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Abstract: There is much literature about the study of the consensus problem in the case where the dynamics of the
agents are linear systems, but the problem is still open for the case where the dynamic of the agents are singular
linear systems. In this paper the consensus problem for singular multi-agent systems is considered, in which all
agents have an identical linear dynamic mode that can be of any order. A generalization to the case all agents are
of the same order but do not have the same linear dynamic is also analyzed.
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1 Introduction
It is well known the great interest created in many re-
search communities about the study of control multi-
agents system, as well as the increasing interest in
distributed control and coordination of networks con-
sisting of multiple autonomous (potentially mobile)
agents. There are an amount of literature as for exam-
ple [6, 17, 21, 23, 15, 20]. It is due to the multi-agents
appear in different areas as for example in consensus
problem of communication networks [17], or forma-
tion control of mobile robots [4].

Jinhuan Wang, Daizhan Cheng and Xiaoming Hu
in [21], study the consensus problem in the case of
multiagent systems in which all agents have an identi-
cal linear dynamics and this dynamic is a stable linear
system. M.I. Garcı́a-Planas in [6], generalize this re-
sult to the case where the dynamic of the agents are
controllable.

Despite the overall progress some problems of
the consensus theory still remain unexplored for the
agents with dynamics defined as a singular linear sys-
tems. In this paper multiagent singular systems con-
sisting of k + 1 agents with dynamics

E1ẋ
1 = A1x

1 +B1u
1

...
Ekẋ

k = Akx
k +Bku

k


where Ei, Ai ∈ Mn(IC), Bi ∈ Mn×1(IC), Ci ∈
M1×n(IC), for the cases

i) all agents have an identical linear dynamic mode,
(i.e. Ei, Ai = A, Bi = B for all i).

ii) all agents are of the same order but do not have
the same linear dynamic.

are considered.
Wei Ni and Daizhan Cheng in [14], analyze the

standard case where E1 = . . . = Ek = In, A1 =
. . . = Ak and B1 = 0, B2 = . . . = Bk this particular
case has practical scenarios as the flight of groups of
birds. It is obvious that in this case the mechanic of
the first system is independent of the others, then con-
sensus under a fixed topology can be easily obtained
and it follows from the motion of the first equation.
This consensus problem is known as leader-following
consensus problem ([14], [10]).

2 Preliminaries

2.1 Algebraic Graph theory

We consider a graph G = (V, E) of order k with the
set of vertices V = {1, . . . , k} and the set of edges
E = {(i, j) | i, j ∈ V} ⊂ V × V .

Given an edge (i, j) i is called the parent node and
j is called the child node and j is in the neighbor of i,
concretely we define the neighbor of i and we denote
it by Ni to the set Ni = {j ∈ V | (i, j) ∈ E}.

The graph is called undirected if verifies that
(i, j) ∈ E if and only if (j, i) ∈ E . The graph is called
connected if there exists a path between any two ver-
tices, otherwise is called disconnected.

Associated to the graph we consider the matrix
G = (gij) called (unweighted) adjacency matrix de-
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fined as follows gii = 0, gij = 1 if (i, j) ∈ E , and
gij = 0 otherwise.

In a more general case we can consider that a
weighted adjacency matrix is G = (gij) with gii = 0,
gij > 0 if (i, j) ∈ E , and gij = 0 otherwise.

The Laplacian matrix of the graph is

L = (lij) =


|Ni| if i = j
−1 if j ∈ Ni

0 otherwise

Remark 1 i) If the graph is undirected we have
that the matrix L is symmetric, then there exist
an orthogonal matrix P such that PLP t = D.

ii) If the graph is undirected then 0 is an eigen-
value of L and 1k = (1, . . . , 1)t is the associated
eigenvector.

iii) If the graph is undirected and connected the
eigenvalue 0 is simple.

Figure 1: Undirected connected graph

For more details about graph theory see [9] and
[22] for example.

2.2 Kronecker product

Remember that given two matrices A = (aij) ∈
Mn×m(IC) and B = (bij) ∈ Mp×q(IC) the Kronecker
product A⊗B is defined as follows.

Definition 2 Let A = (aij) ∈ Mn×m(IC) and B ∈
Mp×q(IC) be two matrices, the Kronecker product of
A and B, write A⊗B, is the matrix

A⊗B =


a11B a12B . . . a1mB
a21B a22B . . . a2mB

...
...

...
an1B an2B . . . anmB

 ∈ Mnp×mq(IC)

Kronecker product verifies the following proper-
ties

1) (A+B)⊗ C = (A⊗ C) + (B ⊗ C)

2) A⊗ (B + C) = (A⊗B) + (A⊗ C)

3) (A⊗B)⊗ C = A⊗ (B ⊗ C)

4) (A⊗B)t = At ⊗Bt

5) If A ∈ Gl(n; IC) and B ∈ Gl(p; IC)), then A ⊗
B ∈ Gl(np; IC)) and (A⊗B)−1 = A−1 ⊗B−1

6) If the products AC and BD are possible, then
(A⊗B)(C ⊗D) = (AC)⊗ (BD)

Corollary 3 The vector 1k ⊗ v is an eigenvector cor-
responding to the zero eignevalue of L ⊗ In.

Proof:

(L ⊗ In)(1k ⊗ v) = L1k ⊗ v = 0⊗ v = 0

⊓⊔
Consequently, if {e1, . . . , en} is a basis for ICn,

then 1k ⊗ ei is a basis for the nullspace of L ⊗ In.

Associated to the Kronecker product, can be de-
fined the vectorizing operator that transforms any ma-
trix A into a column vector, by placing the columns in
the matrix one after another.

Definition 4 Let X = (xij) ∈ Mn×m(IC) be a matrix,
and we denote xi = (x1i , . . . , x

n
i )

t for 1 ≤ i ≤ m the
i-th column of the matrix X . We define the vectorizing
operator vec, as

vec : Mn×m(IC) −→ Mnm×1(IC)

X −→


x1
x2
...

xm


Obviously, vec is an isomorphism.

For more information see P. Lancaster, M. Tismenet-
sky in [11], or J.W. Brewer in [1] for example.

2.3 Controllability and stability

Definition 5 We recall that a system is called control-
lable (see [3]) if, for any t1 > 0, x(0) ∈ IRn and
w ∈ IRn, there exists a control input u(t) such that
x(t1) = w.

This definition requires only that any initial state
x(0) can be steered to any final state x1 at time t1.
However, the trajectory of the dynamical system be-
tween 0 and t1 is not specified. Furthermore, there is
no constraints posed on the control vector u(t) and the
state vector x(t).

An equivalent definition is given by the following
result
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Theorem 6 ([3]) The system Eẋ = Ax+Bu is con-
trollable if and only if

rank
(
E B

)
= n,

rank
(
λE −A B

)
= n, for all λ ∈ IC.

This result is a generalization of a similar one given
for linear systems, (for more details see [5]).

Proposition 7 A necessary condition for controllabil-
ity is that the system be standardizable.

Theorem 8 ([7]) The system Eẋ = Ax+Bu is con-
trollable if and only if the rank of the matrix

E 0 0 . . . 0 B 0 0 . . . 0 0
A E 0 . . . 0 0 B 0 . . . 0 0
0 A E . . . 0 0 0 B . . . 0 0

. . . . . . . . .
0 0 0 . . . E 0 0 0 . . . B 0
0 0 0 . . . A 0 0 0 . . . 0 B


∈ Mn2×((n−1)n+nm)(IC)

is n2

Corollary 9 Suppose that E is an invertible matrix
then, the system Eẋ = Ax+Bu is controllable if and
only if, the system ẋ = E−1Ax + E−1Bu is control-
lable.

Proof:

rank



E 0 0 . . . 0 B 0 0 . . . 0 0
A E 0 . . . 0 0 B 0 . . . 0 0
0 A E . . . 0 0 0 B . . . 0 0

. . . . . . . . .
0 0 0 . . . E 0 0 0 . . . B 0
0 0 0 . . . A 0 0 0 . . . 0 B


=

rank


In

. . .
In

(E−1A)n−1B . . . (E−1A)B B

 .

⊓⊔
The controllability indices can be computed in the

following manner.
We consider the following sequences of ranks ri

of matrices

Mi ∈ M(i+1)n×(in+(i+1)m)(IC).

M0 =
(
B
)
,

M1 =

(
E B 0
A 0 B

)
,

M2 =

E 0 B 0 0
A E 0 B 0
0 A 0 0 B

 ,

...

Mℓ =


E 0 0 . . . 0 B 0 . . . 0 0
A E 0 . . . 0 0 B . . . 0 0

. . . . . . . . .
0 0 0 . . . E 0 0 . . . B 0
0 0 0 . . . A 0 0 . . . 0 B

 .

and, we define the following collection of ρ-numbers
that permit to deduce the controllability indices of a
controllable triple.

Definition 10 Let ri be the ranks of the matrices Mi,

ri = rankMi

.
Then, we define the ρi numbers as:

ρ0 = r0
ρ1 = r1 − r0 − n
ρ2 = r2 − r1 − n

...
ρs = rs−1 − rs − n.

It is easy to prove the following proposition.

Proposition 11 The controllability indices
[k1, . . . , kp] of a controllable singular system,
are the conjugate partition of [ρ0, ρ1, . . . , ρs].

Definition 12 The system Eẋ = Ax + Bu is called
asymptotically stable if and only if all finite eigenval-
ues λi , i = 1, . . . ni, of the matrix pencil (λE − A)
have negative real parts.

Definition 13 The system Eẋ = Ax + Bu is called
asymptotically stabilizable if and only if all finite λ

such that rank
(
λiE −A B

)
< n have negative

real parts.

Remark 14 All controllable systems are stabilizable
but the converse is false.

It is important the following result
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Theorem 15 a) The system Eẋ = Ax + Bu is
stabilizable if and only if there exist some feed-
backs FE and FA such that the close loop system
(E − BFE)ẋ = (A − BFA)x is asymptotically
stable

b) Suppose rank
(
E B

)
= n then the system

Eẋ = Ax + Bu is stabilizable if and only if
there exist some feedbacks FE and FA such that
(E −BFE)

−1(A−BFA) is stable.

Sensitivity and stability for singular dynamical
linear systems had been studied by M.I. Garcı́a-Planas
in [6].

3 Consensus

Roughly speaking, we can define the consensus as a
collection of processes such that each process starts
with an initial value, where each one is supposed to
output the same value and there is a validity condi-
tion that relates outputs to inputs. More concretely,
the consensus problem is a canonical problem that ap-
pears in the coordination of multi-agent systems. The
objective is that given initial values (scalar or vector)
of agents, establish conditions under which through
local interactions and computations, agents asymptot-
ically agree upon a common value, that is to say: to
reach a consensus.

The consensus problem appear for Example:

- when on try to Control moving a number of
Aerial Vehicle’s UAVs: alignment of the head-
ing angles

- when on try to process Information in sensor net-
works: computing averages of initial local obser-
vations (that is to say consensus on a particular
value)

- also in Design of distributed optimization algo-
rithms: one needs a mechanism to align esti-
mates of decision variables maintained by differ-
ent agents/processors

3.1 Dynamic of singular multi-agent having
identical dynamical mode

Let us consider a group of k identical agents, the dy-
namic of each agent is given by the following linear
dynamical systems

Eẋ1 = Ax1 +Bu1

...
Eẋk = Axk +Buk

 (1)

xi ∈ IRn, ui ∈ IRm, 1 ≤ i ≤ k.
We consider the undirected graph G with

i) Vertex set: V = {1, . . . , k}

ii) Edge set: E = {(i, j) | i, j ∈ V} ⊂ V × V

defining the communication topology among agents.

Definition 16 Consider the system 1, we say that the
consensus is achieved using local information if there
is a state feedback

ui = K
∑
j∈Ni

(xi − xj), 1 ≤ i ≤ k

such that

lim
t→∞

∥xi − xj∥ = 0, 1 ≤ i, j ≤ k.

The closed-loop system obtained under this feed-
back is as follows

EẊ = AX + BKZ,

where

X =

x
1

...
xk

 , Ẋ =

ẋ
1

...
ẋk

 ,

E = diagonal(E, . . . , E)
A = diagonal(A, . . . , A)
B = diagonal(B, . . . , B)
K = diagonal(K, . . . ,K)

and

Z =


∑

j∈N1
x1 − xj

...∑
j∈Nk

xk − xj

 .

Following this notation we can conclude the fol-
lowing.

Proposition 17 The closed-loop system can be de-
scribed as

EẊ = ((Ik ⊗A) + (Ik ⊗BK)(L ⊗ In))X .

Taking into account that the graph is undirected,
following remark 1, we have that there exists an or-
thogonal matrix P ∈ Gl(k; IR) such that PLP t =
D = diag (λ1, . . . , λk), (λ1 ≥ . . . ≥ λk).
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Corollary 18 The closed-loop system can be de-
scribed in terms of the matrices E, A, B, the feedback
K and the eigenvalues of L in the following manner

E ˙̂X = diagonal (A+λ1BK, . . . , A+λkBK)X̂ . (2)

Proof:

(Ik ⊗BK)(L ⊗ In) = (Ik ⊗BK)(P tDP ⊗ In) =
(Ik ⊗BK)(P t ⊗ In)(D ⊗ In)(P ⊗ In) =

(P t ⊗BK)(D ⊗ In)(P ⊗ In) =
(P t ⊗ In)(Ik ⊗BK)(D ⊗ In)(P ⊗ In) =

(P t ⊗ In)(D ⊗BK)(P ⊗ In)

(Ik ⊗ E) = (P t ⊗ In)(Ik ⊗ E)(P ⊗ In)
(Ik ⊗A) = (P t ⊗ In)(Ik ⊗A)(P ⊗ In)

Then,

(P t ⊗ In)(Ik ⊗E)(P ⊗ In)Ẋ =
(P t ⊗ In)(Ik ⊗A)(P ⊗ In)X+

(P t ⊗ In)(D ⊗BK)(P ⊗ In)X

so,

(Ik ⊗ E)(P ⊗ In)Ẋ =
(Ik ⊗A)(P ⊗ In)X + (D ⊗BK)(P ⊗ In)X

and calling (P ⊗ In)X = X̂ we have the result. ⊓⊔
The system 2 can be understood as the close loop

system corresponding to the system

E . . .
E

 ˙̂X =

A . . .
A

 X̂ +

 λ1B
...

λkB

 Û

(3)
after to apply the feedback u = Kx.

3.1.1 Consensus problem

It would seem that if the graph is connected the con-
sensus problem would be solvable if there is a K such
that the system 2 is stabilized. But taking into account
that λ1 = 0 is necessary that Eẋ1 = Ax1 be asymp-
totically stable.

Suppose now, that the system (E,A,B) is con-
trollable, so there exist KE and KA such that the close
loop system Eẋ = (E +BKE)ẋ = (A+BKA)x =
Ax is asymptotically stable and we apply all results
presented in §3.1 over the group of k identical agents,
where the dynamic of each agent is given by the fol-
lowing linear dynamical systems

Eẋ1 = Ax1 +Bu1

...
Eẋk = Axk +Buk,

 (4)

xi ∈ IRn, ui ∈ IRm, 1 ≤ i ≤ k.

Lemma 19 Let Eẋ = Ax + Bu be a controllable
singular system and we consider the set of k-linear
systems

Eẋi = Axi + λiBui, 1 ≤ i ≤ k

with λi > 0. Then, there exist feedbacks KE and
KA which simultaneously assign the eigenvalues of
the systems as negative as possible.

More concretely, for any M > 0, there exist ui =
KAx

i −KE ẋ
i for 1 ≤ i ≤ k such that

Reσ(E +BKE , A+ λiBKA) < −M, 1 ≤ i ≤ k.

(σ(E+BKE , A+λiBKA) denotes de spectrum
of (E +BKE , A+ λiBKA) for each 1 ≤ i ≤ k).

Remark 20 We observe that if Eẋ = Ax + Bu is
controllable then, Eẋ = Ax + λiBu is controllable
being λi ̸= 0.

Proof:
Reducing the system to the canonical reduced

form
E = PEcQ + PBcFE , A = PAcQ + PBcFA

and B = PBcR with Ec = In, and (Ac, Bc) is a pair
in its Brunovsky canonical form.

det(s(E +BKE)− (A+ λiBKA) =
det(s(PEcQ+ PBcFE + PBcRKE)−

(PAcQ+ PBcFA + λiPBcRKA)) =
detP det(s(Ec +BcFEQ

−1 +BcRKEQ
−1)−

(Ac +BcFAQ
−1 + λiBcRKAQ

−1)) detQ =

detP detQdet(s(Ec +BcK̃E)− (Ac +BcK̃A)),

where K̃E = FEQ
−1 + RKEQ

−1 = 0 and K̃A =
FAQ

−1 + λiRKAQ
−1.

So, the eigenvalues of det(s(E +BKE)− (A+

λiBKA) are the same than det(sIn− (Ac+BcK̃A)).
Now, it suffices to apply the result for standard

systems.
⊓⊔

Remark 21 The Kronecker reduced form of a singu-
lar controllable system, can be directly obtained from
controllability indices defined in proposition 11.

As a corollary, we can consider the consensus prob-
lem.
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Corollary 22 We consider the system 1 with a con-
nect adjacent topology. If Eẋ = Ax+Bu is a control-
lable singular system then, the consensus is achieved
by means the feedback of lemma 19 and a feedback K
stabilizing Eẋ = Ax+Bu.

Proof: Taking into account that the adjacent topol-
ogy is connected we can apply corollary 3: 0 = λ1 <
λ2 ≤ . . . ≤ λk and (1, . . . , 1)t = 1k is the eigenvec-
tor corresponding to the simple eigenvalue λ1 = 0.

On the other hand we can find K stabilizing
Eẋ = Ax + Bu and then we can find KE and KA

stabilizing the associate system 4, and we find X̂ such
that limt→∞ X̂ = 0. Consequently, we can find Z
such that limt→∞Z = 0.

Using Z = (L⊗In)X = (L⊗In)(P
t⊗In)X̂ we

have that limt→∞X is an eigenvector of L ⊗ In, that
is to say limt→∞X = 1k⊗v for some vector v ∈ IRn

and the consensus is obtained. ⊓⊔

Example 1.
We consider three singular identical agents with

the following dynamics of each agent

Eẋ1 = Ax1 +Bu1

Eẋ2 = Ax2 +Bu2

Eẋ3 = Ax3 +Bu3
(5)

with E =

(
1 0
0 0

)
A =

(
0 1
0 0

)
and B =

(
0
1

)
.

It is easy to generate using the Matlab tool all pos-
sible graphs for k = 3, then select those that are indi-
rect and connected, among of them, the communica-
tion topology that we chose in this example is defined
by the graph (V, E):

V = {1, 2, 3}
E = {(i, j) | i, j ∈ V} = {(1, 2), (1, 3)} ⊂ V×V

and the adjacency matrix:

G =

0 1 1
1 0 0
1 0 0

 .

The neighbors of the parent nodes are N1 =
{2, 3}, N2 = {1}, N3 = {1}.

The Laplacian matrix of the graph is

L =

 2 −1 −1
−1 1 0
−1 0 1


with eigenvalues λ1 = 0, λ2 = 1, λ3 = 3.

ui = K(
∑
j∈Ni

(xi − xj)) = Kzi (6)

u1 = K((x1 − x2) + (x1 − x3)) =
= K(2x1 − x2 − x3),

u2 = K(x2 − x1),
u3 = K(x3 − x1).

First of all we observe that with the derivative
feedback KE =

(
0 1

)
we obtain E = I and the

new multiagent system is ẋi = Axi +Bui.
Taking into account that the system ẋ1 = Ax1

is not stable but (A,B) is a controllable system, we

consider A = A + BK =

(
0 1
a b

)
with appropriate

values for a and b.
Then, the close loop system of 1 with control 6 is

ẋ1 = Ax1 +BK(2x1 − x2 − x3) =
= (A+ 2BK)x1 −BKx2 −BKx3

ẋ2 = Ax2 +BKx2 − x1) = (A+BK)x2 −BKx1

ẋ3 = Ax3 +BKx3 − x1) = (A+BK)x3 −BKx1

(7)
Or in a (formal)-matrix form:

Ẋ =

A+ 2BK −BK −BK
−BK A+BK 0
−BK 0 A+BK

X .

The basis change matrix diagonalizing the matrix
L is

P =

1/
√
3 0 −2/

√
6

1/
√
3 1/

√
2 1/

√
6

1/
√
3 −1/

√
2 1/

√
6

 ,

and we obtain the following equivalent system

˙̂X =

A A+BK
A+ 3BK

 X̂ .

The eigenvalues are in fonction of a, b, c, d, con-
cretely:

λ1, λ2 =
b±

√
b2+4a
2 ,

λ3, λ4 =
b+d±

√
b2+2bd+d2+4a+4c

2 ,

λ5, λ6 =
b+3d±

√
b2+6bd+9d2+4a+12c

2 ,
Then, there exist K and K (defined by a, b, c, d),

which assign the eigenvalues as negative as possible.
We will try to reach consensus with three different

particular feedbacks.
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i) For a = −0.01, b = −0.05, c = −0.05, d =
−0.02 the eigenvalues are

λ1, λ2 = −0.0250+0.0968i,−0.0250−0.0968i,

λ3, λ4 = −0.0350+0.2424i,−0.0350−0.2424i,

λ5, λ6 = −0.0550+0.3962i,−0.0550−0.3962i,

so, the system has been stabilized.

For initial condition X̂(0) =
(0, 2, 2, 3,−1,−2)t, the trajectory of each
of the systems X̂1 = AX̂1, X̂2 = (A + BK)X̂2,
X̂3 = (A+ 3BK)X̂3 are showed in figure 1.

Figure 1. Trajectories 1

The graphic shows that the three trajectories ar-
rive at a common point.

ii) For a = −0.1, b = −0.5, c = −0.5, d = −0.2
the eigenvalues are

λ1, λ2 = −0.2500+0.1936i,−0.2500−0.1936i,

λ3, λ4 = −0.3500+0.6910i,−0.3500−0.6910i,

λ5, λ6 = −0.5500+1.1391i,−0.5500−1.1391i,

so, the system has been stabilized.

For the same initial condition than the first case,
i.e. X̂(0) = (0, 2, 2, 3,−1,−2)t, the trajectory
of each of the systems X̂1 = AX̂1, X̂2 = (A +

BK)X̂2, X̂3 = (A + 3BK)X̂3 are showed in
figure 2.

It is noted that in this second case, the eigenval-
ues have a negative real part smaller than the first
case, then consensus is reached faster.

iii) If we consider a = −1, b = −5, c = −5, and
d = −2, the eigenvalues are:

λ1, λ2 = −0.2087,−4.7913

λ3, λ4 = 1,−6

λ5, λ6 = −9.2749,−1.7251,

Figure 2. Trajectories 2

and the system is also stabilized.

In this case, the trajectories are showed in figure
3.

In this third case the eigenvalues have the smaller
real part than the second and first case and the
consensus is reached much faster than the first
and second case.

Figure 3. Trajectories 3

4 Dynamic of multi-agent having no
identical dynamical mode

Now, we are going to introduce in a similar way than
the case where the multianet have identical mode, we
consider a multi-agent where the dynamic of each
agent is given by the following dynamical systems:

ẋ1 = A1x
1 +B1u

1

...
ẋk = Akx

k +Bku
k

 (8)
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xi ∈ IRn, ui ∈ IRm, 1 ≤ i ≤ k. Where matrices Ai

and Bi are not necessarily equal.
The communication topology among agents is de-

fined by means the undirected graph G with

i) Vertex set: V = {1, . . . , k}

ii) Edge set: E = {(i, j) | i, j ∈ V} ⊂ V × V .

an in a similar way as before, we say that the consen-
sus is achieved using local information if there exists
a state feedback

ui = Ki

∑
j∈Ni

(xi − xj), 1 ≤ i ≤ k

such that

lim
t→∞

∥xi − xj∥ = 0, 1 ≤ i, j ≤ k.

The closed-loop system obtained under this feed-
back is as follows

Ẋ = AX + BKZ
where

X =

x
1

...
xk

 , Ẋ =

ẋ
1

...
ẋk


A = diagonal (A1, . . . , Ak)
B = diagonal (B1, . . . , Bk)
K = diagonal (K1, . . . ,Kk)

Z =


∑

j∈N1
x1 − xj

...∑
j∈Nk

xk − xj

 .

Calling
BK = B · K

and observing that

Z = (L ⊗ In)X

we deduce the following proposition

Proposition 23 The closed-loop system can be de-
duced in terms of matrices A, B and K in the follow-
ing manner.

Ẋ = (A+ BK(L ⊗ In))X (9)

We are interested in Ki such that the consensus is
achieved.

Proposition 24 We consider the system 8 which a
connected adjacent topology. If the system 9 is sta-
ble the consensus problem has a solution.

Corollary 25 If the matrices Ai are stable. Then the
consensus is achieved.

Remark 26 The system 9 can be written as

Ẋ = AX + BU with U = K(L ⊗ In)X .

So,

Proposition 27 A necessary (but not sufficient) con-
dition for consensus to be reached is that the system

Ẋ = AX + BU (10)

is stabilizable.

Corollary 28 A necessary condition for consensus to
be reached is that the systems

ẋi = Aix
i +Biu

i, ∀i = 1, . . . , k

are stabilizable.

Remark 29 The feedback K obtained from the feed-
backs stabilizing the systems ẋi = Aix

i + Biu
i does

not necessarily stabilize the system Ẋ = (A+BK(L⊗
In))X .

Example 2.
We consider the following two one-dimensional

systems
ẋ1 = u1

ẋ2 = x2 + u2

The communication topology is defined by the undi-
rected graph V = {1, 2}, E = {(1, 2)} ⊂ V × V . So,

the Laplacian is

(
1 −1
−1 1

)
.

Taking as K =

(
1 −1
6 −6

)
we have

A+ BK =

(
1 −1
6 −5

)

with eigenvalues −0.2679, and −3.7321, then the sys-
tem is stable.

But taking k1 = −1 and k2 = −2, clearly these
feedbacks stabilize the systems, but taking as K =(
k1

k2

)
=

(
−1

−2

)
we have

A+ BK(L ⊗ In)) =

(
−1 1
2 −1

)

with eigenvalues 0.4142, and −2.4142, then the sys-
tem is not stable.
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That is to say, we need to stabilize the system 10,
must be stabilized with a feedback in the form K(L⊗
In).

In our particular example, if we consider k1 = −2
and k2 = 0 the eigenvalues of (A+ BK(L⊗ In)) are
-2 and -1 and the system is stable. But, in this case,
the system ẋ2 = x2 + u2 with k2 = 0 is not stable.
Finally, if we consider k1 = −5 and k2 = −3, the
systems ẋi = (Ai +BiKi)x

i and (A+BK(L⊗ In))
are stable.

So, to solve the problem we need to obtain K in
such a way that ẋi = (Ai+BiKi)x

i and (A+BK(L⊗
In)) are stable.

5 Conclusions

In this paper the consensus problem for multi-agent
singular systems, for the case where all agents have an
identical linear dynamic mode, and finally we make a
brief introduction to the case where the agents are of
the same order but do not have the same linear dy-
namic. The solution of the consensus problem de-
pends on the controllability of the singular system,
then a rank criterion for controllability of singular
system is introduced, thereby the work is more self-
contained and understandable.

Acknowledgements: The author wishes to thank
JL Dominguez-Garcia researcher IREC, with its com-
ments and suggestions, the article has improved its
content.

References:

[1] J.W. Brewer, Kronecker products and matrix cal-
culus in system theory. IEEE Transaction on
Circuits and Systems, 25, (9), 1978, pp.772–781.

[2] C.T. Chen, Introduction to Linear System The-
ory. Holt, Rinehart and Winston Inc, New York,
1970.

[3] L. Dai, Singular Control Systems. Springer–
Verlag, New York, 1989.

[4] A. Fax, R. Murray, Information flow and cooper-
ative control of vehicle formations, IEEE Trans.
Automat. Control, 49, (9), 2004, pp. 1453–1464.

[5] M.I Garcı́a-Planas, Sensivity and stability of
singular systems under proportional and deriva-
tive feedback, Wseas Transactions on Mathe-
matics, 8, (11), 2009, pp 635–644.

[6] M.I. Garcı́a-Planas, Obtaining Consensus of
Multi-agent Linear Dynamic Systems, Advances

in Applied and Pure Mathematics, 2014, pp. 91–
95.

[7] M.I. Garcı́a-Planas, S. Tarragona, A. Diaz, Con-
trollability of time-invariant singular linear sys-
tems. From physics to control through an emer-
gent view, World Scientific, 2010, pp. 112–117.

[8] M.I. Garcia-Planas, E.M. Souidi, L.E Um, Con-
volutional codes under linear systems point of
view. Analysis of output-controllability. WSEAS
transactions on mathematics, 11 (4), 2012 pp.
324–333.

[9] C. Godsil, G. Royle, Algebraic Graph Theory,
Springer–Verlag, New York, 2001.

[10] A. Jadbabaie, J. Lin, A.S. Morse, Coordination
of groups of mobile autonomous agents using
nearest neighbor rules, IEEE Transaction on Au-
tomatic Control, 48, (6), 2007, pp. 943–948.

[11] P. Lancaster, M. Tismenetsky, The Theory of
Matrices Academic Press. San Diego, 1985.

[12] Z. Li, Z. Duan, G. Chen, Consensus of Multia-
gent Systems and Synchronization of Complex
Networks: A unified Viewpoint, IEEE Trans. on
Circuits and Systems, 57, (1), 2010, pp. 213–
224.

[13] M. Mesbahi, M. Egerstedt. Graph Theoretic
Methods in Multiagent Networks, Princeton
University Press, Princeton and Oxford, 2010.

[14] W. Ni, D. Cheng, Leader-following consensus
of multi-agent systems under fixed switching
topologies, Systems and Control Letters, 59,
2010, pp. 209–217.

[15] R. Olfati-Saber, Consensus and cooperation in
networked multi-agent systems. Proceedings of
the IEEE 2007, pp. 215–233.

[16] W. Ren, R. Beard. Distributed consensus in
multi-vehicle cooperative control: theory and
applications, Springer–Verlag, 2008.

[17] R.O. Saber, R.M. Murray, Consensus Protocols
for Networks of Dynamic Agents, Report.

[18] R.O. Saber, R.M. Murray, Consensus problems
in networks of agents with switching topology
and time-delays, IEEE Trans. Automat. Control,
49, (9), 2004, pp. 1520–1533.

[19] R. Olfati-Saber, R.M. Murray. Consensus prob-
lems in networks of agents with switching topol-
ogy and time-delays. IEEE Trans. Autom. Con-
trol, 49, (9), 2004, pp. 1520–1533.

[20] Y.P. Tian, C.L. Liu. Consensus of multi-agent
systems with diverse input and communication
delays. IEEE Trans. on Autom. Control, 53 (9),
2008, pp. 2122–2128.

M. I. Garcia-Planas
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 9 Volume 1, 2016



[21] J. Wang, D. Cheng, X. Hu, Consensus of multi-
agent linear dynamics systems, Asian Journal of
Control 10, (2), 2008, pp. 144–155.

[22] D. West, Introduction to Graph Theory, Prentice
Hall (3rd Edition), 2007

[23] G. Xie, L. Wang, Consensus control for a class
of networks of dynamic agents: switching topol-
ogy, Proc. 2006 Amer. Contro. Conf., 2007, pp.
1382–1387.

[24] F. Yan, D. Xie, Robust Consensus Problem of
Data-sampled Networked Multi-agent Systems
with Delay and Noise, Wseas Transactions in
Mathematics, 2013, pp. 231–242.

M. I. Garcia-Planas
International Journal of Mathematical and Computational Methods 

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 10 Volume 1, 2016




