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Abstract: - In this paper, performance comparison of FPGAs and GPUs are introduced.  Numerical methods to 
solve sparse matrices are evaluated as the main case-study. The experimental results showed that GPUs show 
superior performance over FPGAs/HW Emulation in terms of run time for small #equations.  For large number 
of equations “in order of ten millions”, the FPGAs/HW emulation outperforms GPUs as the parallelism rate of 
the emulation becomes higher in that case. 
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1 Introduction 
 

     Electromagnetic (EM) simulation is currently a 
highly-needed planning tool in high frequency 
systems. It enables the enhancement and the 
optimization of the performance of systems while 
they are still in the design phase.  
   The precise modeling of the relevant physical 
interactions in the simulation environment helps 
significantly in the optimization process and ensures 
that the system is optimally adapted to blend into its 
environment.  
   The main objective of EM simulation is to find an 
approximate solution for Maxwell's equations that 
satisfies the given boundary conditions and a set of 
initial conditions.  
    Several real-world electromagnetic problems are 
not analytically calculable, for the multitude of 
irregular geometries found in actual devices. 
Computational numerical techniques can overcome 
the inability to derive closed form solutions of 
Maxwell's equations under various constitutive 
relations of media, and boundary conditions.  
  Many numerical techniques are used for solving 
Maxwell’s equations, e.g., the finite difference 
method (FDM) [1], finite element method (FEM) 
[2], finite volume method (FVM) [3], and the 
boundary element method (BEM) [4]. Computations 
involved in FEM consume too much time, which 

affects the final time-to-market value. Profiling 
shows that the most time-consuming part in the 
simulation process is the solver part, which is 
responsible for solving the resultant system of linear 
equations generated from the FEM.  
   The total number of equations may reach 
thousands or millions of linear equations. Thus, 
software-based EM solvers are often too slow.  
   Several alternatives are introduced to accelerate 
the solver part including Application-specific 
Integrated Circuits (ASICs) for their high speed, 
Graphics Processing Units (GPUs) for their 
parallelization power, Field Programmable Gate 
Arrays (FPGAs) for their high speeds and relatively 
low cost and finally multi-FPGA systems for their 
abundance of logic resources. Although all these 
several solutions [5]-[6], there is still a room to 
improve the speed and scalability of these solvers. 
    Many publications targeted accelerating the 
numerical techniques used in the EM computations 
using different technologies. For example; Huan-
Ting Meng and Bao-Lin Nie accelerated the Finite 
Element Computation for Electromagnetic Analysis 
[7]-[15] as they focused on two bottlenecks, the first 
is related to the calculation of the elemental matrices 
and the second is related to the assembly of the 
elemental matrices into the global finite element 
matrix. There was also remarkable approaches to 
accelerate the Method of Moments [15]-[16] and the 
FDTD [17]-[18] using GPUs.   

Khaled Salah, Mohamed AbdelSalam
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 161 Volume 2, 2017



    For direct solvers, Maxim Naumov implemented 
Incomplete-LU and Cholesky Preconditioned 
Iterative Methods [18] using CUSPARSE [19] and 
CUBLAS [20], the work focused on the Bi-
Conjugate Gradient Stabilized and Conjugate 
Gradient iterative methods, which can be used to 
solve large sparse non-symmetric and symmetric 
positive definite linear systems. G. Ortega and E.M. 
Garzón accelerated Bi-Conjugate gradient method 
[21] the purpose was to compare the performance of 
sparse matrix vector product using CUSPARSE and 
ELLR-T routine.  
   The ELLR-T has proven to outperform the other 
sparse matrix kernels as demonstrated by F. 
Vázquez and J. J. Fernández [22].  Zhang has 
proposed a CUDA-Based implementation for the 
Jacobi Iterative Method [23], the paper focused on 
dense linear equations.   
    For Sparse Matrix vector product, Nathan Bell 
and Michael Garland implemented kernels for the 
popular sparse matrix representation [24] kernels 
were implemented for Diagonal, ELLPACK, 
Coordinate, CSR, Hybrid and Packet formats. 
   In this work, we propose hardware architecture for 
the conjugate gradient method to be used in solving 
linear equation. This algorithm is implemented on 
both FPGA and GPU to evaluate the performance 
improvement between them. For the best of our 
knowledge, this is the first work to address such a 
comparison for linear equation solvers.  
   GPU technology was introduced as solution to 
accelerate those different solvers for its 
parallelization power. 
    This paper is organized as follows: In Section II, 
problem formulation and contribution are discussed. 
In Section III, the background for FEM and 
conjugate gradient (CG) is presented. In Section IV, 
the proposed methodology is introduced. In Section 
V, Results are discussed. In Section VI, Conclusions 
are given. 

 

2   Problem Statement and 
Contribution 

  Computations involved in FEM consume too much 
time, which affects the final time-to-market value. 
Profiling shows that the most time-consuming part 
in the simulation process is the solver part which is 
responsible for solving the resultant system of linear 
equations generated from the FEM. The total 
number of equations may reach thousands or 
millions of linear equations.  

    Thus, software-based EM solvers are often too 
slow. Thus the main contribution of this work is as 
follows: 

1. Improve runtime performance of the solver 
part of the EM simulator on the emulator by 
using new techniques/designs. 

2. Do extensive comparisons between our 
proposed solvers and state-of-the-art solvers 
on GPUs/FPGAs.  

3. Implement a GUI for plotting EM 
computations using the hardware emulator 
co-model channel. This channel implies 
using SystemVerilog Direct Programming 
Interface (DPI) to provide the link between 
hardware running on emulator and software 
running on a co-model server connected to 
the emulator.  

 
3 Background 

  
  In this section, we provide a brief overview of the 
electromagnetics simulations and FEM. Then, we 
describe the details of the conjugate gradient 
method used to solve the matrices resulting from 
using the FEM. Moreover, we give a quick 
introduction about GPU and CUDA. 

3.1 EM Simulations 

The Key steps for  electromagnetic simulation are:  
 Creation of Physical Model: 

Drawing/Importing Layout Geometry, 
assigning materials, etc...  
 

 Setup of EM Simulation: Defining 
boundary conditions, ports, simulation 
settings, etc...  
 

 Performance of EM Simulation: 
Discretizing the physical model into mesh 
cells and approximating the field/current 
using a local function (Expansion/Basis 
function) and adjusting the function 
coefficients until the boundary conditions. 
 

 Post-Processing: Calculating S-parameters, 
TDR response, Antenna far field patterns, 
etc... 
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3.2 Finite Element Method 

  The FEM is a numerical technique, which is 
widely used in engineering to solve boundary-value 
problems, characterized by a partial differential 
equation (PDE) and a set of boundary conditions. 
The basic procedures of using FEM are:  

(1) Discretizing the computational domain into 
finite elements. 

(2) Rewriting the PDE in a weak formulation.  

(3) Choosing proper finite element spaces and 
forming the finite element scheme from the weak 
formulation. 

 (4) Calculating those element matrices on each 
element and assembling the element matrices to 
form a global linear system.  

(5) Applying the boundary conditions, solving the 
system of linear systems (SLS), and finally. 

 (6) Post-processing the numerical solution.  
 

3.3 Conjugate Gradient Method 

       Basic iterative methods such as Jacobi Method 
and Gauss Seidel method cannot solve all the linear 
systems. The Conjugate Gradient method is one of 
the Krylov subspace methods.  The conjugate 
gradient method derives its name from the fact that 
it generates a sequence of conjugate (or orthogonal) 
vectors. These vectors are the residuals of the 
iterates. They are also the gradients of a quadratic 
functional, the minimization of which is equivalent 
to solving the linear system.  

     Conjugate Gradient is an Iterative Method 
applicable to sparse systems that are too large to be 
handled by a direct implementation. It has the 
advantage that it reaches the required tolerance after 
a relatively small number of iterations compared to 
Jacobi and gauss methods.  

 The conjugate gradient method is used to solve 
equations where the matrix is symmetric.  Conjugate 
gradient method can reach the required tolerance 
after a relatively small number of iterations 
compared to Jacobi AND Gauss Method [7]-[10]. 
The conjugate gradient algorithm used in this work 
is shown in Listing 1. 

Listing 1: Conjugate gradient algorithm. 

Conjugate gradient algorithm : The algorithm is 

detailed below for solving Ax = b. 

Input: Number of linear equations. 

Variables: 

A is a real, symmetric, positive-definite matrix.  

The input vector x0 can be an approximate initial 
solution or 0. 

Output: Solution. 

 
 

0 
Repeat 

 

 
 
 

If 	 is very small then exit the loop else 
 

1 
End repeat 
The solution is  

 

3.4 GPU and CUDA 

  GPUs had been mostly used for computation of 
computer graphics, they have only lately been 
explored for their parallel computation power that 
can be used to accelerate algorithms that can be 
parallelized. Speed-ups resulting from using GPU-
parallelized algorithms can reach 100x compared to 
algorithms running on Central Processing Units 
(CPUs) [11]–[13].  

   CUDA is a parallel computing platform and 
programming model. The CUDA platform is 
designed to work with programming languages such 
as C, C++ and FORTRAN. It allows software 
developers to use GPUs for general purpose 
processing – an approach known as GPGPU. 
Memory Bandwidth for different GPUs are shown 
in  Fig. 1. 
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Fig. 1  Memory Bandwidth for different GPUs 

The design philosophy of the GPUs is shaped by the 
fast growing video game industry, which exerts 
tremendous economic pressure for the ability to 
perform a massive number of floating-point 
calculations per video frame in advanced games. 
This demand motivates the GPU vendors to look for 
ways to maximize the chip area and power budget 
dedicated to floating point calculations.  

  The prevailing solution to date is to optimize for 
the execution throughput of massive numbers of 
threads. The hardware takes advantage of a large 
number of execution threads to find work to do 
when some of them are waiting for long-latency 
memory accesses, thus minimizing the control logic 
required for each execution thread. Small cache 
memories are provided to help control the 
bandwidth requirements of these applications so 
multiple threads that access the same memory data 
do not need to all go to the DRAM.  

  As a result, much more chip area is dedicated to 
the floating-point calculations. In contrast, there is 
the design philosophy of the CPU. The design of a 
CPU is optimized for sequential code performance. 
It makes use of sophisticated control logic to allow 
instructions from a single thread of execution to 
execute in parallel or even out of their sequential 
order while maintaining the appearance of 
sequential execution.  

   More importantly, large cache memories are 
provided to reduce the instruction and data access 
latencies of large complex applications. Neither 
control logic nor cache memories contribute to the 
peak calculation speed 

 

3.5 Hardware Emulation Platform 

   In general, Veloce emulators are multi-FPGA 
systems, they are fast, hardware-assisted verification 
systems, delivering comprehensive best-in-class 
emulation [14] and acceleration platforms for SoC 
and embedded system verification.  

   Each Veloce emulator provides a significant 
increase in productivity for system-level verification 
because of their fast compiles, accurate modeling, 
productive de-bugging, and time-to-visibility 
features. Furthermore, the Veloce emulator family 
provides high-performance transaction-based 
acceleration, which delivers targetless acceleration 
with faster performance than other software 
solutions.    

    Instead of using emulation in design verification 
only, in this paper, we extend the emulator usage to 
be an efficient hardware accelerator for EM solvers 
calculations. 

That platform provides a total capacity of 32 Crystal 
chips with 1GB of memory, Crystal chips are 
equivalent to FPGAs but use different technology.  

A Crystal chip has around 500K of logic gates. The 
Veloce2 family of emulators includes the Quattro, 
Maximus, and Double Maximus.  

 Quattro: 256 million gates, 16 logic boards.  
 Maximus: 1 billion gates, 64 logic boards.  
 Double Maximus: 2 billion gates, 128 logic 

boards.  
 
 

4 The Proposed Architecture 
 

      In order to gain a high performance on the 
hardware for solving system of linear equations, we 
need to solve them in parallel. We could not solve 
linear equation in parallel as long as there are high 
dependencies between them, so we need a way to 
reduce those dependencies between equations.  
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   There is a property in the output matrix of the 
finite element method that can be used to reduce 
those dependencies named clustering.  
  This property appears in the output matrix as the 
finite element method divides the test element into 
square meshes and calculations takes place on the 
edges of the mesh. Vertical edges in one row and 
horizontal edges in one column each contribute in 
the main output matrix with equations with high 
dependencies between them and low dependencies 
with other equations in the matrix we named each 
group of those equations a cluster (Fig. 2).  
 
  The proposed architecture for this method is shown 
in Fig. 3, where the architecture consists of the 
following modules: 

 Top module  

This module encapsulates all of the design modules 
and connects them together.  

 
 Control unit  

 The control unit is responsible for handling the 
interaction between the ALU and the memories in 
the design.  

 Memories  

The algorithm makes use of various kinds of 
matrices and vectors, which we need to store in our 
design implementation in memories. Those 
memories are:  

o memA: This memory is used to store the 
square coefficient matrix A.  

 
o memR: This memory is used to store the 

dense vector (r) used in the algorithm. 
Initially vector (r) is loaded with the right 
hand vector (b), then it is updated each 
iteration as the algorithm requires.  

 
o memP: This memory is used to store the 

dense vector (p). Just like vector (r), it is 
initially loaded with the right hand vector 
(b), then it is updated each iteration as the 
algorithm requires.  
 
 

o memX: This is the solution vector.  
 
 
 

 ALU  

The ALU is responsible for all arithmetic operations 
performed on data. It has the following modules:  

 
o Dot product module:  

o The algorithm required a number of 
dot product operations. 

 
o Matrix by vector module:  

o The algorithm requires to perform 
one matrix by vector operation 
A*P.  

 
o Mult_add module:  

o This module is responsible for 
performing operations of the kind 
(X = Y ± c*Z). 

 
   The most important part in conjugate gradient 
method is the dot product as depicted in Fig.4. The 
most critical part in the dot product is the 
summation at the end stage. So, we propose to 
implement it as a tree adder (Fig. 5). 
    Moreover, the summation in the Inner Product is 
implemented using parallel reduction as the process 
is done as if a binary tree is being constructed. This 
reduces the complexity of the summation from O(N) 
to O(logN) as illustrated by Fig. 6. We proposed 
many modifications to the architecture as inserting a 
pipeline register in the middle of the ALU. This 
enabled two clustered to be worked on at the same 
time.  
   Moreover, instead of one pipeline register we 
added two, which is the maximum number of 
pipeline registers allowed by the algorithm. This 
allowed three clusters to be processed at the same 
time in different parts of the pipeline. 
Tolerance calculation is not done by a distinct 
specialized module, as it is an implicit part in the 
algorithm itself and the tolerance value must be 
calculated every iteration anyway. When the 
calculated value gets smaller than the specified 
tolerance, a halt signal is raised and the solution 
vector is outputted to the output file. 
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Fig. 2 An example for clustering. 

 
 Fig. 3 The proposed architecture for Conjugate 
Gradient method, where A, X, R, and P represent 
the coefficient matrix, solution, residue and 
conjugate vectors respectively. 

 

Fig. 4 Basic dot product. 

 

Fig. 5 Adder tree. 

 

 

Fig. 6   Parallel reduction algorithm. 
 

    Data is sent between the software and hardware 
directly without the need to write any files.  The 
user does not bother him with the details of how the 
program should work, all he has to do is enter the 
required data for the problem and then 
communication between software and hardware are 
done automatically without any intervention from 
the user.  The design uses system Verilog DPI 
functions to grab the data needed for the hardware 
solver from software side.  Hardware side: Solver 
implemented in Verilog. Software side: written in C 
language. 
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 It works as follows: 

 
1. User opens the program and enters the 

properties of the simulation system.  

2. The program then save the properties of the 

system and runs a Makefile to run the 

hardware part.  

3. As soon as the hardware start working it 

first imports a function from the C side that 

will perform preprocessing on the data 

gathered from the user.  

4. When preprocessing finishes it returns to 

the hardware again where the solver will 

start working.  

5. First the memory modules in the solver will 

call functions from the C side which will 

return the values of the matrices needed to 

be solved, data is collected from the arrays 

not from text files.  

6. When the memories finish collecting data, 

the solver will continue and solve the 

system of equations.  

7. After the solver finishes the test bench will 

call the post processing function which 

takes the values produced from the solver 

and produce the simulation graph.  

8. When the user finished examining the 

simulation results the control is given back 

to the software side where the program will 

ask him whether he wants to simulate 

another system.  

 

 

 

 

 

 

5 Results and Discussions 

  In order to gain a high performance on the 
hardware for solving system of linear equations, 
we need to solve them in parallel. We could not 
solve linear equation in parallel as long as there 
are high dependencies between them, so we 
need a way to reduce those dependencies 
between equations. There is a property in the 
output matrix of the finite element method that 
can be used to reduce those dependencies 
named Clustering.  

This property appears in the output matrix as 
the finite element method divides the test 
element into square meshes and calculations 
takes place on the edges of the mesh.  

Vertical edges in one row and horizontal edges 
in one column each contribute in the main 
output matrix with equations with high 
dependencies between them and low 
dependencies with other equations in the matrix 
we named each group of those equations a 
cluster. 

GPU and FPGA are formally compatible but the 
results are very sensitive to the particular 
calculation task, the architecture of DSP blocks 
in particular FPGA, and the architecture of the 
designed core for particular calculation in 
FPGA. 

    The proposed architecture is implemented on 
hardware FPGA using Verilog and on GPUs 
using CUDA.  For GPU, our results are verified 
using Intel core i5-4510U and GeForce 920m 
graphics card. GeForce 920m is based on 
NVIDIA’s Maxwell architecture; it has a global 
memory of size 2048 MBs and clock rate 900 
MHz, 384 CUDA cores, a shared memory per 
block of size 49152 Bytes and number of 
threads that can reach 1024 threads per block. 
For FPGA, our results are verified using 
VERTEX-7 from Xilinx. 

  As a proof of concept, we applied our 
proposed full solution on a complete case study 
by using time-domain finite element methods 
for solving metamaterial model equations. We 
choose Metamaterials because they attracted 
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great attention of researchers since their 
successful construction in 2000.  

 There is currently an enormous effort in the 
electrical engineering, material science, physics, 
and optics communities to come up with 
various ways of constructing efficient 
metamaterials and using them for potentially 
revolutionary applications in antenna and radar 
design, subwavelength imaging, and invisibility 
cloak design. Hence, simulation of 
electromagnetic phenomena in metamaterials 
becomes a very important issue [25]-[26].  

    In this section, we evaluate and compare the 
performance improvement of both approaches. 
GPU-based implementation of Jacobi versus 
conjugate gradient results is shown in Fig. 7.  
Comparison between GPUs and 
Emulators/FPGAs in terms of run time are 
shown in TABLE I, where GPUs show superior 
performance. 

  For FPGA implementation, the resources used 
by the algorithm including the total number of 
lookup tables (LUTs), slice registers, and digital 
signal processing blocks (DSPs), as well as the 
throughput obtained, are shown in TABLE II. 
We used VERTEX-7 from Xilinx (~244,300 
equations), but for beyond we used HW 
Emulation. 

 

Fig. 7 Jacobi clustered Vs. CG clustered. 

TABLE I 

COMPARISON BETWEEN GPUS AND FPGAs 

# Equations Run-Time in ms 

FPGAs GPUs 

420 2.6 0.02 

760 3.5 0.042 

1740 5.2 0.043 

2380 6.1 0.05 

9660 12.1 0.12 

11100 13 0.13 

12640 13.8 0.14 

31000 21.6 0.2 

100800 38.8 0.7 

179400 51.7 1.7 

244300 60.3 1.8 
 

TABLE II 
AREA, DELAY, AND POWEROVERHEAD FOR 

OUR PROPOSED ENCRYPTION RESOURCE 
UTILIZATION 

Platform Virtex 7  

LUTs 27,000 

Registers 29,000 

Total DSPs 64 

Freq (MHz) 300 

Slices 16000 
 
 

6 Conclusions  
 
  In this paper, two different approaches for solving 
systems of linear equations are introduced. The first 
approach is based on using GPU. The second 
approach is based on using FPGA. The experimental 
results show that GPUs show superior performance 
over FPGAs in terms of run time for small 
#equations. GPUs play a major role in accelerating 

 

Jacobi 

CG 
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many classes of applications, improving their 
performance and energy efficiency. 
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