
 

 
Abstract: The cyberspace is presently faced with many incidences related to malware 
compromising the cyber security goals of; confidentiality, integrity, availability, authenticity, 
non-repudiation and trust of system networks. Malware authors are breaking frontiers in 
developing new kind of malware such that anti-virus software cannot provide the level of 
protection that is being anticipated by users thereby resulting in unprecedented successful 
attacks being recorded. The study examine how existing machine learning models can be 
utilized in classifying malware infections and its propagation mechanism. This study adopts an 
experimental and quantitative research design using Machine Learning techniques to develop 
and evaluate a hybrid malware detection model. The approach includes the data collection, 
feature engineering, model development and performance evaluation. The hybrid model is 
designed using the combination of both malware (infected) files and benign (uninfected) files. 
The implementation of the system is done with the aid of deep learning structure (Inception 
v3) with SVM classifier by making use of the CNN learning method. The framework’s input 
comes from instances of the explored malware dataset. These instances are supplied through 
the hybrid model (Inception v3) input layer. The instances are further forwarded to 
convolutional phase of Inception v3, where important features are extracted. The extracted 
features are utilized in form of support vector machine classifier’s input. The incorporated 
support vector machine classifier uses the extracted features for classification where the output 
of the hybrid system is determined as either malware file or legitimate file. The hybrid model 
is made up of two different components; Inception v3 and SVM which combines to produce 
the hybrid model using the malware dataset to constructively detect malware. The final module, 
SVM, is used for classification, whereas Inception v3 is used for feature extraction. The 
simulation of all the tested models is carried out in order to analyze the data and answer the 
research questions. These models include; the developed hybrid model (Inception v3 + SVM), 
Convolutional Neural Network, CNN, Support Vector Machine, SVM, and Neural Network, 
NN. The aim is to deduce the best model for the malware dataset as well as to determine the 
best performing model. The accuracy rate of the hybrid system was obtained as 99.89%. The 
result shows significant convergence in both performance and learning. The result undoubtedly 
show how effective the proposed hybrid design is in comparison to other models developed to 
address the same issue. 
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1. Introduction 

The evolution of the initial term “virus” to 
today’s almighty “malware” reflects the 
evolution of threats over the past 20 years. 
The development and changes of such 
attacks have coincided with the 
development in the cyberspace. Therefore, 
every threat will target the vulnerable attack 
surface, hence the need to device new 
strategies to detect malware so as to prevent 
and mitigate its infection and spread. 
Malware can propagate through various 
mechanisms in order to deliver a specific 
payload. Due to the variation in malware 
propagation mechanism, malware can be 
classified based on the purposes and means 
they could interface with target computers 
(Yanfang, et al., 2017). A basic 
classification of malware includes file 
infectors (virus) and stand-alone malware 
(worms) (Idoko et al., 2025; Chandy, 
2022). A different method of classifying 
malware is according to their specific 
actions and characteristics, examples; 
Trojans, Rootkits, Ransomware, Logic 
Bomb, Mobile code, Bot, Crypto- Malware, 
fileless-malware, Backdoors, etc (Chandy, 
2022). 

Malware exists in numerous forms hence a 
diversified dataset is needed in order to 
develop an effective malware detection 
system. Features must be collected from 
existing malware samples. The study of 
malware detection basically deals with 
analyzing executable files to identify 
behaviour that could be in the form of 
Indicators of Attack (IoA) and Indicators of 
Compromise (IoC) (Idoko & Bush, 2023). 
The emergence of anti-malware software 
has brought about the exponential increase 
in sophisticated malware with multiple 
polymorphic layers which are particularly 
designed to avoid detection by the anti-
malware software (Damodaran et al., 
2017). However, the practice has advanced 

the research in malware into the use of 
emerging technology for malware 
detection.  

There are basically two approaches to 
malware analysis and detection namely, 
static and dynamic. Static Detection also 
referred to as code analysis or detection is a 
fast and simple detection method because 
the analysis and detection can be enabled 
with and without running the program. That 
is, static detection examines a sample 
without running it. This process uses 
reverse engineering principles which 
decompiles the malware and uses a number 
of tools to examine its source code 
(Sikorski & Honig, 2012; Chandy, 2022). 
Static detection has played a significant role 
as a preliminary detection technique 
throughout the history of malware 
investigation even though it is difficult to 
use this method to find complex and 
sophisticated malware. On the other hand, 
dynamic detection uses behaviour analysis 
while a malware is running to determine 
malicious intent (Jyothsna et al., 2011). 
Usually, this is done in a sandbox 
environment to ensure that the executable 
file does not cause any damage to the target 
computer. This detection method is capital 
intensive and difficult to manage in some 
instances. Programmers could be contacted 
to examine system calls or other 
behavioural trends which on the other hand, 
cannot be detected using black box testing 
(Jyothsna et al., 2011; Keragala, 2016). 

Standard signature-based techniques for 
malware detection search for unusual 
activity using recognized digital indicators 
of malicious code. A breach can be detected 
using the lists of indicators of compromise 
(IoCs), which are mostly saved in a 
database (Rimon & Haque, 2023).  
Although IoCs are reactive in nature, they 
can be useful in detecting malicious 
activities. However, the need for the new 
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detection methods arose from the 
exponential increase in polymorphic 
malware. To militate against this ugly 
trend, a heuristics-based approach in 
combination with machine learning 
techniques that provide more efficient 
detection accuracy is required (Gibert et al., 
2020; Kumar et al., 2020). Researchers 
have over the years attempted to adopt 
Artificial Intelligence specifically Machine 
and Deep Learning Techniques as a better 
detective control mechanism since AI 
Algorithm has a major influence on the 
detection accuracy of the static malware 
detection tools (Venkatraman et al., 2019; 
Akbar & Ahmad, 2021). Most scholars 
have proposed ML Algorithm such as One-
class classification, Support Vector 
Machine, Multi-class Support Vector 
Machine, Random Forest, Restricted 
Boltzmann Machine among others to 
achieve a near accurate results, their exists 
some gaps like false positive rate, poor 
classification accuracies, and low true 
positive rate. A Hybrid ML model could be 
used as a framework to integrate different 
ML techniques so as to better improve the 
detection and classification accuracy 
(Rimon & Haque, 2023).  

This study proposed a hybrid machine 
learning algorithm referred to as Inceptron 
+ v3 and considers CNN, SVM and NN as 
the base models which serve as the 
foundation through which independent 
predictions are carried out. They are 
generally referred to as the building blocks 
for the hybrid machine learning algorithm 
(Inceptron + v3) (Bush et al, 2023). CNN is 
one of the base models where the dataset is 
the input (hidden) layer of the CNN model, 
while the model's predictions are the output 
layer.  One or more layers that carry out 
convolutions make up the hidden layers. 
This typically consists of a layer that uses 
the input matrix of the layer to do a dot 
product of the convolution kernel. It 

consists of four major layers which are; the 
convolutional, pooling, ReLU (Dense 
layer), and the fully connected (output) 
layers (Bush et al., 2018). These layers 
enable CNN to mimic how the human brain 
processes images in order to identify 
patterns and characteristics. Whereas, 
Figure 3.6, represents the architecture of 
CNN as applied to malware detection. The 
primary goal of the SVM model is to 
identify a hyperplane that divides the data 
into malicious and normal activities. The 
support vectors serve to define the decision 
boundaries and are the vectors closest to the 
hyperplane (Bush et al., 2023). The SVM 
transforms the input space into a higher 
dimensional space by using kernel 
methods. In order to enhance the margin 
between the classes, the SVM algorithm is 
taught to alter the hyperplane's position. 
The purpose of the NN function, f, is to 
minimize the discrepancies between its 
output and the y label of a given input x by 
using a set of labeled data. This cost 
function is frequently referred to as a loss 
function and an optimization procedure. To 
do this, the model is trained by adjusting the 
parameters, Q of f to be the best 
approximation function provided by: 

   Ŷ = f (x, Ɵ)                                     (1) 

The standard optimization procedure for 
model training is called the 
backpropagation algorithm. 

Inception v3 and SVM are two unique 
structures that are combined in the hybrid 
system to create a hybrid model that detects 
malware files in a constructive manner. The 
system is designed using the malware 
dataset, with Inception v3 being used for 
feature extraction and SVM, the final 
module, being used for classification. 

2. Related Works 
Malware detection in a critical environment 
is a difficult operation that requires 
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advanced analysis and techniques for both 
identification and classification. To avoid 
detection and disrupt the analysis, malware 
developers use a variety of anti-malware 
detection techniques. Majority of malware 
analysts use Static and Dynamic analysis 
and techniques to analyze malwares similar 
to the proposed hybrid machine learning 
model that will integrate both the static and 
dynamic approach. However, the review of 
related studies has shown that there are 
advantages and disadvantages of using 
these analysis and detection techniques.  

A proposal was made to use a machine 
learning strategy on static features to 
classify Windows PE files completely in a 
pipeline for the first time (Loi et al., 2021).  
The pipeline can distinguish between 
harmful and benign samples, and for those 
that are deemed dangerous, it offers a 
comprehensive classification based on 
behavior, malware family, and threat 
category.  Despite known limitations such 
as the size of the training data, the imperfect 
labeling of the ground truth, and the 
semantic gap of models based on static 
features only, classification results were 
comparable to the state of the art for similar 
works while providing much more detailed 
information on malware characteristics.  
Finally, the extracted feature vector 
defining the raw PE and the specific ML 
model used generated an interpretable 
result, and the method is scalable to much 
larger datasets. As a result, the authors saw 
the work as a preliminary step towards a 
practical solution that would assist security 
analysts in managing new threats while 
cutting down on analysis time and 
expenses.  In order to enhance the model's 
performance, the authors ought to have 
adjusted the ground truth, taken into 
account a larger dataset for training, 
explored the properties of the embedded 
features' space more, and thought about the 
possibility of a multi-label classification 

scheme.  In the early phases of the pipeline, 
it could be intriguing to incorporate a 
detector for packed or encrypted samples as 
well. 

Another author thought about creating 
ScaleMalNet, a highly scalable system for 
identifying, categorizing, and classifying 
zero-day malware. This study also 
evaluated deep learning architectures and 
conventional machine learning algorithms 
(MLAs) based on image processing, 
dynamic analysis, and static analysis 
methods (Vinayakumar et al., 2019). 
Initially, malware was categorized using a 
combination of static and dynamic analysis. 
In the second stage, malware were grouped 
together using image processing 
algorithms. In malware detection and 
classification using static, dynamic, and 
image processing, deep learning 
architectures performed better than 
standard MLAs. However, deep learning 
architectures are used on the domain 
knowledge extracted features in the 
malware detection study that is based on 
dynamic analysis. By gathering binary file 
memory dumps during runtime and 
mapping the memory dump file into a 
grayscale image, this can be prevented. 

An internationally recognised machine 
learning model that can analyse events in a 
manner similar to that of human analysts 
was created by a group of US-based 
machine learning specialists as part of an 
ML-based malware detection system 
(Johnson & Grumbling, 2019). The model 
can identify if a specific instance of a given 
user accessing a given document is harmful 
or acceptable once it has been trained and 
applied to document-access events. The 
model however, receives two types of 
input; data about the user and data about the 
document accessed (Johnson & Grumbling, 
2019). This standardized model can 
determine if a particular instance is benign 
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or harmful given the identity of the user and 
the specific document after being trained on 
data from around the organization (Zheng, 
et. al. 2022).  The group however, fed their 
model with the identical auxiliary 
processed data.  

However, by using this method, Google, for 
instance, was able to identify instances of 
disgruntled employees looking for 
corporate documents for a rival company, 
as well as early reconnaissance actions of a 
red-team exercise. Nevertheless, there have 
also been some false positives from the 
model, such as when an employee was 
switching jobs or using outdated 
documents. And, so far, so good, the system 
has added new perspective to research and 
innovation. With extremely low false-
positive rates, it has been able to detect real 
unique malware in the two years of its 
implementation by Google. By combining 
innovative approaches for handling the 
training data with established supervised 
learning techniques, this anomaly detection 
methodology proved effective (Johnson & 
Grumbling, 2019). 

Previous study proposed a system for 
extracting selected features from the static 
and dynamic analysis techniques (Singh & 
Jain, 2017). An integrated method was 
developed employing the selected features 
in order to increase the classification and 
detection rate as compared to the use of 
simple static and dynamic approaches. To 
improve results of classification and 
detection, the researchers examined 
malwares that have anti-malware analysis 
features. The outcome demonstrates an 
accuracy of 63.30% for dynamic analysis, 
69.72% for static analysis, and 73.47% for 
the integrated technique. The integrated 
technique yields better accuracy when 
compared to the static and dynamic 
approaches (Singh & Jain, 2017). 

A proposed study that makes use of 
Application Package Interface (API) calls 
for malware detection and analysis was 
carried out (Salehi et al., 2021). According 
to the study, malware with comparable 
behaviors will make calls to the same set of 
parameters and APIs. The strategy was to 
use a dynamic analysis technique to extract 
feature vectors. Several different feature 
selection algorithms can be used to 
decrease the amount of features. The 
authors intercepted API calls using a 
VMware-based virtual machine and the 
WINAPIoverride32 program. The authors 
employed WEKA classifiers for 
classification.  

The idea of analyzing malware utilizing the 
headers and import file sections of the 
Windows Portable Executable (WPE) file 
format was put up by another group of 
authors (Markel & Bilzor, 2020). The 
primary objective of the authors' work was 
that malicious executable files had different 
metadata than clean executables. After 
analyzing a number of PE32 header traits, 
only those that were best suited for 
categorization were chosen. 

In a similar vein, a study on the use of ML 
for the detection of new dangerous 
executable files was conducted (Schultz et 
al., 2018). Using the static analysis 
approach, the authors primarily collected 
three static features: text information, byte-
sequence n-grams, and portable 
executables (PE). The characteristics were 
taken from dynamic link libraries (dlls) 
inside the 32-bit executable. The n-gram 
technique, which extracts a string's n-byte 
sequence, was utilized to increase the 
detection rate. All of the text strings that 
were encoded in the executables were 
available in the string information. When 
the authors used machine learning instead 
of more conventional signature-based 
methods, they discovered that their 
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detection rates were significantly higher. 
Nonetheless, a team of researchers applied 
the idea of feature extraction based on a 
quantity of bytes found in the malicious 
executable's source code (Tian et al., 2018). 
By employing this technique, they were 
able to extract several functions from 
malicious executables and use dynamic 
analysis to determine these functions' 
frequency of occurrence in order to detect 
the infected file. The executable codes for 
obfuscated files were concealed. Machine 
learning techniques from WEKA were used 
for classification. 

To provide better categorization results, 
another set of researchers explored the use 
of the n-grams technique (Kotler & Maloof, 
2020). To improve the detection rate, the 
authors worked with a variety of 
classification methods and a decision tree-
based methodology. A related viewpoint 
was examined, in which the authors used 
dynamic analysis to extract characteristics 
by merging temporal and geographical data 
from run-time windows Application 
Programming Interface (API) (Ahmed et 
al., 2023). The authors claimed that 
examining temporal and spatial 
characteristics simultaneously can increase 
the likelihood of detecting malware. They 
went further to integrate the static and 
dynamic analysis of malware. The function 
length frequency and printed string 
information (PSI) vectors were obtained by 
static analysis. The log files of dynamic 
analysis tools such as HOOKAPI were used 
to extract dynamic feature vectors, which 
were made up of API functions and their 
arguments. The authors combined the 
feature vectors obtained from both static 
and dynamic analysis to construct the 
feature vector for the integrated approach. 
The findings indicate that when employing 
an integrated method, accuracy is higher 
than when utilizing a static and dynamic 
approach.  

Finally, another study focused on the 
extraction of dynamic features from the 
CSV file generated from the cuckoo 
sandbox (Dhammi & Singh., 2019). Rather 
than concentrating solely on API calls, the 
authors also examined file information, 
registry modifications, and network 
analysis. Even though most authors made 
an effort to increase malware detection 
rates and classification, there is still room 
for improvement in analysis and detection 
methods, which has led to certain research 
gaps. 

3. The Existing System and 
Knowledge Gap 

Although, substantial body of literatures 
have addressed various facets of malware 
detection and analysis, however, there exist 
a noticeable gap in comprehensive studies 
that systematically compared the 
performance of the different machine 
learning model for malware detection. 
Attackers are able to continually breaching 
the system's defenses in a way that is 
unavoidable by taking advantage of an 
inherent asymmetry on these gaps (Johnson 
& Grumbling, 2019).    

Traditional machine learning models could 
yield a high number of false positives 
because they don't witness many real 
attacks, which means there aren't enough 
samples to be used for training of an ML 
model. Defenders frequently place a high 
priority on lowering the number of false 
positives because they might be expensive. 
Nevertheless, this often has the effect of 
increasing the rate of false negatives, which 
implicitly raises the possibility of a 
successful attack (Johnson & Grumbling, 
2019). The hybrid machine learning model 
that combines two different models is 
capable of constructively detecting 
malware with miss-classification rate kept 
to a minimum. 
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Security tools are frequently used by parties 
other than the resource owners themselves 
and operate on a number of interdependent 
system therefore, maintaining a low 
number of false positives without providing 
opportunities for attackers is typically a 
substantial issue (Johnson & Grumbling, 
2019). However, the hybrid machine 
learning model make use of a LinearSVC or 
interpolator with a smooth/linear structure 
that cannot be easily adjusted. 

Most Machine Learning tools recently 
designed for malware classification are 
widely based on accuracy, this simply 
means that the system is probabilistic in 
decision making. This is because ML tools 
for malware detection are not upgraded to 
meet the demands of either defensive or 
offensive cyber operations (Zheng, et. al., 
2022). It is worthy to note that the 
parameters of hybrid ML systems for 
malware detection unlike the conventional 
ML tools can be upgrade and optimized to 
perform excellently without bias.  

The glaring void inhibited as a result of 
limited access to malware dataset as well as 
obtaining more static and dynamic features 
for higher accuracy and detection (Singh & 
Jain, 2017). The inability to also access 
dataset for advanced malware samples such 
as metamorphic and polymorphic malwares 
whose detection and classification might be 
faster as compared to the ones that have 
been widely used by researchers (Singh & 
Jain, 2017). This glaring void and challenge 
has been tackled with the access to a large 
updated benign and malware (metamorphic 
and polymorphic) dataset comprises of 
138,047 instances. 
 

4. Methodology 
 

This study adopts an experimental and 
quantitative research design using Machine 
Learning techniques to develop and 

evaluate a hybrid malware detection model. 
The approach includes the data collection, 
feature engineering, model development 
and performance evaluation. Figure 1 
represents the machine learning 
development and classification scheme.  

A hybrid learning model is developed with 
the potential to addressing the malware 
detection problems. The ML models 
implemented are; Inception + v3, CNN, 
SVM and NN. The final module, SVM, is 
used for classification, whereas Inception 
v3 is used for feature extraction. The 
general process is outlined in Figure 1.  

 

Figure 1: The Machine learning 
development and classification scheme 

The packages that is used for the 
implementation of the algorithms are:  

i.  Support Vector Machines – Scikit-      
             learn 
ii.  CNN –  Keras   
iii.  Cross Table plotting – gmodels  
 

The study considers the detection of the 
latest malicious code whose sample is 
obtained from a secondary data source 
(Virushare Machine Learning Repository) 
which provides the fundamental 
information that forms the basis of the 
investigation. The data is composed of the 
collection of multivariate attributes that 
characterizes instances of malware and 
benign data points that make up the dataset. 
The total sample of both benign and 
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malware classes used for the experiment is 
138,047 which comprises of 41,323 benign 
and 96,724 malware files. Furthermore, the 
dataset consist of 56 features used for 
training and generalization. An instance in 
the dataset is either classified into 
legitimate or malware file. The constructed 
hybrid model classifies these features into 
one of the two classes; benign = l or 
malware = m.  
 

4.1    Data processing 
The data is normalized before utilizing it. 
This is achieved by separating the data into 
training and testing sets for the training 
process, and splitting the data to be within 
a smaller range because the values of many 
attributes fall within a wide range of 
numbers. The normalization stages include, 
feature extraction, feature engineering and 
labelling. 

4.1.1 Feature Extraction 

The combining matrix, which comprises 
successful Application Programming 
Interfaces (APIs), unsuccessful APIs, and 
their return codes, is the feature extraction 
technique used in this study. The reports are 
analyzed and stored locally during the 
implementation phase. The feature 
extraction software then uses these reports 
as input to create the .csv file containing the 
combining matrix. The methodology 
specifies the minimum number of API 
calls; for example, all reports that generated 
fewer than five API calls is ignored. The 
extraction timestamp is included in the file, 
and logs detailing successful and 
unsuccessful operations is kept in a 
different file. 

4.1.2 Feature Engineering 

This is one of the crucial task of this study. 
The characteristics of the malicious codes 
that distinguishes them are called features. 
Since using every feature makes the model 
more complex for malware detection, it 
won't be necessary. However, the data is 

transformed by changing the original 
numerical representation of a quantitative 
value to another value, during which the 
nature, direction, and significance of the 
relationships of the variables used in the 
study were determined. Consequently, the 
characteristics of each feature are identified 
in order to choose more important features 
for the model's training.   

In order to increase the detection accuracy, 
the feature engineering procedure which 
involved selecting, manipulating and 
transforming relevant features to eliminate 
features that are unnecessary or redundant 
is carried out. Because of the great size of 
the feature set in this study, feature 
selection is crucial. Python is applied in this 
case for the feature selection with the aid of 
Boruta package which provides a good and 
straightforward approach for feature 
selection in classification tasks. It is a 
wrapper technique that operates over ML 
algorithms (Kursa & Rudnicki 2020).  

The algorithm is as follows: 

i. Make scrambled (shadow)    
duplicates of every feature to 
increase the randomization. 

ii. Using the new dataset, train an 
ML classifier and use the Mean 
Decrease Accuracy technique as 
a feature importance metric. 
Measure the importance of each 
feature and assign weights.  

iii. Verify that the feature from the           
original feature set has a greater   
weight than the highest weight 
of this feature's shadow copy at 
the end of each iteration.  At 
each iteration, eliminate the 
features that are deemed 
unnecessary. 

iv. Stop whenever all features have          
been categorized as "selected" 
or "rejected," or when a   

      predetermined number of ML         
      iterations have been completed.  
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4.1.3    Labelling                                                                                                                                                                                                                                                

The model is set up with hyper-parameters 
and specific kernel functions for malware 
detection. These setups are intended to 
capture the complexities of malware attack 
situations and are inspired by both 
exploratory experimentation and current 
research. The target value that the hybrid 
model can predict is either benign (1) or 
malware (m). The data is put through a 
unique machine learning process in four 
machine learning algorithms, namely; the 
hybrid model (Inception v3 + SVM), CNN, 
SVM and Neural Network (NN). 

4.2   Techniques for Data Analysis  

The models' performance is assessed by 
determining the model's reliability and 
qualities since the most accurate models 
perform well in real-time malware attacks. 
The behavioral characteristics of existing 
malware is assessed so as to identify the 
indices for developing the most efficient 
model for applied malware detection. 
Indicators such as obfuscated program, 
shelling program, overall time derived from 
existing and standard model serves as a 
guide for the analysis. The hybrid learning 
model is also assessed and compared with 
other models. 

The results obtained from the four (4) 
models undergo a rigorous comparative 
analysis from the perspective of static, 
dynamic and hybrid using strategic 
evaluation methods and visualization.  This 
analysis aimed at discerning the advantages 
and disadvantages of every model, offering 
subtle insights that help to improve and 
maximize malware detection techniques 
and frameworks.  

Table 1: Strategies for the Evaluation of 
the Models 

Features Yardstick for 
Comparison 

Strengths and 
limitations 

Extensive analysis 
and visuals   

Performance 
metrics  

Using tables or 
graphs for 
comparison 

Malware 
detection 
framework  

Refine, integrate and 
optimize base on the 
comparative analysis  

 

Visualizations like bar plots and radar plots 
are used to analyze the models' 
performance matrices. These visuals help to 
improve the results' interpretability and 
make it easier to see how well each model 
performs in comparison.  

   Table 2: Matrix comparison and Visuals 

Visualization Description 

Bar Plots Display each model's 
performance on a 
different matrix. 

Radar Plots Show the relative 
strength of each model 

 

5. Implementation of the Proposed 
Model 

 

In the real world, many malware strains 
make use of various flaws that may exist in 
particular software packages. As a result, 
the research includes a wide variety of 
services in the virtual systems that were 
created for stimulation.  
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The virtual machine is created by using 
VMcloak, an automated virtual machine 
generation and cloaking tool. The 
specifications for the virtual machine 
deployed for the experiment includes:  

i. 1 CPU-CUDA core 1733 MHz  
ii.  8 GB RAM  
iii.  Internet access 
iv. NVIDIA GeForce GTX, 256-bit 

memory interface, supports NVIDIA 
Ansel, SLI 

v. Adobe PDF reader 9.0  
vi.  Adobe Flashplayer 11.7.700.169  
vii.  Visual Studio redistributable 

packages 2005 - 2013.  
viii.  Java JRE 7  
ix. .NET framework 4.0  
 
The model utilizes deep learning structure 
(Inception v3) plus SVM classifier for its 
implementation by referencing the CNN 
algorithm. The framework’s input comes 
from instances of the explored malware 
dataset. Here, these instances are fed into 
the hybrid model via the Inception v3 input 
layer. The instances are further forwarded 
to convolutional phase of Inception v3, 
where important features are extracted. The 
extracted features are utilized in form of 
support vector machine classifier’s input. 
This incorporated support vector machine 
classifier uses the extracted features for 
classification. The output of the hybrid 
system is either malware file or legitimate 
file. The hybrid model comprises of 
Inception v3 and SVM which are the two 
unique structures that interact to form the 
hybrid model using the malware dataset to 
constructively detect malware files. The 
final module, SVM, is used for 
classification, whereas Inception v3 is used 
for feature extraction. 
The proposed model is implemented in 
four different stages, namely; training and 
testing, data split, cross validation and 
matrices evaluation. 
 
 
 
 

5.1 Model Training and Testing 
 

The Model undergo training and testing so 
that the machine learning algorithm learns 
to recognize patterns and make predictions 
based on input data. It involves feeding the 
algorithm with the extracted malware 
dataset consisting of input-output pairs, 
where the algorithm learns to map inputs to 
corresponding outputs through iterative 
adjustments of the internal parameters. 
During training, the algorithm compares its 
predictions with the actual outputs, 
calculates the error, and updates its 
parameters using optimization techniques 
like gradient descent to minimize this error. 
This iterative process continues until the 
model's performance on a separate 
validation dataset reaches satisfactory 
levels, indicating that it has learned to 
generalize well to new, unseen data. The 
trained model can then be deployed to make 
predictions on new data it hasn't seen 
during training. The models are saved for 
later use after testing and exported into a 
file. The models can also be used to develop 
an antimalware program and to also 
conduct additional research. 

The split sample in the training and testing 
is decompiled for the static part using 
HOOKAPI, then extract Permission as a 
static feature from the Window Portable 
Executable (WPE) file Manifest. The 
approach is implemented in a virtual 
environment to simulate computer network 
devices in the dynamic section. Next, is the 
extraction of API (Application Package 
Interface) as dynamic features from 
dynamic log files which is installed to run 
the PE samples. The task of determining if 
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the sample is  harmful or not is carried out 
by the detection as illustrated in Figure 2. 

5.2  Dataset Split 

The original dataset is divided using ten-
fold validation techniques after which the  

Figure 2: Model Training and Testing. 

largest portion of the dataset is used to train 
the model, while the smaller portion is used 
for testing. The sample under investigation 
is divided into ten (10) equal parts. 9 of the 
10 sections are utilized in the training 
phase, while the remaining portion is used 
in the test phase.  By flipping the training 
and testing signals ten times, the training 
process is repeated. Additionally, the 
LinearSVC learning method is used to 
implement training with 150 training 
epochs.   

5.3 Cross-Validation 

Cross table charting of the four models is 
done in order to forecast how well the 
models perform on the new data. Cross-
validation is employed in the design 
process of the hybrid model. This strategy 
aids in overcoming the limitation of the 
machine learning algorithms' accuracy 
evaluation techniques. 

5.4 Metrics Evaluation 

The variables for classification and 
detection such as Accuracy, Precision, 
Recall, F1- Score, TPR, FPR, F-measure 
and AUC-ROC is giving maximum 
attention to ensure their relevance to the 
research questions is met. 

First, the actual target values is compared 
with the projected values, a confusion 
matrix which is a method for assessing the 
model's classification performance in 
machine learning is implemented to 
calculate the error and present a 
comprehensive picture of the model's 
performance.   

 

            Figure 3: Confusion Matrix. (Bush 
& Abiyev, 2023). 

There are two values in the target variables: 
positive and negative; 

Where the True Positive = TP, 

The True Negative = TN, 

False Positive = FP, 

False Negative = FN. 

The values of the target variables ranges 
between 0 and 1 and are displayed within 
the python Google Collaboration 
environment during the prediction. 
Secondly, the total number of correctly 
classified samples is divided by the total 
number of samples in the test set, the 
accuracy is calculated. However, in the 
event that the dataset is unbalanced, 
accuracy is limited. The accuracy obtained 
makes it impossible to evaluate the models 
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if any class or dataset output has a 
disproportionately high or low number of 
samples compared to the other classes 
(Moustafa, et al., 2017). The accuracy is 
calculated thus: 

Accuracy =            TP + TN   (2) 

                      FP + FN + TP + TN 

The receiver operating characteristics area 
under curve (ROC AUC) is one of the most 
widely used metrics, particularly for two-
class imbalanced data. The trade-off 
between true positive and false positive 
rates is evaluated across various 
classification thresholds using the AUC-
ROC metrics. 

The F1-score is then applied as shown in 
equation 3. 

F1 score =             TP                                    (3) 

                      TP + ½ (FP + FN) 

Again, Recall (sensitivity), specificity, and 
accuracy were applied to gauge the models' 
unique capacities for identifying distinct 
output classes using the equations; 

 Recall =          TP                                         (4) 

                      TP + FN  

Specificity =      TN                                  (5) 

                          TN + FP 

Precision =      TP                     (6) 

                        TP + FP   

In order to solve issues with imbalanced 
datasets and differing levels of model 
complexity, the analysis takes into account 
the context of malware detection. A transfer 
learning of the techniques with optimum 
performance is conducted. This entails 
integrating two of the best models in terms 
of performance to produce a hybrid model 
with a better performance. The results is 

compared with standard models and those 
of other researchers so as to recommend the 
best model for malware detection and 
classification. 
 

6. Results and Analysis 
In this section, we present the result of the 
study from simulation of all the tested 
models in order to analyze the data and 
answer the research questions. These 
models include; the developed hybrid 
model (Inception v3 + SVM), CNN, SVM, 
and NN. The aim is to deduce the best 
model for the malware dataset as well as to 
determine the best performing model. 

6.1 Simulation Using Inception v3 + SVM 
(Hybrid Model) 

Four parameters define the Inception 
module: depth (D), height (H), width (W), 
and output class number.  The input size is 
denoted by H and W.  Input channels are 
represented by depth.  W is 299 and H is 
299 in the input size of 299x299x3.  Lastly, 
D is 3, which is the RGB standard. As stated 
earlier, we performed factorization 
operations on this high dimensional input 
space, resulting in a significant reduction in 
dimension.  The factorized low space is 
then used as the input for the support vector 
machine classifier. A classification report is 
shown in Table 3, with the corresponding 
confusion matrix of the hybrid model used 
to detect malware files as shown in Figure 
4. These findings were from an experiment 
that used the cross-validation approach. Out 
of the two classes in the investigated 
dataset, miss-classification only happened 
once on class m (malware file), as seen in 
table 3. It is evident from these data that the 
hybrid model is efficient because the miss-
classification rate is kept to a minimum. 
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Table 3: Classification report 

Classes Precision Recall F1-
score 

Support  

m  1.00 0.99 1.00 146 

1 1.00 1.00 1.00 146 

 

The SVM class used in this investigation is 
the LinearSVC estimator. LinearSVC is 
essentially a linear interpolation. It has a 
smooth/simplified learning structure, and is 
much less adjustable. For categorization, it 
is connected with Inception v3.  One of the 
parameters of the SVM classifier is 
loss='Squared_Hinge,' which stands for 
hinge loss square.   

Penalty = "l2" specifies the penalization 
norm, C = 5 denotes the error term 
parameter C, and "ovr" = Multi_Class 
which determines the multiclass approach 
when y has more than two classes. 

 Classes:          

m 1 

145 0 

0 146 

Figure 4: Confusion matrix for hybrid ML 
model 

Cross-validation is used to carry out the 
design process on the hybrid model that 
was presented in the initial simulation.  The 
ten-fold cross-validation is used in this 
experiment. The sample under 
investigation has been divided into ten (10) 
equal parts. 9 of the 10 sections are utilized 
in the training phase, while the remaining 
portion is used in the testing phase. By 
flipping the training and testing signals ten 

times, the training process is repeated. 
Additionally, the LinearSVC learning 
method is used to implement training with 
150 training epochs. The accuracy value 
that has been demonstrated is the average of 
10 simulations. The average accuracy rate 
during the test phase was 99.89%, with an 
error of 0.0135.  

Monte Carlo-style estimation is 
investigated in the second simulation using 
the same database, where the hybrid 
framework stops at 500 epochs. The dataset 
is randomly divided into 60% for training 
and 40% for testing at each epoch. Monte 
Carlo estimators are a broad category of 
techniques that rely on random sampling 
iterations to generate numerical results 
(Kroese et al., 2024). Using randomization 
to solve predictable tasks is the core notion. 
They are frequently used in physical and 
mathematical tasks. It is also useful in 
situations where using another 
methodology is impossible or very 
challenging. The Monte-Carlo estimator is 
mostly used to solve three types of 
problems: optimization, numerical 
integration, and producing solutions using a 
probability distribution. Fundamentally, 
every problem with a probabilistic 
interpretation can be solved using Monte 
Carlo estimators.  As was previously 
indicated, Monte Carlo experiments were 
conducted using a malware database, and 
the hybrid model achieved an accuracy of 
98.97% and an error rate of 0.0214. The 
results of simulations of the hybrid system 
using both cross-validation and Monte 
Carlo techniques are shown in Table 4.   
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 Table 4: Results of the hybrid model's 

simulation 

 

6.2 Convolutional Neural Network (CNN) 
Simulation 

In order to detect malware, the CNN 
algorithm with a fully connected network is 
utilised at the initial stage. The CNN 
structure used for malware detection is 
shown in Table 5. It consists of 2 
convolutional layers, max-pooling, and 
fully-connected layers. 

Table 5: CNN Structure 

Layer type       Output Shape         Param # 

Conv2d_1  (Conv2D)   (None, 26,26,16)        160 

Max_pooling2d_1      (None, 11,11,32)         0 

Conv2d_2  (Conv2D)  (None, 11,11,32)         4640 

Max_pooling2d_2      (None, 5,5,32)          0 

Conv2d_3  (Conv2D)  (None, 3,3,64)          18496 

Max_pooling2d_3      (None, 1,1,64)          0 

Flatten_1 (Flatten)   (None, 64)         0 

Dense_1 (Dense)    (None, 768)         49920 

Dense_2 (Dense)    (None, 128)         98432 

Dense_3 (Dense)    (None, 24)         3096 

The data is split into two halves for CNN 
training: 80% and 20%. Twenty percent 
was used for testing and eighty percent for 
training. 60% and 40% of the 80% of data 
allocated for training are used for training 
and validation, respectively.  

Equations (3–5) were employed to 
ascertain the CNN's output signals. Z-score 
normalization was used to scale each input 
signal during simulation, which improved 
the model's generalizability. The training is 
done using an RMSprop learning method.  
Furthermore, 150 epochs was used to train 
the CNN model. There are two 
convolutional layers in CNN.  
Consequently, the entire linked network is 
used to classify malware. As previously 
said, CNN was trained over 150 epochs. 
40% was used for validation and 60% for 
training at each iteration of each epoch. The 
accuracy and loss function simulation 
results is shown in Figure 5, and the CNN 
simulation results is shown in Table 6. The 
value of the loss function acquired during 
training is 1.5776e-08. The loss function's 
value is 0.0055 for the test data and 0.0055 
for the validation data. The accuracy for test 
data is 93.10%, and the error rate is as low 
as 0.0225. 

Figure 5: Results of CNN simulations for 
accuracy and loss function. 

 

 

 

Methods Accuracy (%) RMSE 

Monte Carlo 
Techniques 

 

98.97 0.0214 

Cross-

Validation 

Techniques 

 

99.89 

 

0.0135 
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Table 6: Results of Convolutional Neural 
Network simulation 

 Loss 
Function 

AUC 
(%) 

RMSE Accuracy 
(%) 

Training 1.5776e-    
08 

  100 2.2009e-05 100 

Validation  0.0055 96.98 0.0225 93.12 

Testing 0.0055 96.95 0.0225 93.10 

 

6.3   Simulation Using Neural Network  

The malware database was used to build the 
malware detection system in the subsequent 
simulation, which made use of the 
conventional neural network (NN) 
architecture. In this case, every instance in 
the dataset corresponds to a class. As 
previously stated, this model is able to 
assign each instance to the appropriate 
class. This model's design is consistent with 
that of the conventional CNN where the NN 
is responsible for both data pre-processing 
and categorization. The structure of the 
HOG plus NN used for the classification is 
shown in Table 7. 

Table 7: NN Structure 
 

Layer type       Output Shape       Param # 

dense_1 (Dense)       (None, 768)       787200 

dense_2 (Dense)       (None, 128)        98432 

dense_3 (Dense)       (None, 24)        3096 

Activation_1(Activation)  ( None, 24)     0 

 

The data is split into 80% and 20% halves 
for training.  Twenty percent of the dataset 
is used for testing, while the remaining 
eighty percent is used for training. 60% of 
the 80% dataset designated for training is 
utilized for training, and the remaining 40% 
is used for validation. Throughout the 
simulation, the Gaussian activation 
function was utilized for training, and  

Z-score normalization was utilized for 
signal scaling. Additionally, we used 150 
epochs to train the model.   

The simulation results achieved for the 
accuracy and loss function are shown in 
Figure 6, and the model's simulation results 
are shown in Table 8. The loss function 
value attained during training was 0.0498. 
The validation data loss function value 
obtained is 0.1726, whereas the test data's 
is 0.1282.  The accuracy value for test data 
is 96.21%. 
 

  

                

Figure 6: Simulation results obtained for loss 
function, accuracy and RMSE 

 Table 8: NN simulation results 

 Loss 
Function 

Accuracy 
(%) 

AUC 
(%) 

RMSR 
(%) 

Training 0.0498 97.89 99.86 0.0097 

Validation  0.1726 95.43 99.82 0.0159 

Testing 0.1282 96.21 99.58 0.0138 
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6.4   Simulation Using Support Vector 
Machine (SVM) 

Traditional SVM is used to perform 
malware detection under this circumstance. 
Here, both the data pre-processing and 
classification performed by the SVM 
model. A confusion matrix and 
classification report are shown in Figure 7 
and Table 9, respectively. The results show 
that high accuracy is achieved with low 
miss-classification. Throughout the hybrid 
system's simulation phase, a cross-
validation technique was used to achieve 
these results. The model's design also 
makes use of the LinearSVC learning 
method.   

The model is trained over a period of 150 
epochs. The accuracy rate at the test phase 
was 99.31%, and the error was 0.5785. 
 

Table 9: Classification report for SVM 

Clas
ses 

Precisio
n 

Recall F1-
score 

Support  

m  0.97 0.96 0.97 147 

1 1.00 1.00 1.00 134 

 

 Classes:       

     

 

 

 

Figure 7: Confusion matrix for SVM 

7. CONCLUSION 

The simulation results has shown that the 
proposed hybrid machine learning model 
can be adopted in order to guarantee a more 
accurate and robust malware detection in a 
critical environment. This model could be 
introduced as a framework to integrate 
different Machine Learning, ML 
techniques so as to better improve the 
detection and classification accuracy. A 
detailed study and analysis of the existing 
ML malware detection systems 
characterized by false positive detection 
rate, poor classification detection 
accuracies, and low true positive detection 
rate was carried out which helps in 
improving the accuracy of the existing 
systems.  

Table 10 shows the performance results of 
some of the most competitive malware 
detection systems. Studies that showed the 
accuracy rate were taken into account. The 
performances of various models based on 
deep learning frameworks have also been 
illustrated. In this study, we created several 
models for comparison utilizing feature 
extraction and classification methods. 
SVM, CNN-fully connected network 
(FCN), NN (the foundations of deep 
learning) and inception v3+SVM (the 
hybrid model). Transfer learning was 
carried out where pre-trained Inception v3 
model was reused and concatenated with 
SVM classifier to carry out classification on 
the malware dataset. The proposed hybrid 
model (Inception v3 + SVM) has the best 
result as depicted in the table 10. Inclusion 
of Inception v3 makes feature extraction 
phase simpler and faster. 

 

 

 

m 1 

142 0 

0 134 
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Table 10: Comparative output of the various 

models 

Authors (yr) Methods Accuracy 
(%) 

Nguyen et al. 
(2021)  

LightGBM 
Ensemble 

86.10 

Nguyen et al. 
(2021)  

FFNN 
Ensemble 

98.80 

Raff et al. (2020)  Malconv w/ 
GCG 

93.30 

Loi et al. (2021)  Detection 
Pipeline 

96.90 

Raff et al. (2018a)  MalConv 98.80 

Vinayakumar et al. 
(2019)  

DeepMalNet 98.90 

Current research 

 

SVM 99.31 

Current research 

 

NN 96.21 

Current research 

 

CNN 93.10 

Current hybrid 
model 

Incept v3 + 
SVM 

99.89 

   

 

The proposed model is examined 
practically and is very effective in 
classifying the various samples/instances 
into their corresponding classes. 
Experiments of malware detection were 
repeated ten times using different epochs. 
The accuracy rate of the hybrid system was 
obtained as 99.89%. The result shows 
significant convergence in both 
performance and learning. These results 
when compared with that of previous 
research, undoubtedly show how effective 
the proposed hybrid design is in 
comparison to other approaches created to 
address the same problems. 

Several ethical considerations were 
observed in the course of the experiment to 
ensuring that the malware detection using 

ML procedure has been carried out in a 
realistic and safe manner and that every 
precaution has been taken to stop the spread 
of malware in the course of the data 
collection and experiment by highlighting 
the appropriate use of data, reducing biases, 
and guaranteeing the security and privacy 
of the people and organizations captured in 
the dataset. Consequently, guidelines that 
was strictly followed include; Mitigation 
against potential harms and risk that might 
arose from the use of systems and servers 
for experimental purposes, balancing risk 
and benefits or the importance of the 
research to the society while considering 
the harms that might emanate from the 
research activities such as data collection, 
use or disclosure and publication of 
research results. The inclusion of 
potentially sensitive information 
(personally identifiable information) in the 
dataset used in the investigation which 
comes from internet traffic logs was 
acknowledged as well as the importance of 
obtaining informed consent when working 
with potentially identifiable data. 
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