

Abstract: The cyberspace is presently faced with many incidences related to malware
compromising the cyber security goals of; confidentiality, integrity, availability, authenticity,
non-repudiation and trust of system networks. Malware authors are breaking frontiers in
developing new kind of malware such that anti-virus software cannot provide the level of
protection that is being anticipated by users thereby resulting in unprecedented successful
attacks being recorded. The study examine how existing machine learning models can be
utilized in classifying malware infections and its propagation mechanism. This study adopts an
experimental and quantitative research design using Machine Learning techniques to develop
and evaluate a hybrid malware detection model. The approach includes the data collection,
feature engineering, model development and performance evaluation. The hybrid model is
designed using the combination of both malware (infected) files and benign (uninfected) files.
The implementation of the system is done with the aid of deep learning structure (Inception
v3) with SVM classifier by making use of the CNN learning method. The framework’s input
comes from instances of the explored malware dataset. These instances are supplied through
the hybrid model (Inception v3) input layer. The instances are further forwarded to
convolutional phase of Inception v3, where important features are extracted. The extracted
features are utilized in form of support vector machine classifier’s input. The incorporated
support vector machine classifier uses the extracted features for classification where the output
of the hybrid system is determined as either malware file or legitimate file. The hybrid model
is made up of two different components; Inception v3 and SVM which combines to produce
the hybrid model using the malware dataset to constructively detect malware. The final module,
SVM, is used for classification, whereas Inception v3 is used for feature extraction. The
simulation of all the tested models is carried out in order to analyze the data and answer the
research questions. These models include; the developed hybrid model (Inception v3 + SVM),
Convolutional Neural Network, CNN, Support Vector Machine, SVM, and Neural Network,
NN. The aim is to deduce the best model for the malware dataset as well as to determine the
best performing model. The accuracy rate of the hybrid system was obtained as 99.89%. The
result shows significant convergence in both performance and learning. The result undoubtedly
show how effective the proposed hybrid design is in comparison to other models developed to
address the same issue.

Keywords: Malware, Detection, Model, Machine learning, Accuracy, Classification, Hybrid.

Received: March 7, 2025. Revised: May 11, 2025. Accepted: June 9, 2025. Published: July 30, 2025.

A Hybrid Machine Learning Model for Malware Detection

BARTHOLOMEW IDOKO1, FRANCISCA OGWUELEKA2, STEVEN BASSEY3,

MONDAY ADENOMON4
1,3,4Centre for Cyber Space Studies, Nasarawa State University Keffi, NIGERIA.

2Computer Science Department, University of Abuja, Abuja-FCT, NIGERIA.

Bartholomew Idoko et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 44 Volume 10, 2025

mailto:idokobartholomew@nsuk.edu.ng
mailto:francisca.ogwueleke@uniabuja.edu.ng
mailto:dr.stevenba@gmail.com

1. Introduction

The evolution of the initial term “virus” to
today’s almighty “malware” reflects the
evolution of threats over the past 20 years.
The development and changes of such
attacks have coincided with the
development in the cyberspace. Therefore,
every threat will target the vulnerable attack
surface, hence the need to device new
strategies to detect malware so as to prevent
and mitigate its infection and spread.
Malware can propagate through various
mechanisms in order to deliver a specific
payload. Due to the variation in malware
propagation mechanism, malware can be
classified based on the purposes and means
they could interface with target computers
(Yanfang, et al., 2017). A basic
classification of malware includes file
infectors (virus) and stand-alone malware
(worms) (Idoko et al., 2025; Chandy,
2022). A different method of classifying
malware is according to their specific
actions and characteristics, examples;
Trojans, Rootkits, Ransomware, Logic
Bomb, Mobile code, Bot, Crypto- Malware,
fileless-malware, Backdoors, etc (Chandy,
2022).

Malware exists in numerous forms hence a
diversified dataset is needed in order to
develop an effective malware detection
system. Features must be collected from
existing malware samples. The study of
malware detection basically deals with
analyzing executable files to identify
behaviour that could be in the form of
Indicators of Attack (IoA) and Indicators of
Compromise (IoC) (Idoko & Bush, 2023).
The emergence of anti-malware software
has brought about the exponential increase
in sophisticated malware with multiple
polymorphic layers which are particularly
designed to avoid detection by the anti-
malware software (Damodaran et al.,
2017). However, the practice has advanced

the research in malware into the use of
emerging technology for malware
detection.

There are basically two approaches to
malware analysis and detection namely,
static and dynamic. Static Detection also
referred to as code analysis or detection is a
fast and simple detection method because
the analysis and detection can be enabled
with and without running the program. That
is, static detection examines a sample
without running it. This process uses
reverse engineering principles which
decompiles the malware and uses a number
of tools to examine its source code
(Sikorski & Honig, 2012; Chandy, 2022).
Static detection has played a significant role
as a preliminary detection technique
throughout the history of malware
investigation even though it is difficult to
use this method to find complex and
sophisticated malware. On the other hand,
dynamic detection uses behaviour analysis
while a malware is running to determine
malicious intent (Jyothsna et al., 2011).
Usually, this is done in a sandbox
environment to ensure that the executable
file does not cause any damage to the target
computer. This detection method is capital
intensive and difficult to manage in some
instances. Programmers could be contacted
to examine system calls or other
behavioural trends which on the other hand,
cannot be detected using black box testing
(Jyothsna et al., 2011; Keragala, 2016).

Standard signature-based techniques for
malware detection search for unusual
activity using recognized digital indicators
of malicious code. A breach can be detected
using the lists of indicators of compromise
(IoCs), which are mostly saved in a
database (Rimon & Haque, 2023).
Although IoCs are reactive in nature, they
can be useful in detecting malicious
activities. However, the need for the new

Bartholomew Idoko et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 45 Volume 10, 2025

detection methods arose from the
exponential increase in polymorphic
malware. To militate against this ugly
trend, a heuristics-based approach in
combination with machine learning
techniques that provide more efficient
detection accuracy is required (Gibert et al.,
2020; Kumar et al., 2020). Researchers
have over the years attempted to adopt
Artificial Intelligence specifically Machine
and Deep Learning Techniques as a better
detective control mechanism since AI
Algorithm has a major influence on the
detection accuracy of the static malware
detection tools (Venkatraman et al., 2019;
Akbar & Ahmad, 2021). Most scholars
have proposed ML Algorithm such as One-
class classification, Support Vector
Machine, Multi-class Support Vector
Machine, Random Forest, Restricted
Boltzmann Machine among others to
achieve a near accurate results, their exists
some gaps like false positive rate, poor
classification accuracies, and low true
positive rate. A Hybrid ML model could be
used as a framework to integrate different
ML techniques so as to better improve the
detection and classification accuracy
(Rimon & Haque, 2023).

This study proposed a hybrid machine
learning algorithm referred to as Inceptron
+ v3 and considers CNN, SVM and NN as
the base models which serve as the
foundation through which independent
predictions are carried out. They are
generally referred to as the building blocks
for the hybrid machine learning algorithm
(Inceptron + v3) (Bush et al, 2023). CNN is
one of the base models where the dataset is
the input (hidden) layer of the CNN model,
while the model's predictions are the output
layer. One or more layers that carry out
convolutions make up the hidden layers.
This typically consists of a layer that uses
the input matrix of the layer to do a dot
product of the convolution kernel. It

consists of four major layers which are; the
convolutional, pooling, ReLU (Dense
layer), and the fully connected (output)
layers (Bush et al., 2018). These layers
enable CNN to mimic how the human brain
processes images in order to identify
patterns and characteristics. Whereas,
Figure 3.6, represents the architecture of
CNN as applied to malware detection. The
primary goal of the SVM model is to
identify a hyperplane that divides the data
into malicious and normal activities. The
support vectors serve to define the decision
boundaries and are the vectors closest to the
hyperplane (Bush et al., 2023). The SVM
transforms the input space into a higher
dimensional space by using kernel
methods. In order to enhance the margin
between the classes, the SVM algorithm is
taught to alter the hyperplane's position.
The purpose of the NN function, f, is to
minimize the discrepancies between its
output and the y label of a given input x by
using a set of labeled data. This cost
function is frequently referred to as a loss
function and an optimization procedure. To
do this, the model is trained by adjusting the
parameters, Q of f to be the best
approximation function provided by:

 Ŷ = f (x, Ɵ) (1)

The standard optimization procedure for
model training is called the
backpropagation algorithm.

Inception v3 and SVM are two unique
structures that are combined in the hybrid
system to create a hybrid model that detects
malware files in a constructive manner. The
system is designed using the malware
dataset, with Inception v3 being used for
feature extraction and SVM, the final
module, being used for classification.

2. Related Works
Malware detection in a critical environment
is a difficult operation that requires

Bartholomew Idoko et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 46 Volume 10, 2025

advanced analysis and techniques for both
identification and classification. To avoid
detection and disrupt the analysis, malware
developers use a variety of anti-malware
detection techniques. Majority of malware
analysts use Static and Dynamic analysis
and techniques to analyze malwares similar
to the proposed hybrid machine learning
model that will integrate both the static and
dynamic approach. However, the review of
related studies has shown that there are
advantages and disadvantages of using
these analysis and detection techniques.

A proposal was made to use a machine
learning strategy on static features to
classify Windows PE files completely in a
pipeline for the first time (Loi et al., 2021).
The pipeline can distinguish between
harmful and benign samples, and for those
that are deemed dangerous, it offers a
comprehensive classification based on
behavior, malware family, and threat
category. Despite known limitations such
as the size of the training data, the imperfect
labeling of the ground truth, and the
semantic gap of models based on static
features only, classification results were
comparable to the state of the art for similar
works while providing much more detailed
information on malware characteristics.
Finally, the extracted feature vector
defining the raw PE and the specific ML
model used generated an interpretable
result, and the method is scalable to much
larger datasets. As a result, the authors saw
the work as a preliminary step towards a
practical solution that would assist security
analysts in managing new threats while
cutting down on analysis time and
expenses. In order to enhance the model's
performance, the authors ought to have
adjusted the ground truth, taken into
account a larger dataset for training,
explored the properties of the embedded
features' space more, and thought about the
possibility of a multi-label classification

scheme. In the early phases of the pipeline,
it could be intriguing to incorporate a
detector for packed or encrypted samples as
well.

Another author thought about creating
ScaleMalNet, a highly scalable system for
identifying, categorizing, and classifying
zero-day malware. This study also
evaluated deep learning architectures and
conventional machine learning algorithms
(MLAs) based on image processing,
dynamic analysis, and static analysis
methods (Vinayakumar et al., 2019).
Initially, malware was categorized using a
combination of static and dynamic analysis.
In the second stage, malware were grouped
together using image processing
algorithms. In malware detection and
classification using static, dynamic, and
image processing, deep learning
architectures performed better than
standard MLAs. However, deep learning
architectures are used on the domain
knowledge extracted features in the
malware detection study that is based on
dynamic analysis. By gathering binary file
memory dumps during runtime and
mapping the memory dump file into a
grayscale image, this can be prevented.

An internationally recognised machine
learning model that can analyse events in a
manner similar to that of human analysts
was created by a group of US-based
machine learning specialists as part of an
ML-based malware detection system
(Johnson & Grumbling, 2019). The model
can identify if a specific instance of a given
user accessing a given document is harmful
or acceptable once it has been trained and
applied to document-access events. The
model however, receives two types of
input; data about the user and data about the
document accessed (Johnson & Grumbling,
2019). This standardized model can
determine if a particular instance is benign

Bartholomew Idoko et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 47 Volume 10, 2025

or harmful given the identity of the user and
the specific document after being trained on
data from around the organization (Zheng,
et. al. 2022). The group however, fed their
model with the identical auxiliary
processed data.

However, by using this method, Google, for
instance, was able to identify instances of
disgruntled employees looking for
corporate documents for a rival company,
as well as early reconnaissance actions of a
red-team exercise. Nevertheless, there have
also been some false positives from the
model, such as when an employee was
switching jobs or using outdated
documents. And, so far, so good, the system
has added new perspective to research and
innovation. With extremely low false-
positive rates, it has been able to detect real
unique malware in the two years of its
implementation by Google. By combining
innovative approaches for handling the
training data with established supervised
learning techniques, this anomaly detection
methodology proved effective (Johnson &
Grumbling, 2019).

Previous study proposed a system for
extracting selected features from the static
and dynamic analysis techniques (Singh &
Jain, 2017). An integrated method was
developed employing the selected features
in order to increase the classification and
detection rate as compared to the use of
simple static and dynamic approaches. To
improve results of classification and
detection, the researchers examined
malwares that have anti-malware analysis
features. The outcome demonstrates an
accuracy of 63.30% for dynamic analysis,
69.72% for static analysis, and 73.47% for
the integrated technique. The integrated
technique yields better accuracy when
compared to the static and dynamic
approaches (Singh & Jain, 2017).

A proposed study that makes use of
Application Package Interface (API) calls
for malware detection and analysis was
carried out (Salehi et al., 2021). According
to the study, malware with comparable
behaviors will make calls to the same set of
parameters and APIs. The strategy was to
use a dynamic analysis technique to extract
feature vectors. Several different feature
selection algorithms can be used to
decrease the amount of features. The
authors intercepted API calls using a
VMware-based virtual machine and the
WINAPIoverride32 program. The authors
employed WEKA classifiers for
classification.

The idea of analyzing malware utilizing the
headers and import file sections of the
Windows Portable Executable (WPE) file
format was put up by another group of
authors (Markel & Bilzor, 2020). The
primary objective of the authors' work was
that malicious executable files had different
metadata than clean executables. After
analyzing a number of PE32 header traits,
only those that were best suited for
categorization were chosen.

In a similar vein, a study on the use of ML
for the detection of new dangerous
executable files was conducted (Schultz et
al., 2018). Using the static analysis
approach, the authors primarily collected
three static features: text information, byte-
sequence n-grams, and portable
executables (PE). The characteristics were
taken from dynamic link libraries (dlls)
inside the 32-bit executable. The n-gram
technique, which extracts a string's n-byte
sequence, was utilized to increase the
detection rate. All of the text strings that
were encoded in the executables were
available in the string information. When
the authors used machine learning instead
of more conventional signature-based
methods, they discovered that their

Bartholomew Idoko et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 48 Volume 10, 2025

detection rates were significantly higher.
Nonetheless, a team of researchers applied
the idea of feature extraction based on a
quantity of bytes found in the malicious
executable's source code (Tian et al., 2018).
By employing this technique, they were
able to extract several functions from
malicious executables and use dynamic
analysis to determine these functions'
frequency of occurrence in order to detect
the infected file. The executable codes for
obfuscated files were concealed. Machine
learning techniques from WEKA were used
for classification.

To provide better categorization results,
another set of researchers explored the use
of the n-grams technique (Kotler & Maloof,
2020). To improve the detection rate, the
authors worked with a variety of
classification methods and a decision tree-
based methodology. A related viewpoint
was examined, in which the authors used
dynamic analysis to extract characteristics
by merging temporal and geographical data
from run-time windows Application
Programming Interface (API) (Ahmed et
al., 2023). The authors claimed that
examining temporal and spatial
characteristics simultaneously can increase
the likelihood of detecting malware. They
went further to integrate the static and
dynamic analysis of malware. The function
length frequency and printed string
information (PSI) vectors were obtained by
static analysis. The log files of dynamic
analysis tools such as HOOKAPI were used
to extract dynamic feature vectors, which
were made up of API functions and their
arguments. The authors combined the
feature vectors obtained from both static
and dynamic analysis to construct the
feature vector for the integrated approach.
The findings indicate that when employing
an integrated method, accuracy is higher
than when utilizing a static and dynamic
approach.

Finally, another study focused on the
extraction of dynamic features from the
CSV file generated from the cuckoo
sandbox (Dhammi & Singh., 2019). Rather
than concentrating solely on API calls, the
authors also examined file information,
registry modifications, and network
analysis. Even though most authors made
an effort to increase malware detection
rates and classification, there is still room
for improvement in analysis and detection
methods, which has led to certain research
gaps.

3. The Existing System and
Knowledge Gap

Although, substantial body of literatures
have addressed various facets of malware
detection and analysis, however, there exist
a noticeable gap in comprehensive studies
that systematically compared the
performance of the different machine
learning model for malware detection.
Attackers are able to continually breaching
the system's defenses in a way that is
unavoidable by taking advantage of an
inherent asymmetry on these gaps (Johnson
& Grumbling, 2019).

Traditional machine learning models could
yield a high number of false positives
because they don't witness many real
attacks, which means there aren't enough
samples to be used for training of an ML
model. Defenders frequently place a high
priority on lowering the number of false
positives because they might be expensive.
Nevertheless, this often has the effect of
increasing the rate of false negatives, which
implicitly raises the possibility of a
successful attack (Johnson & Grumbling,
2019). The hybrid machine learning model
that combines two different models is
capable of constructively detecting
malware with miss-classification rate kept
to a minimum.

Bartholomew Idoko et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 49 Volume 10, 2025

Security tools are frequently used by parties
other than the resource owners themselves
and operate on a number of interdependent
system therefore, maintaining a low
number of false positives without providing
opportunities for attackers is typically a
substantial issue (Johnson & Grumbling,
2019). However, the hybrid machine
learning model make use of a LinearSVC or
interpolator with a smooth/linear structure
that cannot be easily adjusted.

Most Machine Learning tools recently
designed for malware classification are
widely based on accuracy, this simply
means that the system is probabilistic in
decision making. This is because ML tools
for malware detection are not upgraded to
meet the demands of either defensive or
offensive cyber operations (Zheng, et. al.,
2022). It is worthy to note that the
parameters of hybrid ML systems for
malware detection unlike the conventional
ML tools can be upgrade and optimized to
perform excellently without bias.

The glaring void inhibited as a result of
limited access to malware dataset as well as
obtaining more static and dynamic features
for higher accuracy and detection (Singh &
Jain, 2017). The inability to also access
dataset for advanced malware samples such
as metamorphic and polymorphic malwares
whose detection and classification might be
faster as compared to the ones that have
been widely used by researchers (Singh &
Jain, 2017). This glaring void and challenge
has been tackled with the access to a large
updated benign and malware (metamorphic
and polymorphic) dataset comprises of
138,047 instances.

4. Methodology

This study adopts an experimental and
quantitative research design using Machine
Learning techniques to develop and

evaluate a hybrid malware detection model.
The approach includes the data collection,
feature engineering, model development
and performance evaluation. Figure 1
represents the machine learning
development and classification scheme.

A hybrid learning model is developed with
the potential to addressing the malware
detection problems. The ML models
implemented are; Inception + v3, CNN,
SVM and NN. The final module, SVM, is
used for classification, whereas Inception
v3 is used for feature extraction. The
general process is outlined in Figure 1.

Figure 1: The Machine learning
development and classification scheme

The packages that is used for the
implementation of the algorithms are:

i. Support Vector Machines – Scikit-
 learn
ii. CNN – Keras
iii. Cross Table plotting – gmodels

The study considers the detection of the
latest malicious code whose sample is
obtained from a secondary data source
(Virushare Machine Learning Repository)
which provides the fundamental
information that forms the basis of the
investigation. The data is composed of the
collection of multivariate attributes that
characterizes instances of malware and
benign data points that make up the dataset.
The total sample of both benign and

Bartholomew Idoko et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 50 Volume 10, 2025

malware classes used for the experiment is
138,047 which comprises of 41,323 benign
and 96,724 malware files. Furthermore, the
dataset consist of 56 features used for
training and generalization. An instance in
the dataset is either classified into
legitimate or malware file. The constructed
hybrid model classifies these features into
one of the two classes; benign = l or
malware = m.

4.1 Data processing
The data is normalized before utilizing it.
This is achieved by separating the data into
training and testing sets for the training
process, and splitting the data to be within
a smaller range because the values of many
attributes fall within a wide range of
numbers. The normalization stages include,
feature extraction, feature engineering and
labelling.

4.1.1 Feature Extraction

The combining matrix, which comprises
successful Application Programming
Interfaces (APIs), unsuccessful APIs, and
their return codes, is the feature extraction
technique used in this study. The reports are
analyzed and stored locally during the
implementation phase. The feature
extraction software then uses these reports
as input to create the .csv file containing the
combining matrix. The methodology
specifies the minimum number of API
calls; for example, all reports that generated
fewer than five API calls is ignored. The
extraction timestamp is included in the file,
and logs detailing successful and
unsuccessful operations is kept in a
different file.

4.1.2 Feature Engineering

This is one of the crucial task of this study.
The characteristics of the malicious codes
that distinguishes them are called features.
Since using every feature makes the model
more complex for malware detection, it
won't be necessary. However, the data is

transformed by changing the original
numerical representation of a quantitative
value to another value, during which the
nature, direction, and significance of the
relationships of the variables used in the
study were determined. Consequently, the
characteristics of each feature are identified
in order to choose more important features
for the model's training.

In order to increase the detection accuracy,
the feature engineering procedure which
involved selecting, manipulating and
transforming relevant features to eliminate
features that are unnecessary or redundant
is carried out. Because of the great size of
the feature set in this study, feature
selection is crucial. Python is applied in this
case for the feature selection with the aid of
Boruta package which provides a good and
straightforward approach for feature
selection in classification tasks. It is a
wrapper technique that operates over ML
algorithms (Kursa & Rudnicki 2020).

The algorithm is as follows:

i. Make scrambled (shadow)
duplicates of every feature to
increase the randomization.

ii. Using the new dataset, train an
ML classifier and use the Mean
Decrease Accuracy technique as
a feature importance metric.
Measure the importance of each
feature and assign weights.

iii. Verify that the feature from the
original feature set has a greater
weight than the highest weight
of this feature's shadow copy at
the end of each iteration. At
each iteration, eliminate the
features that are deemed
unnecessary.

iv. Stop whenever all features have
been categorized as "selected"
or "rejected," or when a

 predetermined number of ML
 iterations have been completed.

Bartholomew Idoko et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 51 Volume 10, 2025

4.1.3 Labelling

The model is set up with hyper-parameters
and specific kernel functions for malware
detection. These setups are intended to
capture the complexities of malware attack
situations and are inspired by both
exploratory experimentation and current
research. The target value that the hybrid
model can predict is either benign (1) or
malware (m). The data is put through a
unique machine learning process in four
machine learning algorithms, namely; the
hybrid model (Inception v3 + SVM), CNN,
SVM and Neural Network (NN).

4.2 Techniques for Data Analysis

The models' performance is assessed by
determining the model's reliability and
qualities since the most accurate models
perform well in real-time malware attacks.
The behavioral characteristics of existing
malware is assessed so as to identify the
indices for developing the most efficient
model for applied malware detection.
Indicators such as obfuscated program,
shelling program, overall time derived from
existing and standard model serves as a
guide for the analysis. The hybrid learning
model is also assessed and compared with
other models.

The results obtained from the four (4)
models undergo a rigorous comparative
analysis from the perspective of static,
dynamic and hybrid using strategic
evaluation methods and visualization. This
analysis aimed at discerning the advantages
and disadvantages of every model, offering
subtle insights that help to improve and
maximize malware detection techniques
and frameworks.

Table 1: Strategies for the Evaluation of
the Models

Features Yardstick for
Comparison

Strengths and
limitations

Extensive analysis
and visuals

Performance
metrics

Using tables or
graphs for
comparison

Malware
detection
framework

Refine, integrate and
optimize base on the
comparative analysis

Visualizations like bar plots and radar plots
are used to analyze the models'
performance matrices. These visuals help to
improve the results' interpretability and
make it easier to see how well each model
performs in comparison.

 Table 2: Matrix comparison and Visuals

Visualization Description

Bar Plots Display each model's
performance on a
different matrix.

Radar Plots Show the relative
strength of each model

5. Implementation of the Proposed
Model

In the real world, many malware strains
make use of various flaws that may exist in
particular software packages. As a result,
the research includes a wide variety of
services in the virtual systems that were
created for stimulation.

Bartholomew Idoko et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 52 Volume 10, 2025

The virtual machine is created by using
VMcloak, an automated virtual machine
generation and cloaking tool. The
specifications for the virtual machine
deployed for the experiment includes:

i. 1 CPU-CUDA core 1733 MHz
ii. 8 GB RAM
iii. Internet access
iv. NVIDIA GeForce GTX, 256-bit

memory interface, supports NVIDIA
Ansel, SLI

v. Adobe PDF reader 9.0
vi. Adobe Flashplayer 11.7.700.169
vii. Visual Studio redistributable

packages 2005 - 2013.
viii. Java JRE 7
ix. .NET framework 4.0

The model utilizes deep learning structure
(Inception v3) plus SVM classifier for its
implementation by referencing the CNN
algorithm. The framework’s input comes
from instances of the explored malware
dataset. Here, these instances are fed into
the hybrid model via the Inception v3 input
layer. The instances are further forwarded
to convolutional phase of Inception v3,
where important features are extracted. The
extracted features are utilized in form of
support vector machine classifier’s input.
This incorporated support vector machine
classifier uses the extracted features for
classification. The output of the hybrid
system is either malware file or legitimate
file. The hybrid model comprises of
Inception v3 and SVM which are the two
unique structures that interact to form the
hybrid model using the malware dataset to
constructively detect malware files. The
final module, SVM, is used for
classification, whereas Inception v3 is used
for feature extraction.
The proposed model is implemented in
four different stages, namely; training and
testing, data split, cross validation and
matrices evaluation.

5.1 Model Training and Testing

The Model undergo training and testing so
that the machine learning algorithm learns
to recognize patterns and make predictions
based on input data. It involves feeding the
algorithm with the extracted malware
dataset consisting of input-output pairs,
where the algorithm learns to map inputs to
corresponding outputs through iterative
adjustments of the internal parameters.
During training, the algorithm compares its
predictions with the actual outputs,
calculates the error, and updates its
parameters using optimization techniques
like gradient descent to minimize this error.
This iterative process continues until the
model's performance on a separate
validation dataset reaches satisfactory
levels, indicating that it has learned to
generalize well to new, unseen data. The
trained model can then be deployed to make
predictions on new data it hasn't seen
during training. The models are saved for
later use after testing and exported into a
file. The models can also be used to develop
an antimalware program and to also
conduct additional research.

The split sample in the training and testing
is decompiled for the static part using
HOOKAPI, then extract Permission as a
static feature from the Window Portable
Executable (WPE) file Manifest. The
approach is implemented in a virtual
environment to simulate computer network
devices in the dynamic section. Next, is the
extraction of API (Application Package
Interface) as dynamic features from
dynamic log files which is installed to run
the PE samples. The task of determining if

Bartholomew Idoko et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 53 Volume 10, 2025

the sample is harmful or not is carried out
by the detection as illustrated in Figure 2.

5.2 Dataset Split

The original dataset is divided using ten-
fold validation techniques after which the

Figure 2: Model Training and Testing.

largest portion of the dataset is used to train
the model, while the smaller portion is used
for testing. The sample under investigation
is divided into ten (10) equal parts. 9 of the
10 sections are utilized in the training
phase, while the remaining portion is used
in the test phase. By flipping the training
and testing signals ten times, the training
process is repeated. Additionally, the
LinearSVC learning method is used to
implement training with 150 training
epochs.

5.3 Cross-Validation

Cross table charting of the four models is
done in order to forecast how well the
models perform on the new data. Cross-
validation is employed in the design
process of the hybrid model. This strategy
aids in overcoming the limitation of the
machine learning algorithms' accuracy
evaluation techniques.

5.4 Metrics Evaluation

The variables for classification and
detection such as Accuracy, Precision,
Recall, F1- Score, TPR, FPR, F-measure
and AUC-ROC is giving maximum
attention to ensure their relevance to the
research questions is met.

First, the actual target values is compared
with the projected values, a confusion
matrix which is a method for assessing the
model's classification performance in
machine learning is implemented to
calculate the error and present a
comprehensive picture of the model's
performance.

 Figure 3: Confusion Matrix. (Bush
& Abiyev, 2023).

There are two values in the target variables:
positive and negative;

Where the True Positive = TP,

The True Negative = TN,

False Positive = FP,

False Negative = FN.

The values of the target variables ranges
between 0 and 1 and are displayed within
the python Google Collaboration
environment during the prediction.
Secondly, the total number of correctly
classified samples is divided by the total
number of samples in the test set, the
accuracy is calculated. However, in the
event that the dataset is unbalanced,
accuracy is limited. The accuracy obtained
makes it impossible to evaluate the models

Bartholomew Idoko et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 54 Volume 10, 2025

if any class or dataset output has a
disproportionately high or low number of
samples compared to the other classes
(Moustafa, et al., 2017). The accuracy is
calculated thus:

Accuracy = TP + TN (2)

 FP + FN + TP + TN

The receiver operating characteristics area
under curve (ROC AUC) is one of the most
widely used metrics, particularly for two-
class imbalanced data. The trade-off
between true positive and false positive
rates is evaluated across various
classification thresholds using the AUC-
ROC metrics.

The F1-score is then applied as shown in
equation 3.

F1 score = TP (3)

 TP + ½ (FP + FN)

Again, Recall (sensitivity), specificity, and
accuracy were applied to gauge the models'
unique capacities for identifying distinct
output classes using the equations;

 Recall = TP (4)

 TP + FN

Specificity = TN (5)

 TN + FP

Precision = TP (6)

 TP + FP

In order to solve issues with imbalanced
datasets and differing levels of model
complexity, the analysis takes into account
the context of malware detection. A transfer
learning of the techniques with optimum
performance is conducted. This entails
integrating two of the best models in terms
of performance to produce a hybrid model
with a better performance. The results is

compared with standard models and those
of other researchers so as to recommend the
best model for malware detection and
classification.

6. Results and Analysis
In this section, we present the result of the
study from simulation of all the tested
models in order to analyze the data and
answer the research questions. These
models include; the developed hybrid
model (Inception v3 + SVM), CNN, SVM,
and NN. The aim is to deduce the best
model for the malware dataset as well as to
determine the best performing model.

6.1 Simulation Using Inception v3 + SVM
(Hybrid Model)

Four parameters define the Inception
module: depth (D), height (H), width (W),
and output class number. The input size is
denoted by H and W. Input channels are
represented by depth. W is 299 and H is
299 in the input size of 299x299x3. Lastly,
D is 3, which is the RGB standard. As stated
earlier, we performed factorization
operations on this high dimensional input
space, resulting in a significant reduction in
dimension. The factorized low space is
then used as the input for the support vector
machine classifier. A classification report is
shown in Table 3, with the corresponding
confusion matrix of the hybrid model used
to detect malware files as shown in Figure
4. These findings were from an experiment
that used the cross-validation approach. Out
of the two classes in the investigated
dataset, miss-classification only happened
once on class m (malware file), as seen in
table 3. It is evident from these data that the
hybrid model is efficient because the miss-
classification rate is kept to a minimum.

Bartholomew Idoko et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 55 Volume 10, 2025

Table 3: Classification report

Classes Precision Recall F1-
score

Support

m 1.00 0.99 1.00 146

1 1.00 1.00 1.00 146

The SVM class used in this investigation is
the LinearSVC estimator. LinearSVC is
essentially a linear interpolation. It has a
smooth/simplified learning structure, and is
much less adjustable. For categorization, it
is connected with Inception v3. One of the
parameters of the SVM classifier is
loss='Squared_Hinge,' which stands for
hinge loss square.

Penalty = "l2" specifies the penalization
norm, C = 5 denotes the error term
parameter C, and "ovr" = Multi_Class
which determines the multiclass approach
when y has more than two classes.

 Classes:

m 1

145 0

0 146

Figure 4: Confusion matrix for hybrid ML
model

Cross-validation is used to carry out the
design process on the hybrid model that
was presented in the initial simulation. The
ten-fold cross-validation is used in this
experiment. The sample under
investigation has been divided into ten (10)
equal parts. 9 of the 10 sections are utilized
in the training phase, while the remaining
portion is used in the testing phase. By
flipping the training and testing signals ten

times, the training process is repeated.
Additionally, the LinearSVC learning
method is used to implement training with
150 training epochs. The accuracy value
that has been demonstrated is the average of
10 simulations. The average accuracy rate
during the test phase was 99.89%, with an
error of 0.0135.

Monte Carlo-style estimation is
investigated in the second simulation using
the same database, where the hybrid
framework stops at 500 epochs. The dataset
is randomly divided into 60% for training
and 40% for testing at each epoch. Monte
Carlo estimators are a broad category of
techniques that rely on random sampling
iterations to generate numerical results
(Kroese et al., 2024). Using randomization
to solve predictable tasks is the core notion.
They are frequently used in physical and
mathematical tasks. It is also useful in
situations where using another
methodology is impossible or very
challenging. The Monte-Carlo estimator is
mostly used to solve three types of
problems: optimization, numerical
integration, and producing solutions using a
probability distribution. Fundamentally,
every problem with a probabilistic
interpretation can be solved using Monte
Carlo estimators. As was previously
indicated, Monte Carlo experiments were
conducted using a malware database, and
the hybrid model achieved an accuracy of
98.97% and an error rate of 0.0214. The
results of simulations of the hybrid system
using both cross-validation and Monte
Carlo techniques are shown in Table 4.

Bartholomew Idoko et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 56 Volume 10, 2025

 Table 4: Results of the hybrid model's

simulation

6.2 Convolutional Neural Network (CNN)
Simulation

In order to detect malware, the CNN
algorithm with a fully connected network is
utilised at the initial stage. The CNN
structure used for malware detection is
shown in Table 5. It consists of 2
convolutional layers, max-pooling, and
fully-connected layers.

Table 5: CNN Structure

Layer type Output Shape Param #

Conv2d_1 (Conv2D) (None, 26,26,16) 160

Max_pooling2d_1 (None, 11,11,32) 0

Conv2d_2 (Conv2D) (None, 11,11,32) 4640

Max_pooling2d_2 (None, 5,5,32) 0

Conv2d_3 (Conv2D) (None, 3,3,64) 18496

Max_pooling2d_3 (None, 1,1,64) 0

Flatten_1 (Flatten) (None, 64) 0

Dense_1 (Dense) (None, 768) 49920

Dense_2 (Dense) (None, 128) 98432

Dense_3 (Dense) (None, 24) 3096

The data is split into two halves for CNN
training: 80% and 20%. Twenty percent
was used for testing and eighty percent for
training. 60% and 40% of the 80% of data
allocated for training are used for training
and validation, respectively.

Equations (3–5) were employed to
ascertain the CNN's output signals. Z-score
normalization was used to scale each input
signal during simulation, which improved
the model's generalizability. The training is
done using an RMSprop learning method.
Furthermore, 150 epochs was used to train
the CNN model. There are two
convolutional layers in CNN.
Consequently, the entire linked network is
used to classify malware. As previously
said, CNN was trained over 150 epochs.
40% was used for validation and 60% for
training at each iteration of each epoch. The
accuracy and loss function simulation
results is shown in Figure 5, and the CNN
simulation results is shown in Table 6. The
value of the loss function acquired during
training is 1.5776e-08. The loss function's
value is 0.0055 for the test data and 0.0055
for the validation data. The accuracy for test
data is 93.10%, and the error rate is as low
as 0.0225.

Figure 5: Results of CNN simulations for
accuracy and loss function.

Methods Accuracy (%) RMSE

Monte Carlo
Techniques

98.97 0.0214

Cross-

Validation

Techniques

99.89

0.0135

Bartholomew Idoko et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 57 Volume 10, 2025

Table 6: Results of Convolutional Neural
Network simulation

 Loss
Function

AUC
(%)

RMSE Accuracy
(%)

Training 1.5776e-
08

 100 2.2009e-05 100

Validation 0.0055 96.98 0.0225 93.12

Testing 0.0055 96.95 0.0225 93.10

6.3 Simulation Using Neural Network

The malware database was used to build the
malware detection system in the subsequent
simulation, which made use of the
conventional neural network (NN)
architecture. In this case, every instance in
the dataset corresponds to a class. As
previously stated, this model is able to
assign each instance to the appropriate
class. This model's design is consistent with
that of the conventional CNN where the NN
is responsible for both data pre-processing
and categorization. The structure of the
HOG plus NN used for the classification is
shown in Table 7.

Table 7: NN Structure

Layer type Output Shape Param #

dense_1 (Dense) (None, 768) 787200

dense_2 (Dense) (None, 128) 98432

dense_3 (Dense) (None, 24) 3096

Activation_1(Activation) (None, 24) 0

The data is split into 80% and 20% halves
for training. Twenty percent of the dataset
is used for testing, while the remaining
eighty percent is used for training. 60% of
the 80% dataset designated for training is
utilized for training, and the remaining 40%
is used for validation. Throughout the
simulation, the Gaussian activation
function was utilized for training, and

Z-score normalization was utilized for
signal scaling. Additionally, we used 150
epochs to train the model.

The simulation results achieved for the
accuracy and loss function are shown in
Figure 6, and the model's simulation results
are shown in Table 8. The loss function
value attained during training was 0.0498.
The validation data loss function value
obtained is 0.1726, whereas the test data's
is 0.1282. The accuracy value for test data
is 96.21%.

Figure 6: Simulation results obtained for loss
function, accuracy and RMSE

 Table 8: NN simulation results

 Loss
Function

Accuracy
(%)

AUC
(%)

RMSR
(%)

Training 0.0498 97.89 99.86 0.0097

Validation 0.1726 95.43 99.82 0.0159

Testing 0.1282 96.21 99.58 0.0138

Bartholomew Idoko et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 58 Volume 10, 2025

6.4 Simulation Using Support Vector
Machine (SVM)

Traditional SVM is used to perform
malware detection under this circumstance.
Here, both the data pre-processing and
classification performed by the SVM
model. A confusion matrix and
classification report are shown in Figure 7
and Table 9, respectively. The results show
that high accuracy is achieved with low
miss-classification. Throughout the hybrid
system's simulation phase, a cross-
validation technique was used to achieve
these results. The model's design also
makes use of the LinearSVC learning
method.

The model is trained over a period of 150
epochs. The accuracy rate at the test phase
was 99.31%, and the error was 0.5785.

Table 9: Classification report for SVM

Clas
ses

Precisio
n

Recall F1-
score

Support

m 0.97 0.96 0.97 147

1 1.00 1.00 1.00 134

 Classes:

Figure 7: Confusion matrix for SVM

7. CONCLUSION

The simulation results has shown that the
proposed hybrid machine learning model
can be adopted in order to guarantee a more
accurate and robust malware detection in a
critical environment. This model could be
introduced as a framework to integrate
different Machine Learning, ML
techniques so as to better improve the
detection and classification accuracy. A
detailed study and analysis of the existing
ML malware detection systems
characterized by false positive detection
rate, poor classification detection
accuracies, and low true positive detection
rate was carried out which helps in
improving the accuracy of the existing
systems.

Table 10 shows the performance results of
some of the most competitive malware
detection systems. Studies that showed the
accuracy rate were taken into account. The
performances of various models based on
deep learning frameworks have also been
illustrated. In this study, we created several
models for comparison utilizing feature
extraction and classification methods.
SVM, CNN-fully connected network
(FCN), NN (the foundations of deep
learning) and inception v3+SVM (the
hybrid model). Transfer learning was
carried out where pre-trained Inception v3
model was reused and concatenated with
SVM classifier to carry out classification on
the malware dataset. The proposed hybrid
model (Inception v3 + SVM) has the best
result as depicted in the table 10. Inclusion
of Inception v3 makes feature extraction
phase simpler and faster.

m 1

142 0

0 134

Bartholomew Idoko et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 59 Volume 10, 2025

Table 10: Comparative output of the various

models

Authors (yr) Methods Accuracy
(%)

Nguyen et al.
(2021)

LightGBM
Ensemble

86.10

Nguyen et al.
(2021)

FFNN
Ensemble

98.80

Raff et al. (2020) Malconv w/
GCG

93.30

Loi et al. (2021) Detection
Pipeline

96.90

Raff et al. (2018a) MalConv 98.80

Vinayakumar et al.
(2019)

DeepMalNet 98.90

Current research

SVM 99.31

Current research

NN 96.21

Current research

CNN 93.10

Current hybrid
model

Incept v3 +
SVM

99.89

The proposed model is examined
practically and is very effective in
classifying the various samples/instances
into their corresponding classes.
Experiments of malware detection were
repeated ten times using different epochs.
The accuracy rate of the hybrid system was
obtained as 99.89%. The result shows
significant convergence in both
performance and learning. These results
when compared with that of previous
research, undoubtedly show how effective
the proposed hybrid design is in
comparison to other approaches created to
address the same problems.

Several ethical considerations were
observed in the course of the experiment to
ensuring that the malware detection using

ML procedure has been carried out in a
realistic and safe manner and that every
precaution has been taken to stop the spread
of malware in the course of the data
collection and experiment by highlighting
the appropriate use of data, reducing biases,
and guaranteeing the security and privacy
of the people and organizations captured in
the dataset. Consequently, guidelines that
was strictly followed include; Mitigation
against potential harms and risk that might
arose from the use of systems and servers
for experimental purposes, balancing risk
and benefits or the importance of the
research to the society while considering
the harms that might emanate from the
research activities such as data collection,
use or disclosure and publication of
research results. The inclusion of
potentially sensitive information
(personally identifiable information) in the
dataset used in the investigation which
comes from internet traffic logs was
acknowledged as well as the importance of
obtaining informed consent when working
with potentially identifiable data.

References
[1]. Ahmed, F., Hameed, H., Shafiq, M. &

Farooq, M. (2023). Using spatio temporal

information in API calls with machine

learning algorithms for malware detection.

In AISec ‘23: Proceedings of the 2nd ACM

Workshop on Security and Artificial

Intelligence (pp. 55– 62). ACM.

[2]. Akbar, A., & Ahmad, T. (2021). A hybrid

machine learning method for increasing the

performance of network intrusion detection

systems. Journal of Big Data, 8, 2–8.

https://doi.org/10.1186/s40537-021-

00531-w

[3]. Bush, I. & Abiyev, R. (2023). Introduction

to machine learning and IoT. In Machine

learning and the internet of things in

education (Studies in Computational

Intelligence, Vol. 1115, pp. 1-7). Springer.

https://doi.org/10.1007/978-3-031-42924-

8_1

Bartholomew Idoko et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 60 Volume 10, 2025

https://doi.org/10.1186/s40537-021-00531-w
https://doi.org/10.1186/s40537-021-00531-w
https://doi.org/10.1007/978-3-031-42924-8_1

[4]. Bush, I., Abiyev, R., Ma’aitah, M., &

Altıparmak, H. (2018). Integrated artificial

intelligence algorithm for skin detection.

ITM Web of Conferences, 16, 02-24.

https://doi.org/10.1051/itmconf/20181602

024

[5]. Bush, I., Mansur, M., & Abubakar, U.

(2023). Machine learning based cardless

ATM using voice recognition techniques.

In Machine learning and the internet of

things in education (Studies in

Computational Intelligence, Vol. 1115, pp.

75-84). Springer.

https://doi.org/10.1007/978-3-031-42924-

8_6

[6]. Chandy, J. (2022). International Journal for

Research in Applied Science &

Engineering Technology (IJRASET), 203–

222. www.ijraset.com.

[7]. Damodaran, A., Fabio, T., Visaggio, C.,

Austin, T., & Stamp, M. (2017). A

comparison of static, dynamic, and hybrid

analysis for malware detection. Journal of

Computer Virology and Hacking

Techniques, 13(1), 51–66.

[8]. Dhammi, A., & Singh, M. (2019). Behavior

analysis of malware using machine

learning. 2019 Eighth International

Conference on Contemporary Computing

(IC3), 481– 486.

https://doi.org/10.1109/IC3.2019.7346730

[9]. Gibert, D., Mateu, C., & Planes, J. (2020).

The rise of machine learning for detection

and classification of malware: Research

developments, trends, and challenges.
Journal of Network and Computer

Applications, 153, 101–120.

https://doi.org/10.1016/j.jnca.2019.10526

[10]. Idoko, B., & Bush, I. (2023). IoT

security based vulnerability assessment of

e-learning systems. In Machine learning

and the internet of things in education

(Studies in Computational Intelligence,

Vol. 1115, pp. 52–65). Springer.

https://doi.org/10.1007/978-3-031- 42924-

8_15

[11]. Idoko, B., Ogwueleka, F. & Bassey

S. (2025). Systematic Literature Review on

Malware Detection and Machine Learning

Algorithms: Identifying Gaps for possible

Remedies. International Journals of

Computers.

https//www.iaras.org/iaras/journals/ijc.

Pp.179-189

[12]. Johnson, A., & Grumbling, E.

(2019).Implications of artificial

intelligence for cybersecurity: Proceedings

of a workshop. National Academies of

Sciences, Engineering, and Medicine.

https://doi.org/10.17226/25488

[13]. Jyothsna, V., Prasad, R., &

Munivara, K. (2011). A review of anomaly-

based intrusion detection systems.

International Journal of Computer

Applications, 28(7), 26–35.

[14]. Keragala, D. (2016). Detecting

malware and sandbox evasion techniques.

SANS Institute InfoSec Reading Room,

January, 2016. Pp. 12- 21. Retrieved,

February, 2025.

https://app.tidalcyber.com/references

5d3d567c-dc25-44c1-8d2a 71ae00b60dbe

[15]. Kolter, J., & Maloof, M. (2020).

Learning to detect malicious executables in

the wild. In Proceedings of the 10th ACM

SIGKDD International Conference on

Knowledge Discovery and Data Mining

(pp. 470–478).

[16]. Kroese, D., Brereton, T., Taimre,

T., & Botev, Z. (2024). Why the Monte

Carlo method is so important today. WIREs

Computational Statistics, 6(6), 386– 392.

https://doi.org/10.1002/wics.1314

[17]. Graphs and Semantic Web

Conference (Vol. 1232, pp. 61–71).

Springer. https://doi.org/10.1007/978-3-

030-65384-2

[18]. Kursa, B., & Rudnicki, R. (2020).

Feature selection with the Boruta package.
Journal of Statistical Software, 36, 201–

223.

[19]. Loi, N., Borile, C., & Ucci, D.

(2021). Towards an automated pipeline for

detecting and classifying malware through

machine learning. arXiv preprint

arXiv:2106.05625.

[20]. Markel, Z., & Bilzor, M. (2020).

Building a machine learning classifier for

malware detection. In 2nd Workshop on

Anti-malware Testing Research (WATeR)

(pp.1–4).

https://doi.org/10.1109/WATeR.2014.701

5757

[21]. Rimon, S., & Haque, M. (2023).

Malware detection and classification using

hybrid machine learning algorithm. ICICO

2022, LNNS 569, 1–10.

https://doi.org/10.1007/978-3-031- 19958-

5_39

Bartholomew Idoko et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 61 Volume 10, 2025

[22]. Salehi, Z., Ghiasi, M., & Sami, A.

(2021). A miner for malware detection

based on API function calls and their

arguments. 16th CSI International

Symposium on Artificial Intelligence and

Signal Processing (AISP) (pp. 563–568).

IEEE. https://doi.org/10.1109/AISP.2021

[23]. Schultz, G., Eskin, E., Zadok, E., &

Stolfo, S. (2018). Data mining methods for

detection of new malicious executables. In

Proceedings of the IEEE Symposium on

Security and Privacy (pp. 38–49). IEEE.

[24]. Sikorski, M., & Honig, A. (2012).

Practical malware analysis: The hands-on

guide to dissecting malicious software. No

Starch Press.

[25]. Singh, A., & Jain, A. (2017).

Integrated malware analysis using machine

learning. In 2nd International Conference

on Telecommunication and Networks

(TEL- NET). IEEE. Pp. 145-161.

[26]. Tian, R., Batten, L., & Versteeg, S.

(2018). Function length as a tool for

malware classification.In Proceedings of

the 3rd International Conference on

Malicious and Unwanted Software

(MALWARE) (pp. 57–64). IEEE.

[27]. Vinayakumar, R., Alazab, M.,

Soman, K., Poornachandran, P., &

Venkatraman, S. (2019).Robust intelligent

malware detection using deep learning.

IEEE Access, 7, 46717–46738.

https://doi.org/10.1109/ACCESS.2019.290

6934

[28]. Venkatraman, S., Alazab, M.,

Vinayakumar, R. (2019). A hybrid deep

learning image-based analysis for effective

malware detection. Journal of Information

Security and Applications, 47, 377–389.

https://doi.org/10.1016/j.jisa.2019.06.006

[29]. Yanfang, Y., Li, T., Adjeroh, D., &

Sitharama, S. (2017). A survey on malware

detection using data mining techniques.

ACM Computing Surveys, 50(3), 1–40.

https://doi.org/10.1145/3073559

[30]. Zheng, M., Robbins, H., Chai, Z.,

Thapa, P., & Moore, T. (2022).

Cybersecurity research datasets:

Taxonomy and empirical analysis. In

Proceedings of the 11th USENIX

Workshop on Cyber Security

Experimentation and Test (CSET ‘22).

Bartholomew Idoko et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 62 Volume 10, 2025

