \overline{\beta} \in C$.

3 Characterize semsimiple semigroups in terms IVQF interior ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ and IVQF ideals with thresholds $(\overline{\alpha}, \overline{\beta})$.

In this topic, we will characterize a semsimiple semigroup in terms of IVQF interior ideals with thresholds $(\overline{\alpha}, \overline{\beta})$ and IVQF ideals with thresholds $(\overline{\alpha}, \overline{\beta})$.

In 2019, [12] Murugads and Arikrishnan propose symbols of IVQF ideals with thresholds $(\overline{\alpha}, \overline{\beta})$ for use characterizes a ISSN: 2367-895X

International Journal of Mathematical and Computational Methods http://www.iaras.org/iaras/journals/ijmcm

semigroup in terms IVQF ideals with thresholds $(\overline{\alpha}, \overline{\beta})$ of semigroup.

For any IVQF subset \overline{f} of a semigroup S with $\overline{\alpha} \prec \overline{\beta}$ and $\overline{\alpha}, \overline{\beta} \in \mathcal{C}$, define

$$\overline{f}_{(\overline{\alpha}\ \overline{\beta})}(u,q) = (\overline{f}(u,q) \land \overline{\alpha}) \land \overline{\beta}$$

for all $u \in S$ and $q \in Q$.

For any IVQF subsets \overline{f} and \overline{g} of a semigroup S with $\overline{\alpha} \prec \overline{\beta}$ and $\overline{\alpha}, \overline{\beta} \in \mathcal{C}$, define the operation " $\lambda_{\overline{\beta}}^{\overline{\alpha}}$ " as follows:

$$(\overline{f} \mathbin{\textstyle{\,\,{\scriptscriptstyle{\wedge}}}}_{\overline{\beta}}^{\overline{\alpha}} \overline{g})(u,q) = (\overline{f}(u,q) \mathbin{\textstyle{\wedge}} \overline{g}(u,q) \mathbin{\textstyle{\wedge}} \overline{\alpha}) \mathbin{\vee} \overline{\beta}$$

for all $u \in S$ and $q \in Q$. And define the product $\overline{f} \circ_{\overline{\beta}}^{\overline{\alpha}} \overline{g}$ as follows: for all $u \in S$ and $q \in Q$,

$$(\overline{f}\circ_{\overline{\beta}}^{\overline{\alpha}}\overline{g})(u,q) = ((\overline{f}\circ\overline{g})(u,q) \land \overline{\alpha}) \lor \overline{\beta}$$

where

$$(\overline{f} \circ \overline{g})(u,q) = \begin{cases} \gamma \{\overline{f}(x,q) \land \overline{g}(y,q)\} & \text{if } F_u \neq \emptyset \\ 0 & \text{if } F_u = \emptyset \end{cases}$$

where $F_u := \{(x, y) \in S \times S \mid u = xy\}.$

Remark 3.1. Since $\overline{\chi}$ is an interval valued characteristic, we have

$$\overline{\lambda}_{(\overline{\alpha},\overline{\beta})}(u,q) := \begin{cases} \beta & \text{if } u \in K, \\ \overline{\alpha} & \text{if } u \notin K. \end{cases}$$

Lemma 3.1. [12] Let K and L be non-empty subsets of a semigroup S with $\overline{\alpha} \prec \overline{\beta}$ and $\overline{\alpha}, \overline{\beta} \in C$. Then the following assertions hold:

- (1) $(\overline{\lambda}_K) \wedge \frac{\overline{\alpha}}{\overline{\beta}} (\overline{\lambda}_L) = (\overline{\lambda}_{K \cap L})_{(\overline{\alpha},\overline{\beta})}.$
- (2) $(\overline{\lambda}_K) \circ_{\overline{\beta}}^{\overline{\alpha}} (\overline{\lambda}_L) = (\overline{\lambda}_{KL})_{(\overline{\alpha},\overline{\beta})}.$

On the basis of Lemma 3.2, we can prove Theorem 3.4.

Lemma 3.2. [12] Let S be a semigroup. If \overline{f} is a $(\overline{\alpha}, \overline{\beta})$ -IVQF right ideal and \overline{g} is a $(\overline{\alpha}, \overline{\beta})$ -IVQF left ideal of S, then $\overline{f} \stackrel{\circ}{(\overline{\alpha}, \overline{\alpha})} \overline{g} \sqsubseteq \overline{f} \downarrow_{\overline{\beta}} \overline{\overline{g}}.$

Lemma 3.3. [10] For a semigroup S, the following statements are equivalent.

- 1. S is semisimple,
- 2. Every interior ideal K of S is idempotent,
- 3. Every ideal K of S is idempotent,
- 4. For any ideals K and L of S, $K \cap L = KL$
- 5. For any ideal K and any interior ideal L of S, $K \cap L = KL$
- 6. For any interior K and any ideal L of S, $K \cap L = KL$
- 7. For any interior ideals K and L of S, $K \cap L = KL$.

The following Theorem show an equivalent conditional statement for a semisimple semigroup.

Theorem 3.4. Let S be a semigroup. Then the following are equivalent:

- 1. S is semisimple,
- 2. $\overline{f} \circ_{\overline{\beta}}^{\overline{\alpha}} \overline{f} = \overline{f}$, for every IVQF interior ideals with thresholds $(\overline{\alpha}, \overline{\beta}) \overline{f}$ of S,
- 3. $\overline{f} \circ_{\overline{\beta}}^{\overline{\alpha}} \overline{f} = \overline{f}$, for every IVQF ideals with thresholds $(\overline{\alpha}, \overline{\beta})$ \overline{f} of S,
- 4. $\overline{f} \circ \frac{\overline{\alpha}}{\overline{\beta}} \overline{g} = \overline{f} \wedge \frac{\overline{\alpha}}{\overline{\beta}} \overline{g}$, for every IVQF interior ideals with thresholds $(\overline{\alpha}, \overline{\beta}) \overline{f}$ and \overline{g} of S,

International Journal of Mathematical and Computational Methods http://www.iaras.org/iaras/journals/ijmcm

- 5. $\overline{f} \circ_{\overline{\beta}}^{\overline{\alpha}} \overline{g} = \overline{f} \downarrow_{\overline{\beta}}^{\overline{\alpha}} \overline{g}$, for every *IVQF* ideals with thresholds $(\overline{\alpha}, \overline{\beta}) \overline{f}$ and \overline{g} of *S*,
- *f* ^α/_β *ḡ* = *f̄* λ^α/_β *ḡ*, for every IVQF interior ideal with thresholds
 (*α*, *β̄*) *f̄* of S and every IVQF ideal with thresholds
 (*α*, *β̄*) *ḡ* of S,
- *f* ◦[∞]_β *ḡ* = *f̄* λ[∞]_β *ḡ*, for every IVQF ideal with thresholds
 (*α*, *β̃*) *f̄* of S and every IVQF interior ideal with thresholds
 (*α*, *β̃*) *ḡ* of S.

Proof. (1) \Rightarrow (2) Suppose that \overline{f} is a IVQF interior ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of S. Then \overline{f} is a IVQF subsemigroup with thresholds $(\overline{\alpha}, \overline{\beta})$. We will show that $\overline{f} \circ_{(\overline{t}, \overline{s})} \overline{f} = \overline{f}_{(\overline{t}, \overline{s})}$. Let

 $u \in S$ and $q \in Q$. If $F_u = \emptyset$, then it is easy to verify that

 $(\overline{f} \circ_{\overline{\beta}}^{\overline{\alpha}} \overline{f})(u,q) \preceq \overline{f}_{(\overline{\alpha},\overline{\beta})}(u,q).$

If $F_u \neq \emptyset$, then

$$\begin{split} (\overline{f} \circ_{\overline{\beta}}^{\overline{\alpha}} \overline{f})(u,q) &= (\underset{(x,y) \in F_u}{\Upsilon} \{\overline{f}(x,q) \land \overline{f}(y,q)\} \land \overline{\beta}) \curlyvee \overline{\alpha} \\ &= (\underset{(x,y) \in F_u}{\Upsilon} \{\overline{f}(x,q) \land \overline{f}(y,q) \land \overline{\beta}\} \land \overline{\beta}) \curlyvee \overline{\alpha} \\ &\preceq (\underset{(x,y) \in F_u}{\Upsilon} \{\overline{f}(xy,q) \curlyvee \overline{\alpha}\} \land \overline{\beta}) \curlyvee \overline{\alpha} \\ &= ((\overline{f}(u,q) \curlyvee \overline{\alpha}) \land \overline{\beta}) \curlyvee \overline{\alpha} \\ &= ((\overline{f}(u,q) \curlyvee \overline{\alpha}) \land \overline{\beta}) \curlyvee \overline{\alpha} \\ &= (\overline{f}(u,q) \curlyvee \overline{\alpha}) \land (\overline{\beta} \curlyvee \overline{\alpha}) \\ &= (\overline{f}(u,q) \land \overline{\alpha}) \land (\overline{\beta} \curlyvee \overline{\alpha}) \\ &= (\overline{f}(u,q) \land \overline{\beta}) \curlyvee \overline{\alpha} . \end{split}$$

Thus, $(\overline{f} \circ_{\overline{\beta}}^{\overline{\alpha}} \overline{f})(u,q) \preceq \overline{f}_{(\overline{\alpha},\overline{\beta})}(u,q)$. Hence, $\overline{f} \circ_{\overline{\beta}}^{\overline{\alpha}} \overline{f} \sqsubseteq \overline{f}_{(\overline{\alpha},\overline{\beta})}$. Since S is semisimple, we have there exist $w, x, y, z \in S$ such that u = (xuy)(zuw). Thus

$$\begin{split} (\overline{f} \circ_{\overline{\beta}}^{\overline{\alpha}} \overline{f})(u,q) &= (\mathop{\Upsilon}_{(i,j) \in F_u} \{\overline{f}(i,q) \land \overline{f}(j,q)\} \land \overline{\beta}) \curlyvee \overline{\alpha} \\ &= (\mathop{\Upsilon}_{(i,j) \in F_{(uvy)}(wuz)} \{\overline{f}(i,q) \land \overline{f}(j,q)\} \land \overline{\beta}) \curlyvee \overline{\alpha} \\ &\succeq ((\overline{f}(xuy,q) \land \overline{f}(wuz,q)) \land \overline{\beta}) \curlyvee \overline{\alpha} \\ &= ((\overline{f}(xuy,q) \curlyvee \overline{\alpha}) \land (\overline{f}(wuz,q) \curlyvee \overline{\alpha}) \land \overline{\beta}) \curlyvee \overline{\alpha} \\ &\succeq ((\overline{f}(u,q) \land \overline{\beta}) \land (\overline{f}(u,q) \land \overline{\beta}) \land \overline{\beta}) \curlyvee \overline{\alpha} \\ &= ((\overline{f}(u,q) \land \overline{\beta}) \land \overline{\beta}) \curlyvee \overline{\alpha} \\ &= (\overline{f}(u,q) \land \overline{\beta}) \land \overline{\beta}) \curlyvee \overline{\alpha} \\ &= (\overline{f}(u,q) \land \overline{\beta}) \curlyvee \overline{\alpha} = \overline{f}_{(\overline{\alpha},\overline{\beta})}(u,q). \end{split}$$

Hence, $(\overline{f} \circ_{\overline{\beta}}^{\overline{\alpha}} \overline{f})(u,q) \succeq \overline{f}_{(\overline{\alpha},\overline{\beta})}(u,q)$, and so $\overline{f}_{(\overline{\alpha},\overline{\beta})} \sqsubseteq \overline{f} \circ_{\overline{\beta}}^{\overline{\alpha}} \overline{f}$. Therefore, $\overline{f} \circ_{\overline{\beta}}^{\overline{\alpha}} \overline{f} = \overline{f}_{(\overline{\alpha},\overline{\beta})}$.

(2) \Rightarrow (1) Let K be an interior ideal of S. Then by Theorem 2.7, $\overline{\lambda}_K$ is a IVQF interior ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of S. By supposition and Lemma 3.1, we have

$$(\overline{\lambda}_{K^2})_{(\overline{\alpha},\overline{\beta})}(u,q) = ((\overline{\lambda}_K) \circ_{\overline{\beta}}^{\overline{\alpha}} (\overline{\lambda}_K))(u,q) = (\overline{\lambda}_K)_{(\overline{\alpha},\overline{\beta})}(u,q) = \overline{\beta}.$$

Thus $u \in K^2$. Hence $K^2 = K$. By Lemma 3.3, we have S is semisimple.

 $(1) \Rightarrow (4)$ Let \overline{f} and \overline{g} be IVQF interior ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of S. Then by Theorem 2.5, \overline{f} and \overline{g} are IVQF ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of S. Thus by Lemma 3.2, $\overline{f} \circ_{\overline{\beta}}^{\overline{\alpha}} \overline{g} \sqsubseteq \overline{f} \wedge_{\overline{\beta}}^{\overline{\alpha}} \overline{g}$. On other hand, let $u \in S$ and $q \in Q$. Then there exist $w, x, y, z \in S$ such that u = (xuy)(zuw). Thus

$$\begin{split} (\overline{f} \circ_{\overline{\beta}}^{\overline{\alpha}} \overline{g})(u,q) &= (\underset{(i,j) \in F_u}{\gamma} \{\overline{f}(i,q) \land \overline{g}(j,q)\} \land \overline{\beta}) \lor \overline{\alpha} \\ &= (\underset{(i,j) \in F_{(xuy)(wuz)}}{\gamma} \{\overline{f}(i,q) \land \overline{g}(j,q)\} \land \overline{\beta}) \lor \overline{\alpha} \\ &\succeq ((\overline{f}(xuy,q) \land \overline{g}(wuz,q)) \land \overline{\beta}) \lor \overline{\alpha} \\ &= ((\overline{f}(xuy,q) \lor \overline{\alpha}) \land (\overline{g}(wuz,q) \lor \overline{\alpha}) \land \overline{\beta}) \lor \overline{\alpha} \\ &\succeq ((\overline{f}(u,q) \land \overline{\beta}) \land (\overline{g}(u,q) \land \overline{\beta}) \land \overline{\beta}) \lor \overline{\alpha} \\ &\succeq ((\overline{f}(u,q) \land \overline{g}(u,q)) \land \overline{\beta}) \land \overline{\beta}) \lor \overline{\alpha} \\ &= (((\overline{f}(u,q) \land \overline{g}(u,q)) \land \overline{\beta}) \land \overline{\beta}) \lor \overline{\alpha} \\ &= ((\overline{f}(u,q) \land \overline{g}(u,q)) \land \overline{\beta}) \lor \overline{\alpha} \\ &= (\overline{f} \land_{\overline{\beta}}^{\overline{\alpha}} \overline{g})(u,q). \end{split}$$

Hence, $(\overline{f} \circ_{\overline{\beta}}^{\overline{\alpha}} \overline{g})(u,q) \succeq (\overline{f} \land_{\overline{\beta}}^{\overline{\alpha}} \overline{g})(u,q)$ and so $\overline{f} \land_{\overline{\beta}}^{\overline{\alpha}} \overline{g} \sqsubseteq \overline{f} \circ_{\overline{\beta}}^{\overline{\alpha}} \overline{g}$. Therefore, $\overline{f} \circ_{\overline{\beta}}^{\overline{\alpha}} \overline{g} = \overline{f} \land_{\overline{\beta}}^{\overline{\alpha}} \overline{g}$. ISSN: 2367-895X $(4) \Rightarrow (1)$ Let K and L be interior ideals of S. Then by Theorem 2.7, $\overline{\lambda}_K$ and $\overline{\lambda}_L$ are IVQF interior ideals with thresholds $(\overline{\alpha}, \overline{\beta})$ of S. By supposition and Lemma 3.1, we have

$$(\overline{\lambda}_{KL})_{(\overline{\alpha},\overline{\beta})}(u,q) = ((\overline{\lambda}_K) \circ_{\overline{\beta}}^{\overline{\alpha}} (\overline{\lambda}_L))(u,q) = ((\overline{\lambda}_K) \wedge_{\overline{\beta}}^{\overline{\alpha}} (\overline{\lambda}_L))(u,q) = (\overline{\lambda}_{K\cap L})_{(\overline{\alpha},\overline{\beta})}(uq) = \overline{\beta}$$

Thus, $u \in KL$. Hence, $KL = K \cap L$. By Lemma 3.3, S is semisimple.

(1) \Rightarrow (6) Let \overline{f} and \overline{g} be an IVQF interior ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ and an IVQF ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of S respectively. Then \overline{g} is an IVQF interior ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of S. Thus by (4), $\overline{f} \circ_{\overline{\beta}}^{\overline{\alpha}} \overline{g} = \overline{f} \land_{\overline{\beta}}^{\overline{\alpha}} \overline{g}$.

(6) \Rightarrow (1) Let K, L be an interior ideal and ideal of S respectively. Then by Theorem 2.7, $\overline{\lambda}_K$ and $\overline{\lambda}_L$ is a $\overline{\lambda}_L$ are IVQF interior ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ and $\overline{\lambda}_L$ are IVQF ideals with thresholds $(\overline{\alpha}, \overline{\beta})$ of S respectively. Then by Theorem 2.2, $\overline{\lambda}_L$ is an IVQF interior ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of S. Similarly from (4) \Rightarrow (1), we have S is semisimple.

So, $(1) \Leftrightarrow (3)$, $(1) \Leftrightarrow (5)$ and $(1) \Leftrightarrow (7)$ are Straightforward.

References

- S. Abdullah, M. Naeem and B. Davvaz, Characterizations of regular semigroups by interval valued fuzzy ideals with thresholds (α, β), Annals of fuzzy mathematics and informatics, vol. 8, no. 3, p. 419-445, 2014.
- [2] M. Aslam, S. Abdullah and S. Aslam, Characterization of regular LA-semigroups by interval valued (α, β)-fuzzy ideals, Affika mathematics, vol. 5, no. 3, p. 501-518, 2014.
- [3] J. Aranzazu, S. Antonio, P. Daniel, F. Javier, and B. Humberto, Interval valued fuzzy sets for color image super-resolution, Advances in artificial intelligence, p.373 382, 2011.
- [4] R. Biswas, Rosenfeld's fuzzy subgroups with interval valued membership functionsv, Fuzzy Sets and Systems, vol. 63, no. 1, p. 87-90, 1994.
- [5] H. Bustince, Indicator of inclusion grade for interval valued fuzzy sets. Application to approximate reasoning baseed on interval valued fuzzy sets, International Journal of approximate reasoning, vol. 23, p. 137-209, 1998.
- [6] Y. Feng, D. Tu and H. Li, Interval valued fuzzy hypergraph and interval valued fuzzy hyperopertions, Italian journal of pure and applied mathematics, vol. 36, p. 1-12, 2016.
- [7] T. Gaketem, and M. Siripitukdet, Some semigroup characterized in terms of generalized interval valued fuzzy ideals, Journal of Discrete Mathematical Sciences and Cryptography, Published online 11 oct 2020.
- [8] I. M. Howie, An Introduction to semigroup theory, Academic Press, New York, 1976.
- K. H. Kim, Interval valued intuitionistic (S^{*}, T^{*})-fuzzy bi-ideal of semigroup, Scientiae Mathematicae Japonicae, p. 29-35, 2010.
- [10] J. N. Mordeson, D. S. Malik and N. Kuroki, Fuzzy semigroup, Springer science and business media 2003.
- [11] P. Murugads, A. Arikshnam, and M.R. Thriumagal, Interval valued Q-fuzzy ideals generated by an interval valued Q-fuzzy subset in ordered semigorup. Annals of pure and applied mathematics, vol. 13, no. 2, p. 211-222, 2017.

Volume 7, 2022

- [12] P. Murugads and A. Arikshnam, Characterizations of regular semigroups by interval valued *Q*-fuzzy ideals with thresholds $(\overline{\alpha}, \overline{\beta})$. Malaya Journal of Matematik, vol. 1, p. 327-338, 2019.
- [13] AL. Narayanan and T. Manikantan, Interval valued fuzzy ideals generated by an interval valued fuzzy subset in semi-groups, Journal of Applied Mathematics and Computing, vol. 20, no. 1-2, p. 455-464, 2006.
- [14] A. Rosenfeld, Fuzzy groups, Journal of Mathematical Analysis and Applications, vol. 35, no.3, p. 512-517, 1971.
- [15] D. Singaram and PR. Kandasamy, Interval valued fuzzy

ideals of regular and intra-regular semigroups, Intern. J. Fuzzy Mathematical Archive, vol. 3, p. 50-57, 2013.

- [16] N. Yaqoob, R. Chinram, A. Ghareeb and M. Aslam, Left almost semigroups characterized by their interval valued fuzzy ideals, Affika Mathematics, 24, p. 231-245, 2013.
- [17] L.A. Zadeh, Fuzzy sets, Information and Control, vol. 8, p. 338-353, 1965.
- [18] M. Zulquanain and M. Saeed, A new decision making method on interval valued fuzzy soft matrix, British journal of mathematics and computer science, vol. 20, no. 5, 147, 2017
- p. 1-17, 2017.