
Performance Comparison of FPGAs and GPUs: Solving Sparse
Matrices Case-Study

Khaled Salah1, Mohamed AbdelSalam1

1Mentor, A Siemens Business
Cairo, Egypt

khaled_mohamed@mentor.com, mohamed_abdelsalam@mentor.com

Abstract: - In this paper, performance comparison of FPGAs and GPUs are introduced. Numerical methods to
solve sparse matrices are evaluated as the main case-study. The experimental results showed that GPUs show
superior performance over FPGAs/HW Emulation in terms of run time for small #equations. For large number
of equations “in order of ten millions”, the FPGAs/HW emulation outperforms GPUs as the parallelism rate of
the emulation becomes higher in that case.

Key-Words: - Numerical Method, FPGA, GPU, Sparse Matrices, Matrices.

1 Introduction

 Electromagnetic (EM) simulation is currently a
highly-needed planning tool in high frequency
systems. It enables the enhancement and the
optimization of the performance of systems while
they are still in the design phase.
 The precise modeling of the relevant physical
interactions in the simulation environment helps
significantly in the optimization process and ensures
that the system is optimally adapted to blend into its
environment.
 The main objective of EM simulation is to find an
approximate solution for Maxwell's equations that
satisfies the given boundary conditions and a set of
initial conditions.
 Several real-world electromagnetic problems are
not analytically calculable, for the multitude of
irregular geometries found in actual devices.
Computational numerical techniques can overcome
the inability to derive closed form solutions of
Maxwell's equations under various constitutive
relations of media, and boundary conditions.
 Many numerical techniques are used for solving
Maxwell’s equations, e.g., the finite difference
method (FDM) [1], finite element method (FEM)
[2], finite volume method (FVM) [3], and the
boundary element method (BEM) [4]. Computations
involved in FEM consume too much time, which

affects the final time-to-market value. Profiling
shows that the most time-consuming part in the
simulation process is the solver part, which is
responsible for solving the resultant system of linear
equations generated from the FEM.
 The total number of equations may reach
thousands or millions of linear equations. Thus,
software-based EM solvers are often too slow.
 Several alternatives are introduced to accelerate
the solver part including Application-specific
Integrated Circuits (ASICs) for their high speed,
Graphics Processing Units (GPUs) for their
parallelization power, Field Programmable Gate
Arrays (FPGAs) for their high speeds and relatively
low cost and finally multi-FPGA systems for their
abundance of logic resources. Although all these
several solutions [5]-[6], there is still a room to
improve the speed and scalability of these solvers.
 Many publications targeted accelerating the
numerical techniques used in the EM computations
using different technologies. For example; Huan-
Ting Meng and Bao-Lin Nie accelerated the Finite
Element Computation for Electromagnetic Analysis
[7]-[15] as they focused on two bottlenecks, the first
is related to the calculation of the elemental matrices
and the second is related to the assembly of the
elemental matrices into the global finite element
matrix. There was also remarkable approaches to
accelerate the Method of Moments [15]-[16] and the
FDTD [17]-[18] using GPUs.

Khaled Salah, Mohamed AbdelSalam
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 161 Volume 2, 2017

 For direct solvers, Maxim Naumov implemented
Incomplete-LU and Cholesky Preconditioned
Iterative Methods [18] using CUSPARSE [19] and
CUBLAS [20], the work focused on the Bi-
Conjugate Gradient Stabilized and Conjugate
Gradient iterative methods, which can be used to
solve large sparse non-symmetric and symmetric
positive definite linear systems. G. Ortega and E.M.
Garzón accelerated Bi-Conjugate gradient method
[21] the purpose was to compare the performance of
sparse matrix vector product using CUSPARSE and
ELLR-T routine.
 The ELLR-T has proven to outperform the other
sparse matrix kernels as demonstrated by F.
Vázquez and J. J. Fernández [22]. Zhang has
proposed a CUDA-Based implementation for the
Jacobi Iterative Method [23], the paper focused on
dense linear equations.
 For Sparse Matrix vector product, Nathan Bell
and Michael Garland implemented kernels for the
popular sparse matrix representation [24] kernels
were implemented for Diagonal, ELLPACK,
Coordinate, CSR, Hybrid and Packet formats.
 In this work, we propose hardware architecture for
the conjugate gradient method to be used in solving
linear equation. This algorithm is implemented on
both FPGA and GPU to evaluate the performance
improvement between them. For the best of our
knowledge, this is the first work to address such a
comparison for linear equation solvers.
 GPU technology was introduced as solution to
accelerate those different solvers for its
parallelization power.
 This paper is organized as follows: In Section II,
problem formulation and contribution are discussed.
In Section III, the background for FEM and
conjugate gradient (CG) is presented. In Section IV,
the proposed methodology is introduced. In Section
V, Results are discussed. In Section VI, Conclusions
are given.

2 Problem Statement and
Contribution

 Computations involved in FEM consume too much
time, which affects the final time-to-market value.
Profiling shows that the most time-consuming part
in the simulation process is the solver part which is
responsible for solving the resultant system of linear
equations generated from the FEM. The total
number of equations may reach thousands or
millions of linear equations.

 Thus, software-based EM solvers are often too
slow. Thus the main contribution of this work is as
follows:

1. Improve runtime performance of the solver
part of the EM simulator on the emulator by
using new techniques/designs.

2. Do extensive comparisons between our
proposed solvers and state-of-the-art solvers
on GPUs/FPGAs.

3. Implement a GUI for plotting EM
computations using the hardware emulator
co-model channel. This channel implies
using SystemVerilog Direct Programming
Interface (DPI) to provide the link between
hardware running on emulator and software
running on a co-model server connected to
the emulator.

3 Background

 In this section, we provide a brief overview of the
electromagnetics simulations and FEM. Then, we
describe the details of the conjugate gradient
method used to solve the matrices resulting from
using the FEM. Moreover, we give a quick
introduction about GPU and CUDA.

3.1 EM Simulations

The Key steps for electromagnetic simulation are:
 Creation of Physical Model:

Drawing/Importing Layout Geometry,
assigning materials, etc...

 Setup of EM Simulation: Defining
boundary conditions, ports, simulation
settings, etc...

 Performance of EM Simulation:
Discretizing the physical model into mesh
cells and approximating the field/current
using a local function (Expansion/Basis
function) and adjusting the function
coefficients until the boundary conditions.

 Post-Processing: Calculating S-parameters,
TDR response, Antenna far field patterns,
etc...

Khaled Salah, Mohamed AbdelSalam
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 162 Volume 2, 2017

3.2 Finite Element Method

 The FEM is a numerical technique, which is
widely used in engineering to solve boundary-value
problems, characterized by a partial differential
equation (PDE) and a set of boundary conditions.
The basic procedures of using FEM are:

(1) Discretizing the computational domain into
finite elements.

(2) Rewriting the PDE in a weak formulation.

(3) Choosing proper finite element spaces and
forming the finite element scheme from the weak
formulation.

 (4) Calculating those element matrices on each
element and assembling the element matrices to
form a global linear system.

(5) Applying the boundary conditions, solving the
system of linear systems (SLS), and finally.

 (6) Post-processing the numerical solution.

3.3 Conjugate Gradient Method

 Basic iterative methods such as Jacobi Method
and Gauss Seidel method cannot solve all the linear
systems. The Conjugate Gradient method is one of
the Krylov subspace methods. The conjugate
gradient method derives its name from the fact that
it generates a sequence of conjugate (or orthogonal)
vectors. These vectors are the residuals of the
iterates. They are also the gradients of a quadratic
functional, the minimization of which is equivalent
to solving the linear system.

 Conjugate Gradient is an Iterative Method
applicable to sparse systems that are too large to be
handled by a direct implementation. It has the
advantage that it reaches the required tolerance after
a relatively small number of iterations compared to
Jacobi and gauss methods.

 The conjugate gradient method is used to solve
equations where the matrix is symmetric. Conjugate
gradient method can reach the required tolerance
after a relatively small number of iterations
compared to Jacobi AND Gauss Method [7]-[10].
The conjugate gradient algorithm used in this work
is shown in Listing 1.

Listing 1: Conjugate gradient algorithm.

Conjugate gradient algorithm : The algorithm is

detailed below for solving Ax = b.

Input: Number of linear equations.

Variables:

A is a real, symmetric, positive-definite matrix.

The input vector x0 can be an approximate initial
solution or 0.

Output: Solution.

0
Repeat

If 	 is very small then exit the loop else

1
End repeat
The solution is

3.4 GPU and CUDA

 GPUs had been mostly used for computation of
computer graphics, they have only lately been
explored for their parallel computation power that
can be used to accelerate algorithms that can be
parallelized. Speed-ups resulting from using GPU-
parallelized algorithms can reach 100x compared to
algorithms running on Central Processing Units
(CPUs) [11]–[13].

 CUDA is a parallel computing platform and
programming model. The CUDA platform is
designed to work with programming languages such
as C, C++ and FORTRAN. It allows software
developers to use GPUs for general purpose
processing – an approach known as GPGPU.
Memory Bandwidth for different GPUs are shown
in Fig. 1.

Khaled Salah, Mohamed AbdelSalam
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 163 Volume 2, 2017

Fig. 1 Memory Bandwidth for different GPUs

The design philosophy of the GPUs is shaped by the
fast growing video game industry, which exerts
tremendous economic pressure for the ability to
perform a massive number of floating-point
calculations per video frame in advanced games.
This demand motivates the GPU vendors to look for
ways to maximize the chip area and power budget
dedicated to floating point calculations.

 The prevailing solution to date is to optimize for
the execution throughput of massive numbers of
threads. The hardware takes advantage of a large
number of execution threads to find work to do
when some of them are waiting for long-latency
memory accesses, thus minimizing the control logic
required for each execution thread. Small cache
memories are provided to help control the
bandwidth requirements of these applications so
multiple threads that access the same memory data
do not need to all go to the DRAM.

 As a result, much more chip area is dedicated to
the floating-point calculations. In contrast, there is
the design philosophy of the CPU. The design of a
CPU is optimized for sequential code performance.
It makes use of sophisticated control logic to allow
instructions from a single thread of execution to
execute in parallel or even out of their sequential
order while maintaining the appearance of
sequential execution.

 More importantly, large cache memories are
provided to reduce the instruction and data access
latencies of large complex applications. Neither
control logic nor cache memories contribute to the
peak calculation speed

3.5 Hardware Emulation Platform

 In general, Veloce emulators are multi-FPGA
systems, they are fast, hardware-assisted verification
systems, delivering comprehensive best-in-class
emulation [14] and acceleration platforms for SoC
and embedded system verification.

 Each Veloce emulator provides a significant
increase in productivity for system-level verification
because of their fast compiles, accurate modeling,
productive de-bugging, and time-to-visibility
features. Furthermore, the Veloce emulator family
provides high-performance transaction-based
acceleration, which delivers targetless acceleration
with faster performance than other software
solutions.

 Instead of using emulation in design verification
only, in this paper, we extend the emulator usage to
be an efficient hardware accelerator for EM solvers
calculations.

That platform provides a total capacity of 32 Crystal
chips with 1GB of memory, Crystal chips are
equivalent to FPGAs but use different technology.

A Crystal chip has around 500K of logic gates. The
Veloce2 family of emulators includes the Quattro,
Maximus, and Double Maximus.

 Quattro: 256 million gates, 16 logic boards.
 Maximus: 1 billion gates, 64 logic boards.
 Double Maximus: 2 billion gates, 128 logic

boards.

4 The Proposed Architecture

 In order to gain a high performance on the
hardware for solving system of linear equations, we
need to solve them in parallel. We could not solve
linear equation in parallel as long as there are high
dependencies between them, so we need a way to
reduce those dependencies between equations.

Khaled Salah, Mohamed AbdelSalam
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 164 Volume 2, 2017

 There is a property in the output matrix of the
finite element method that can be used to reduce
those dependencies named clustering.
 This property appears in the output matrix as the
finite element method divides the test element into
square meshes and calculations takes place on the
edges of the mesh. Vertical edges in one row and
horizontal edges in one column each contribute in
the main output matrix with equations with high
dependencies between them and low dependencies
with other equations in the matrix we named each
group of those equations a cluster (Fig. 2).

 The proposed architecture for this method is shown
in Fig. 3, where the architecture consists of the
following modules:

 Top module

This module encapsulates all of the design modules
and connects them together.

 Control unit

 The control unit is responsible for handling the
interaction between the ALU and the memories in
the design.

 Memories

The algorithm makes use of various kinds of
matrices and vectors, which we need to store in our
design implementation in memories. Those
memories are:

o memA: This memory is used to store the
square coefficient matrix A.

o memR: This memory is used to store the

dense vector (r) used in the algorithm.
Initially vector (r) is loaded with the right
hand vector (b), then it is updated each
iteration as the algorithm requires.

o memP: This memory is used to store the

dense vector (p). Just like vector (r), it is
initially loaded with the right hand vector
(b), then it is updated each iteration as the
algorithm requires.

o memX: This is the solution vector.

 ALU

The ALU is responsible for all arithmetic operations
performed on data. It has the following modules:

o Dot product module:

o The algorithm required a number of
dot product operations.

o Matrix by vector module:

o The algorithm requires to perform
one matrix by vector operation
A*P.

o Mult_add module:

o This module is responsible for
performing operations of the kind
(X = Y ± c*Z).

 The most important part in conjugate gradient
method is the dot product as depicted in Fig.4. The
most critical part in the dot product is the
summation at the end stage. So, we propose to
implement it as a tree adder (Fig. 5).
 Moreover, the summation in the Inner Product is
implemented using parallel reduction as the process
is done as if a binary tree is being constructed. This
reduces the complexity of the summation from O(N)
to O(logN) as illustrated by Fig. 6. We proposed
many modifications to the architecture as inserting a
pipeline register in the middle of the ALU. This
enabled two clustered to be worked on at the same
time.
 Moreover, instead of one pipeline register we
added two, which is the maximum number of
pipeline registers allowed by the algorithm. This
allowed three clusters to be processed at the same
time in different parts of the pipeline.
Tolerance calculation is not done by a distinct
specialized module, as it is an implicit part in the
algorithm itself and the tolerance value must be
calculated every iteration anyway. When the
calculated value gets smaller than the specified
tolerance, a halt signal is raised and the solution
vector is outputted to the output file.

Khaled Salah, Mohamed AbdelSalam
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 165 Volume 2, 2017

Fig. 2 An example for clustering.

 Fig. 3 The proposed architecture for Conjugate
Gradient method, where A, X, R, and P represent
the coefficient matrix, solution, residue and
conjugate vectors respectively.

Fig. 4 Basic dot product.

Fig. 5 Adder tree.

Fig. 6 Parallel reduction algorithm.

 Data is sent between the software and hardware
directly without the need to write any files. The
user does not bother him with the details of how the
program should work, all he has to do is enter the
required data for the problem and then
communication between software and hardware are
done automatically without any intervention from
the user. The design uses system Verilog DPI
functions to grab the data needed for the hardware
solver from software side. Hardware side: Solver
implemented in Verilog. Software side: written in C
language.

Khaled Salah, Mohamed AbdelSalam
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 166 Volume 2, 2017

 It works as follows:

1. User opens the program and enters the

properties of the simulation system.

2. The program then save the properties of the

system and runs a Makefile to run the

hardware part.

3. As soon as the hardware start working it

first imports a function from the C side that

will perform preprocessing on the data

gathered from the user.

4. When preprocessing finishes it returns to

the hardware again where the solver will

start working.

5. First the memory modules in the solver will

call functions from the C side which will

return the values of the matrices needed to

be solved, data is collected from the arrays

not from text files.

6. When the memories finish collecting data,

the solver will continue and solve the

system of equations.

7. After the solver finishes the test bench will

call the post processing function which

takes the values produced from the solver

and produce the simulation graph.

8. When the user finished examining the

simulation results the control is given back

to the software side where the program will

ask him whether he wants to simulate

another system.

5 Results and Discussions

 In order to gain a high performance on the
hardware for solving system of linear equations,
we need to solve them in parallel. We could not
solve linear equation in parallel as long as there
are high dependencies between them, so we
need a way to reduce those dependencies
between equations. There is a property in the
output matrix of the finite element method that
can be used to reduce those dependencies
named Clustering.

This property appears in the output matrix as
the finite element method divides the test
element into square meshes and calculations
takes place on the edges of the mesh.

Vertical edges in one row and horizontal edges
in one column each contribute in the main
output matrix with equations with high
dependencies between them and low
dependencies with other equations in the matrix
we named each group of those equations a
cluster.

GPU and FPGA are formally compatible but the
results are very sensitive to the particular
calculation task, the architecture of DSP blocks
in particular FPGA, and the architecture of the
designed core for particular calculation in
FPGA.

 The proposed architecture is implemented on
hardware FPGA using Verilog and on GPUs
using CUDA. For GPU, our results are verified
using Intel core i5-4510U and GeForce 920m
graphics card. GeForce 920m is based on
NVIDIA’s Maxwell architecture; it has a global
memory of size 2048 MBs and clock rate 900
MHz, 384 CUDA cores, a shared memory per
block of size 49152 Bytes and number of
threads that can reach 1024 threads per block.
For FPGA, our results are verified using
VERTEX-7 from Xilinx.

 As a proof of concept, we applied our
proposed full solution on a complete case study
by using time-domain finite element methods
for solving metamaterial model equations. We
choose Metamaterials because they attracted

Khaled Salah, Mohamed AbdelSalam
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 167 Volume 2, 2017

great attention of researchers since their
successful construction in 2000.

 There is currently an enormous effort in the
electrical engineering, material science, physics,
and optics communities to come up with
various ways of constructing efficient
metamaterials and using them for potentially
revolutionary applications in antenna and radar
design, subwavelength imaging, and invisibility
cloak design. Hence, simulation of
electromagnetic phenomena in metamaterials
becomes a very important issue [25]-[26].

 In this section, we evaluate and compare the
performance improvement of both approaches.
GPU-based implementation of Jacobi versus
conjugate gradient results is shown in Fig. 7.
Comparison between GPUs and
Emulators/FPGAs in terms of run time are
shown in TABLE I, where GPUs show superior
performance.

 For FPGA implementation, the resources used
by the algorithm including the total number of
lookup tables (LUTs), slice registers, and digital
signal processing blocks (DSPs), as well as the
throughput obtained, are shown in TABLE II.
We used VERTEX-7 from Xilinx (~244,300
equations), but for beyond we used HW
Emulation.

Fig. 7 Jacobi clustered Vs. CG clustered.

TABLE I

COMPARISON BETWEEN GPUS AND FPGAs

Equations Run-Time in ms

FPGAs GPUs

420 2.6 0.02

760 3.5 0.042

1740 5.2 0.043

2380 6.1 0.05

9660 12.1 0.12

11100 13 0.13

12640 13.8 0.14

31000 21.6 0.2

100800 38.8 0.7

179400 51.7 1.7

244300 60.3 1.8

TABLE II
AREA, DELAY, AND POWEROVERHEAD FOR

OUR PROPOSED ENCRYPTION RESOURCE
UTILIZATION

Platform Virtex 7

LUTs 27,000

Registers 29,000

Total DSPs 64

Freq (MHz) 300

Slices 16000

6 Conclusions

 In this paper, two different approaches for solving
systems of linear equations are introduced. The first
approach is based on using GPU. The second
approach is based on using FPGA. The experimental
results show that GPUs show superior performance
over FPGAs in terms of run time for small
#equations. GPUs play a major role in accelerating

Jacobi

CG

Khaled Salah, Mohamed AbdelSalam
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 168 Volume 2, 2017

many classes of applications, improving their
performance and energy efficiency.

References

[1] SmithGD. Numerical Solution of Partial
Differential Equations: Finite Difference
Methods. Oxford, UK: Oxford University
Press, 1978.

[2] FixG. StrangG, An Analysis of the Finite
Element Method. Englewood Cliffs
NJ,USA: Prentice-Hall, 1973.

[3] LeVequeR, Finite Volume Methods for
Hyperbolic Problems. Cambridge, UK:
Cambridge University Press, 2002.

[4] K. Banerjep,”Boundary Element Methods
in Engineering”. New York, NY, USA:
McGraw-Hill, 1994.

[5] R. F. Carvalho, C. A. P. S. Martins, R. M.
S. Batalha, and A. F. P. Camargos, ‘3D
parallel conjugate gradient solver optimized
for GPUs’, in Digests of the 2010 14th
Biennial IEEE Conference on
Electromagnetic Field Computation, 2010,
pp. 1–1.

[6] G. Wu, X. Xie, Y. Dou, and M. Wang,
‘High-Performance Architecture for the
Conjugate Gradient Solver on FPGAs’,
IEEE Trans. Circuits Syst. II Express
Briefs, vol. 60, no. 11, pp. 791–795, Nov.
2013.

[7] Kendall A. Atkinson, an Introduction to
Numerical Analysis (2nd ed.). New York:
John Wiley & Sons, 1989.

[8] Mordecai Avriel, Nonlinear Programming:
Analysis and Methods. Dover Publishing,
2003.

[9] Gene H. Golub and Charles F Van Loan,
"Chapter 10". Matrix computations (3rd
ed.). Johns Hopkins University Press, 2011.

[10] Y. Saad, "Iterative methods for sparse
linear systems” (2nd ed.).SIA, 2005.

[11] http://www.nvidia.com/object/cuda_home_
new.html

[12] David B. Kirk and Wen-mei W. Hwu,
Programming Massively Parallel Processors
- A Hands-On Approach.: Morgan
Kaufmann, 2012.

[13] K. Salah. "IP Cores Design from
Specifications to Production: Modeling,

Verification, Optimization, and Protection."
IP Cores Design from Specifications to
Production. Springer International
Publishing, 2016.

[14] Mentor Graphics. Veloce Emulator.
[Online].
http://www.mentor.com/products/fv/emulat
ion.html.

[15] B.-L. Nie, S. Wong, C. Macon, and J.-M.
Jin H.-T. Meng, "GPU accelerated finite-
element computation for electromagnetic
analysis," IEEE Antennas Propag. Mag.,
vol. 56, no. 2, pp. 39-62, Apr. 2014.

[16] Z. Peng and Z. Nie, "Acceleration of the
method of moments calculations by using
graphics processing units," IEEE
Transactions on Antennas and Propagation,
pp. 2130-2133, July 2008.

[17] A. Karwowski, and A. Noga T. Topa,
"Using GPU with CUDA to accelerate
MoM-based electromagnetic simulation of
wire-grid models," EEE Antennas and
Wireless Propagation Letters, pp. 342-345,
april 2011.

[18] A. Esposito, G. Monti, and L. Tarricone D.
De Donno, "Parallel efficient method of
moments exploiting graphics processing
units," Microwave and Optical Technology
Letters, Nov. 2010.

[19] B. Livshitz, and V. Lomakin S. Li, "Fast
evaluation of Helmholtz potential on
graphics processing units (GPUs)," Journal
of Computational Physics, Nov. 2010

[20] .E. Lezar and D. B. Davidson, "GPU-
accelerated method of moments by
example: Monostatic scattering," IEEE
Antennas and Propagation Magazine, Dec.
2010.

[21] A. Dziekonski, and M. Mrozowski P.
Sypek, "How to render FDTD computations
more effective using a graphics
accelerator," IEEE Transactions on
Magnetics, March 2009.

[22] V. Demir, "A stacking scheme to improve
the efficiency of finite-difference time-
domain solutions on graphics processing
units," Applied Computational
Electromagnetics Society Journal, Apr.
2010.

[23] V. Demir and A. Z. Elsherbeni, "Compute
unified device architecture (CUDA) based
finite-difference time-domain (FDTD)

Khaled Salah, Mohamed AbdelSalam
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 169 Volume 2, 2017

implementation," Applied Computational
Electromagnetics Society Journal, Apr.
2010.

[24] Naumov M, "Incomplete-LU and Cholesky
preconditioned iterative methods using
CUSPARSE and CUBLAS," Technical
report and white paper 2011.

[25] N. Bell and M. Garland., "Efficient sparse
matrix-vector multiplication on CUDA,"
NVIDIA Corporation, NVIDIA Technical
Report NVR-2008-004 2008.

[26] Jichun Li and Yunqing Huang, Time-
Domain Finite Element Methods for
Maxwell's Equations in Metamaterials.:
Springer Series in Computational
Mathematics, 2013.

Khaled Salah, Mohamed AbdelSalam
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 170 Volume 2, 2017

