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Abstract: - The complexity of managing power systems is increasing because of the dynamics and uncertainty 
introduced by the global transition toward deep decarbonisation as well as the growing volume of 
multidimensional data requiring rapid response times. Modern power grids face significant challenges owing to 
the increased penetration of distributed energy resources (DER). These challenges include maintaining power 
system stability, ensuring the proper functioning of protection and control systems, and balancing the supply 
and demand. Current technologies are insufficient to handle these future complexities. AI and ML technologies 
have emerged as transformative tools that offer new opportunities to improve the efficiency, reliability, and 
innovation in power system planning and operation.  
This study examines recent and representative academic research on state-of-the-art AI/ML techniques applied 
to modern power systems, and examines their application across various power system domains, including fault 
detection, asset management, predictive maintenance, and oscillation detection. Despite the promising potential 
of AI to enhance the stability and protection of power systems, its limitations must be recognised. Key barriers 
to practical AI implementation were analysed, including reliance on synthetic data, scarcity of real 
measurement data, issues with protection selectivity, and the black-box nature of AI models. Factors such as 
safety, security, transparency, and trustworthiness are crucial for successful implementation and adoption of 
AI/ML solutions. To overcome these limitations, this study emphasises the need for further research on 
Explainable AI (XAI) and physics-informed machine learning (ML) to enhance the transparency and reliability 
of AI applications in power grids. The study also underscores the importance of advanced human–machine 
interfaces, which allow human operators to validate AI/ML solutions, thereby fostering trust and ensuring the 
effective deployment of these technologies in modern power systems. 
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1. Introduction 

Historically, traditional power systems have been 
distinguished by their centralised infrastructure and 
supply side management. However, the current 
global efforts towards decarbonisation and energy 
transition have led to a significant shift towards 
decentralised energy resources (DERs), 
characterised by increased distributed electricity 
generation and heightened consumer involvement in 
the electricity supply and management process. 

 
A traditional power grid comprises synchronous 
generators, power transformers, transmission lines, 
substations, static compensators, and various loads. 
Power plants are typically located far from 
consumers, and electricity is transported via 
extensive transmission lines to distribution networks 
intended for unidirectional flow. 
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Modern power systems feature extensive integration 
of distributed energy resources (DER) and 
significant renewable energy sources (RES). This 
integration causes bidirectional power flow and 
intermittent availability owing to weather-dependent 
sources, such as solar and wind. These factors create 
new challenges for grid distribution networks, as 
bidirectional flow and intermittent RES threaten 
system stability because of the lack of inertia 
response and low short-circuit levels (SCL) 
compared to traditional plants. An increased share 
of RES may destabilise the system without proper 
mitigation. Grid protection and control systems may 
also malfunction because of the bidirectional flow 
and low short-circuit currents. Additionally, 
intermittent RES generation can disrupt the supply 
demand balance, causing load shedding without 
advanced forecasting systems. Other challenges 
include network topology changes, power quality, 
and voltage control, which complicate the transition 
to a sustainable, decarbonised energy system. 
 
 The volume of research exploring the application of 
artificial intelligence methods, particularly machine 
learning algorithms, in the power industry has 
experienced a substantial upsurge, encompassing 
domains such as power system stability analysis, 
system protection, load forecasting, state estimation, 
asset health monitoring, fault detection, renewable 
energy forecasting, cybersecurity, energy 
management, and energy optimisation. However, 
these AI-based techniques are generally confined to 
the simulation stages, disregarding the underlying 
physical phenomena and advancements in 
substation automation and protection technologies. 
Furthermore, they typically fail to consider the 
integration level of distributed energy resources 
(DERs) and demand more precise real-world 
measurement data for effective model training. 
 
The degree to which distributed energy resources 
(DERs) are integrated into a power grid determines 
the complexity of the challenges faced by the grid 
operators and the overall effect of DER integration. 
A categorisation scheme for grids based on their 
DER share was used to gain a deeper understanding 
of the consequences of a high DER penetration. [3], 
this system aims to provide a concrete definition of 
a high DER penetration threshold and pinpoint the 
challenges and remedial measures for each 
classification, ranging from 0% to 100% renewable 
energy share. 
 
This study investigates the challenges of operating 
modern electric systems with distributed energy 

resources (DERs) and reviews recent academic 
research on artificial intelligence (AI) techniques in 
power systems. Despite the lack of commercial AI 
applications for power system stability and 
protection, this study analyzes the opportunities, 
challenges, limitations, and barriers to AI 
implementation in power system operations. This 
paper overviews power grid evolution, categorises 
power grids by DER penetration levels, highlights 
challenges posed by DERs and their grid impact, 
reviews representative papers, and discusses the 
limitations and constraints for AI implementation in 
the power system domain, as well as opportunities 
for further development. 
 

2. Modern power grid characteristics 
Conventional electrical power systems are 
composed of numerous interconnected components 
including synchronous generators, power 
transformers, transmission lines, transmission 
substations, static compensators, distribution lines, 
distribution substations, and diverse loads. 
Generally, power generation facilities are located at 
a distance from areas of consumption, necessitating 
the transmission of electricity over extended 
transmission lines to distribution networks 
configured for one-way power flow. 
Recent advancements in grids have involved the 
integration of novel distributed energy resources 
including solar power, wind power, and energy 
storage. These DERs are Inverters Based 
Generations, connected to the grid electronically 
through inverters, and introduce fresh difficulties 
(new challenges) for grid operators, such as 
diminished system inertia, alterations in fault 
current magnitude, bi-directional power flow, 
modifications in grid topology, the presence of 
harmonics, waveform distortion, and Inverter-Based 
Stability issues. 
 
Radial design is no longer appropriate because of 
the bidirectional power flow in the system. The 
unpredictability of energy availability arises from 
the intermittent nature of power from weather-
dependent resources such as solar and wind. The 
stability of the power system may be threatened by a 
decline in system inertia, whereas the protection and 
control system may face difficulties owing to the 
low levels of short-circuit current (SCL) provided 
by the inverter-based DERs. 
The challenges faced by grid operators in 
distribution networks cannot be resolved using 
current protection and management systems. The 
application of artificial intelligence (AI) can be 
beneficial for resolving these challenges by offering 
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tools for various tasks in modern grids, including 
distributed energy management, renewable energy 
generation prediction, load forecasting, grid health 
monitoring, power system state estimation, grid 
stability assessment, and fault detection. 
 

Table 1. Characteristics of Traditional and Modern Grids. 
 

Traditional Grid Modern Grid 

Generation:   
Centralized Centralized and distributed 

Dispatchable 
More stochastic (Increased 
share of DER) 

Large thermal plants Efficient and flexible units 

Mechanically coupled Electronically coupled 
Transmission:    
Operator-based controls  Automatic controls 
Congestion, despite 
underutilized capacity  

Flexible network to relieve 
capacity constraints 

Distribution:   

Limited visibility Enhanced observability 

Limited controllability 
Increased communications and 
controls 

Radial design (one-way flow) Two-way flow 

Aging assets (unknown effects) 
Active asset condition 
monitoring 

Customers:  

Uniformly high reliability,  Customer-driven reliability  

Energy consumers (kWh) Energy producers 
Predictable behavior based on 
historical needs and weather 

Variable behavior  

Growing intolerance to 
sustained outages 

Informed on system conditions, 
Data access 

 
In Table 1, we outline the differences between 
modern and traditional grids. Modern grids feature 
bidirectional power flow, consumer involvement in 
energy production, and stochastic dispatchable 
energy generation. In contrast, the traditional grid 
relies on large plants with synchronous machines 
that provide a sufficient inertia response and fault 
current magnitude. Although the synchronous 
machines in the traditional grid can provide up to 
seven times their nominal current as an SCL, the 
electronically coupled DERs in the modern grid can 
only provide up to 1.5 times their nominal current as 
an SCL. 
 
3. Key challenges of DER on the grid 

 
3.1 Classification of DER 

Distributed energy resources can be classified based 
on three main criteria: grid connection, application, 
and supply type. The grid connection can be either 
on- or off-grid. DERs connected to the power grid in 
real time are considered on-grid, whereas those that 
are not connected to the power grid are classified as 
off-grid. In terms of applications, DERs can be used 
in residential, commercial, or public buildings, as 

well as in urban areas for utility-scale applications. 
Finally, the supply type can be either intermittent, 
such as solar PV and wind turbines, or firm, 
including diesel generators, gas turbines, and 
hydropower. 
 
This study focuses on Distributed Energy Resources 
(DERs), primarily comprising Renewable Energy 
Sources (RESs) connected to the grid through 
inverters or inverter-based resources (IBRs). 
 

3.2 Grids Classification according to 

RES’ share 
The integration of renewable energy sources (RESs) 
into a power grid and the associated challenges 
depend on the level of RES penetration in overall 
power generation. The share of RES in total power 
generation serves as an indicator of the extent of 
RES integration into the grid. 
 
Four classes were defined in [3] to qualify power 
grids with high DER penetration. These classes 
delineate the grid's evolution from 0% to 100% RES 
penetration, which is a crucial goal of energy 
transition and decarbonisation policies.  
This categorisation clarifies the "high penetration of 
DERs" and challenges faced by grid operators at 
each RES integration stage. It also identified the 
specific impacts, challenges, and mitigation 
measures associated with DER integration for each 
category, spanning from 0% to 100% RES. 

• Class1 (0% to 15%): DERs are not relevant at 
the power system level   

• Class 2 (15% to 30%): DER output starts to 
be noticeable for Grid operation 

• Class 3 (30%–50%): The flexibility of 
conventional generation is a priority for grid 
operation. 

• Class 4 (50% to 100%): Power system 
stability becomes the priority 

 
3.3 Key challenges of DER on the grid 

Operating a safe and secure power system requires 
meeting five key requirements: inertia, short-circuit 
level, voltage control, system restoration, and 
supply–demand balance [3]. Inertia measures a 
system's resistance to frequency changes linked to 
the kinetic energy in the rotating masses of 
turbogenerators, which is essential for network 
stability and rapid active power injection during 
disturbances. Currently, only synchronous 
generators provide inertia in the transmission 
networks. The short-circuit level (SCL), along with 
inertia, is crucial for protection and system stability. 
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Voltage control and reactive power are vital for safe 
and efficient power transport, akin to frequency 
control, which focuses on reactive power generation 
or absorption. System restoration addresses total or 
partial shutdowns by gradually re-energising parts 
of the network before full system recovery, 
requiring generators that can quickly activate 
independently of the external electricity sources. 
Lastly, supply and demand imbalances affect 
network frequency; if the frequency deviates beyond 
acceptable limits, there is a high risk of load 
shedding disconnecting parts of the system. 

     Table 2: Challenges that renewables pose for key system 
requirements 

System Requirements Impact of distributed RES Consequence

Supply and demand balance Intermittence of power System Stability 

Inertia Decrease in  inertia.  Frequency Stability 

Short circuit level Low Short Circuit Levels Prtection dependability 

Voltage control Degraded Voltage control Voltage Stability 

System restoration No restoration services. System stability  
 
The proliferation of distributed energy resources and 
the increased share of RES in the energy mix 
present new challenges for grid operators, such as 
topological changes, power flow, and power quality. 
The configuration of components, such as 
generators, transformers, lines, substations, and 
loads, defines the power system topology. Real-time 
insight into grid topology is crucial for effective 
monitoring, control, and protection. Modern power 
systems with more distributed generation exhibit 
bidirectional current flow. Power quality is 
impacted by the power-electronic-based devices 
used to connect PV plants and wind farms to the 
grid, as these nonlinear devices generate harmonics. 
 
In Table 2, we outline the consequences of 
distributed energy resources on the five essential 
requirements of safe and reliable power system 
operation. 
 
Additionally, DERs have an impact on more than 
the five power system requirements. Table 3 
succinctly summarises the influence of DERs on 
grid topology, power flow, and power quality and 
outlines the corresponding risks for each scenario. 
 

Table 3. Challenges that renewables pose for Grid 
 

Power System Need Impact of DER Consequence

Topology change Intermittence of power dependability and stability

Power flow Bidirectional flow of power  dependability 

Power quality  harmonics and distortion Voltage stability  

4. Power systems protections 
A protection system is a vital component of power 

grids and is responsible for detecting and isolating faults. 
To ensure the proper functioning of a protection system, 
five requirements must be satisfied. These requirements 
are essential for ensuring the reliability and resilience of a 
power system and preventing significant outages that 
could lead to cascading effects. 

Historically, protection schemes have relied on 
commercial relays to issue tripping commands when 
specific thresholds are reached. However, the large-scale 
deployment of DERs has resulted in rapid and substantial 
changes in the power grid topology, creating gaps in 
system conditions. Consequently, traditional relays can 
no longer provide dependable or secure protection against 
faults or transients in certain situations. 

In recent years, adaptive protection has emerged as a 
promising solution for adjusting protection responses in 
real time based on prevailing system conditions. 
However, traditional power system state estimation 
methods face challenges owing to the increasing 
complexity of modern power grids resulting from the 
high penetration of DERs. In this context, machine-
learning techniques offer a potential solution to enhance 
the accuracy and performance of state estimation by 
leveraging real-time and historical data. 

 
4.1 Protection System Requirement 

To ensure a dependable and stable power system, the 
NERC proposed five design principles to guide the 
operation of protection systems.  
 
These principles include [1]: 
• Dependability: This refers to the level of assurance 

that a protective relay functions accurately and within 
a specified timeframe when required. 

• Security: This principle ensures that protective relays 
do not operate erroneously in the absence of system 
faults. 

• Redundancy: This involves the use of multiple 
functionally equivalent protection systems to 
safeguard each element of an electric system. 

• Selectivity and Coordination: In the event of a fault, 
the primary protective device should be activated 
first, which is designed to interrupt the minimum 
number of customers. If the primary protection fails 
to clear the fault, remote backup protection should be 
activated to clear the fault while still limiting the 
number of affected customers. 

• Speed: In certain applications, it is essential to clear 
faults in tens of milliseconds. 
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4.2 Protection Relays 
 Protection relays advanced significantly from 
their early stages in the 1900s when 
electromechanical relays were used. These relays 
were limited to basic settings and had a single 
function of relying on physically moving parts. In 
the 1960s, solid-state relays were introduced that 
used analogue electronic components and new 
protection techniques with multifunctional features. 
In 1982, the first microprocessor-based digital 
protective relay was invented, which marked a 
significant advancement in technology. The second 
generation of microprocessor relays, released in the 
early 21st century, feature powerful multifunction 
multi-setting devices with advanced communication 
capabilities and special protection schemes, as well 
as SER and oscillography capabilities. The most 
recent generation of digital relays is equipped with 
the universal and comprehensive communication 
protocol IEC61850. 

 

5. Power System Stability 

 
5.1 Time Scales of Power System 

Dynamic Phenomena 
Electric power systems have undergone a major 

transformation, marked by an increase in power electronic 
converter interfaced technologies, including wind and 
photovoltaic generation, various storage technologies, 
flexible AC transmission systems (FACTS), high-voltage 
direct current (HVDC) lines, and power electronic 
interfaces. The substantial integration of inverter-based 
generation technologies (IBGs) has made the dynamic 
response of power systems increasingly complex and 
reliant on fast-response power electronic devices, thereby 
altering their dynamic behaviour. 

 
Fig. 1 illustrates the timescales of different dynamic 

phenomena in power systems. The time scale for CIG 
controls spans from microseconds to milliseconds, 
covering both wave and electromagnetic phenomena. 
With the increasing presence of CIGs, faster dynamics 
will become more significant in future power system 
analyses compared with phenomena occurring over 
several milliseconds to minutes. [2] 
 

 
Fig. 1. Power system times scales - Source: [2] 

 
5.2 Definition and Classification of Power 

System Stability 
The stability of an electric power system refers to 

its capacity under a specific initial operating 
condition to recover a state of balance following a 
physical disturbance while ensuring that the 
majority of system variables remain within 
reasonable limits to preserve the integrity of the 
entire system. [2] 

A modern power system is a complex 
multivariable process and its dynamic response is 
influenced by various devices with distinct 
characteristics and response times. Stability 
indicates a balance between opposing forces. 
Depending on the network topology, operating 
conditions, and disturbances, imbalances may cause 
different types of instabilities. Figure 2 illustrates 
the seven classes of power system stability: 
frequency stability, voltage stability, transient 
stability, small signal stability, resonance stability, 
and converter-based stability. The latter two classes 
were recently introduced due to the increasing 
proportion of CIGs in the power generation mix.[2] 

 

Fig. 2. Power system stability - Source:  self-made 
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6. Artificial intelligence techniques 

and their applications in power 

system 

 
6.1 A Brief Introduction to Machine 

Learning Techniques 
Machine-learning methods in power systems can 

generally be classified into three categories: 
supervised learning, unsupervised learning, and 
reinforcement learning.  

6.1.1 Supervised learning 

Supervised learning algorithms require labelled 
data during training and require more processed data 
than other methods because of the inclusion of 
information representing output classes. This 
reliance on labelled data enhances the accuracy 
compared to unsupervised learning. However, 
labelling requires time and expert knowledge. For 
power system applications, amassing high-quality 
large-scale data is challenging. Supervised learning 
applications in power grids include load and 
renewable energy forecasting, state estimation, fault 
detection and location, asset health monitoring, 
power system security assessment, and stability 
analysis. 

6.1.2 Unsupervised learning 

Unsupervised learning involves tasks using 
unlabelled data, eliminating the need for data 
labelling, and simplifying the input preparation. 
However, they cannot estimate or map new sample 
results. In power systems, it is applied to fault 
detection, asset health monitoring, load profiling, 
nonintrusive load monitoring (NILM), renewable 
energy generation, and demand-side scenarios. 

6.1.3 Reinforcement Learning 

Reinforcement Learning (RL) focuses on 
mapping situations to actions to maximise a 
numerical reward signal using environmental 
reinforcements. RL problems are formalised through 
dynamic systems theory, particularly the optimal 
control of Markov decision processes. This machine 
learning approach has been applied in various power 
and energy system contexts, including residential 
demand response, power system control, and 
electricity markets, as discussed in detail in the 
subsequent sections. 

Table 3 presents a succinct summary of the 
primary applications for each category of machine 
learning (ML) algorithms employed in the power 
industry. 

Table 3 AI in power systems. Source: self-made 

Category  Power System Applications  

Supervised 

Learning  

-        Renewable energy 
forecasting  
-        Power system stability 
analysis  
-        Load forecasting  
-        Fault diagnosis  
-        Nonintrusive load 
monitoring  
-        Electricity market 
forecasting  
-        Electricity theft detection  
-        Power system state 
estimation  

 

-        Power system stability 
analysis  
-        Demand response  
-        Load profiling  
-        Nonintrusive load 
monitoring  
-        False data injection 
detection 

Reinforcement 

Learning  

-        Power system control  
-        Demand response  
-        Electricity market operation  
-        Power system economic 
dispatch  

6.2 AI/ML Applications in Power System 

The integration of AI and machine learning has 
recently enhanced various applications in power 
systems. A number of studies have explored the 
impact of these technologies on power systems, and 
this section focuses specifically on the 
improvements made to power systems through the 
use of AI and machine learning in transmission 
systems, such as grid monitoring, management, and 
planning. Relevant publications were selected to 
illustrate the advancements made in these areas 
using AI and machine learning methods. 

6.2.1 Fault Detection/Protection  

Traditional protection schemes rely on 
commercial relays to trigger tripping commands by 
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exceeding the preset thresholds, balancing 
sensitivity, and security. However, this can lead to 
protection gaps, and conventional relays sometimes 
fail to provide reliable or secure protection against 
faults or transients. Advances in computing, 
enhanced measuring equipment, and improved 
training algorithms have prompted researchers to 
explore artificial intelligence (AI) machine learning 
methods to address these gaps in power system 
protection. 

Manohar et al. [4] introduced a CNN-based 
protection scheme to differentiate between inverter 
faults in PV systems and symmetrical versus 
unsymmetrical faults in distribution lines, as well as 
to detect/classify faults and identify the faulty 
section; This scheme, validated on a hardware-in-
the-loop platform, outperforms decision tree (DT) 
and SVM-based methods. However, it has been 
tested with a limited number of power flow 
scenarios and lacks adaptability to various 
configurations. The dataset was generated from 
microgrid measurements using the OPAL-RT digital 
simulator, which is synthetic and does not represent 
an actual grid. 

Gao et al. [5] developed an RL-based algorithm 
to enhance the performance of doubly fed induction 
generator (DFIG) converters in wind turbines during 
grid faults, using a surrogate-gradient-based 
evolution strategy to control DFIG power and 
capacitor DC-link voltage by optimizing reference 
signals. The proposed method shows improved 
repeatability and adaptability for DFIG control 
interfaces but requires testing on larger network 
models beyond PSCAD's limitations of PSCAD. 
The dataset was generated from simulations of a 
grid-connected DFIG system using PSCAD 
software and is synthetic and does not represent an 
actual grid. 

Jones et al. [6] demonstrate that embedding an 
SVM in each relay to classify grid faults, determine 
tie line switch positions, and estimate fault locations 
eliminates the need for communication and offers 
high accuracy and settings-free relay usage. The 
data were obtained through simulations using the 
synthetic IEEE 123-bus benchmark system, which 

does not represent a real grid. ML algorithms 
embedded in each relay at the grid edge achieve 
high selectivity and sensitivity, and enhance system 
safety. Nonetheless, further testing is required under 
distributed energy resource (DER) scenarios and 
active reconfiguration. 

Poudel et al. [7] examined the coordination 
between local adaptive modular protection (LAMP) 
units and conventional relays. Using an SVM within 
LAMP, they accurately estimated the circuit 
topology, identified fault types, and detected fault 
zones. Their findings suggest that LAMP can 
operate without setting; however, its application is 
limited to small network models and testing 
systems. The data were simulated using the IEEE 
123-bus benchmark system, which is synthetic and 
not representative of the actual grid. 

Yu et al. [8] introduced a fault diagnosis 
approach utilizing tensor computing and meta-
learning to detect and analyze potential faults in 
smart grid and power communication networks. 
This method notably enhances the fault diagnosis 
performance in smart grid environments by 
combining these techniques, allowing for more 
accurate fault identification and diagnosis with less 
data compared to traditional methods. The dataset, 
sourced from the current grounding fault simulation 
model in MATLAB Simulink, was synthetic and not 
representative of an actual grid. 

6.2.2 State Estimation  

Power system state estimation (SE) is a core task 
in monitoring and controlling distributed power 
networks. Power grids face significant challenges 
owing to the frequent voltage fluctuations caused by 
the widespread adoption of renewable energy 
sources, electric vehicles, and demand response 
programs. Monitoring real-time grid conditions is 
becoming increasingly vital. By utilising valuable 
insights from vast amounts of real-time and 
historical data, AI and machine learning techniques 
can significantly improve the monitoring precision 
and enhance the state estimation performance. 

Zamzam et al. [9] introduced a joint 
optimization/learning method focusing on 
initialising a Gauss-Newton solver. This involves a 
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specially designed learning cost function that allows 
a shallow neural network (NN) to initialise the 
solver efficiently. This approach maintains low 
sample and runtime complexity while leveraging the 
high accuracy of the initialised Gauss-Newton 
solver. The hybrid machine learning/optimization 
method outperformed traditional optimisation-only 
techniques in terms of stability, accuracy, and 
runtime efficiency. In addition, a well-designed 
neural-network training cost function enhances the 
overall SE performance. However, this approach is 
only effective for small LV networks and faces 
scalability issues. The data were generated through 
simulations using the IEEE 37-bus benchmark 
system, which is a synthetic dataset that does not 
represent an actual grid. 

Garcia et al. [10] proposed an ML-based circuit 
topology estimation for adaptive protection systems, 
demonstrating high accuracy in classifying circuit 
topology. The study found that SVM with a linear 
kernel outperformed logistic regression and SVM 
with other kernels in the power distribution network 
topology estimation. Data were obtained from 
simulations using the synthetic IEEE 123 bus test 
system rather than an actual grid. 

Zhang et al. [11] designed a learning method by 
unfolding an iterative solver for the least-absolute-
value formulation of the state estimation problem; 
Prox-linear nets integrate NNs with traditional 
physics-based optimization for power system state 
estimation, and deep RNNs forecast power system 
states from historical voltages. Real load data tested 
numerically on IEEE 57- and 118-bus systems 
revealed that the proposed method is easy to train 
and computationally efficient, but its performance 
on larger transmission networks remains unverified 
and may face scaling challenges. 

Kurup et al. [12] investigated the application of 
deep neural networks (DNN) and support vector 
machines (SVM) for power distribution systems' 
topology estimation and fault detection. The results 
indicated that a convolutional neural network 
(CNN)-based topology estimation model 
outperformed the SVM in power system topology 
estimation. Furthermore, the authors suggest that 

additional fault detection prior to fault classification 
may help reduce the overall test error. The 
effectiveness of the proposed method was tested 
using data obtained from power simulations on a 
modified IEEE 123 bus system using MATLAB 
Simulink. 

6.2.3 Power System Stability 

There are three primary stability evaluation 
methods: time-domain simulation, direct methods, 
and AI-based methods. Time-domain simulation is 
accurate, but time-consuming for large power 
systems, making it impractical for real-time use. 
Direct methods are applied only to simplified 
system dynamics. Owing to these limitations, 
machine-learning (ML) methods have been 
proposed to improve the speed and scalability of 
real-time stability assessments for large power 
systems. 

Zhao et al. [13] introduced a deep Koopman 
inference network (DKIN), a conditional VAE-like 
structure with an embedded Koopman layer. Based 
on the Koopman operator theory, the trained DKIN 
framework provides an accurate linear 
approximation of high-dimensional nonlinear power 
system dynamics during postcontingency transients. 
The approach was tested only on small cases with 
data derived from simulations of the IEEE 68 bus 
system using MATLAB Simulink. 

Moya et al. [14] developed automated uncertainty 
quantification (UQ) for a Deep Operator Network 
(DeepONet) to reliably support power system post-
fault trajectories. They proposed two methods for 
quantifying uncertainty: a Bayesian framework (B-
DeepONet) and a probabilistic framework (Prob-
DeepONet). Both methods used DeepONet and 
provided confidence intervals in their results. 
Training and testing datasets were generated using 
time-domain simulations of the New York-New 
England power grid model.  

 Nandanoori et al. [15] proposed combining GNN 
and Koopman models to create a Spatial-Temporal 
graph convolutional neural network, demonstrating 
high temporal and spatial accuracy in PMU data 
training and testing. Datasets for model training and 
testing were generated by simulating various load-
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change events in the IEEE 68-bus system. The 
results confirm that the predictive models can 
accurately forecast the post-disturbance transient 
evolution of the system. 

Zhao et al. [16] introduced a novel Deep-learning 
Neural Representation (DNR) using a GNN to learn 
network topology dependencies and generator 
dynamics, achieving over 98% accuracy in 
predicting grid events like load variation, 
topological changes, and transient contingencies. 
Datasets were generated using power simulations on 
IEEE 39-Bus and IEEE 300-Bus systems, 
demonstrating the effectiveness and scalability of 
the proposed DNR framework. 

Zhang et al. [17] introduce a novel deep 
reinforcement learning (DRL) algorithm with 
automatic entropy adjustment (AEA) for voltage 
stability control in grid emergencies. This approach 
enhances the adaptivity and efficiency of power 
system responses under a voltage load shedding 
scheme compared with traditional fixed-parameter 
settings and DQN-based methods. Datasets for 
training and testing were generated through time-
domain simulations using the New York-New 
England power grid model. 

7. AI/ML Opportunities and 

Challenges in Power Systems 

7.1 AI/ML Opportunities in Power 

Systems 

The integration of artificial intelligence (AI) and 
machine learning (ML) in power systems offers 
significant opportunities for further development of 
gride-edge solutions, managing uncertainty, 
explainability AI, physics-informed ML, and meta-
learning approaches.  
 

7.1.1 Grid Edge  

Implementing smart sensing, communication, and 
control at the grid's edge rather than central 
operations enhances the reliability, availability, and 
efficiency of the electric grid amid the rise of 
decentralised energy resources (DERs). This 
approach leverages edge devices, such as smart 
meters and IoT sensors, aiming to manage the 
power supply-demand balance adaptively and 
effectively. Historically, raw data from terminal 

meters and sensors have been collected via utility 
communication channels, analysed on a central 
server, and decisions conveyed to controllers. 
However, this method suffers from long response 
latency and inefficient communication, leading to 
significant power outages owing to delayed grid 
status awareness and slow responses to power 
disturbances. 
 
In modern AI, pre-processing of raw data from 
terminal sensors is crucial to avoid unnecessary 
information accumulation and redundant processing. 
Local data processing is often more efficient than 
the automatic transmission to a central server. 
Ideally, raw data should be intelligently 
preprocessed at terminal sensors to transmit only 
essential information. Edge intelligence shifts 
knowledge discovery and applications from cloud-
to-edge devices, where data are generated or 
acquired. This enables local data processing and 
decision making, thereby reducing delays and 
energy consumption. [18] 
 
AI and machine learning at the grid edge require 
distributed computing, decentralised AI/ML models, 
a robust communication infrastructure, and 
interoperability. These elements work together to 
enhance the grid's efficiency and responsiveness to 
the operational conditions and consumer 
requirements. 
 

7.1.2 Risk Control Under Uncertainty  

As power systems become more complex and 
variable energy resources increase, understanding 
the impacts of generation and load uncertainties on 
grid reliability, robustness, and security is crucial. 
Advanced algorithms are required to manage 
variables that affect fluctuations in generation, 
loads, and contingencies. However, many variables 
that influence grid security remain unknown, 
necessitating the identification of their impact on the 
accuracy of evaluations under uncertainty. This task 
is central to uncertainty quantification (UQ), 
specifically forward UQ or uncertainty propagation 
(UP), which quantifies how input uncertainties 
affect the model outputs. [19] 
 
Power systems are complex entities with high levels 
of nonlinearity and dimensionality, making it 
difficult to predict their dynamics owing to their 
stochastic nature and large amounts of measurement 
data, including PMU and SCADA data. However, 
advanced deep learning methods for uncertainty 
quantification can enhance the assessment of power 
grid dynamic security. These methods can create 
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high-fidelity prediction models to forecast uncertain 
variables in the power grid for both short-term 
(seconds ahead) and short-term (minutes ahead) 
periods. In addition, they can identify a concise 
input sample set for AI-based learning and control, 
capturing the essential features of the operating 
conditions of the power grid. 
 

7.1.3 Explainable Artificial Intelligence  

Explainable AI (XAI) is defined in [20] as AI 
systems that can explain their rationale to a human 
user, characterise their strengths and weaknesses, 
and convey an understanding of how they will 
behave in the future.  

Decision-making in areas such as power grids and 
energy management is of utmost importance as it 
has a direct impact on people's lives. Decisions must 
be transparent, comprehensible, and dependable 
[20]. However, current AI methods are viewed as 
black boxes, making it challenging for grid 
operators to understand and explain their actions, 
particularly in critical situations. Explainable 
Artificial Intelligence (XAI) aims to improve AI 
transparency and comprehensibility, help clarify the 
reasoning behind AI decisions, and foster trust 
among users [21]. 

7.1.4 Physics Informed Machine Learning 

PINNs were introduced five years ago, and since 
then they have experienced high popularity [22]. In 
contrast 
to normal NNs, PINNs integrate the governing 
differential equations of the system into the loss 
function and find the required derivatives through 
automatic differentiation. This enables faster 
convergence, robustness to noise, and the generation 
of additional data points, the so-called collocation 
points [23] [24]. 
Physics-informed neural networks require 
substantially less training data and can result in 
simpler neural network structures while achieving 
high accuracy. 

 

7.1.5 Meta-Learning  

AI and machine learning methods have achieved 
impressive results in various modern power grid 
applications. Nevertheless, these approaches are 
designed for a specific system configuration and 
may lose effectiveness when the system topology 
changes. Furthermore, they can struggle with 
changes in system conditions and scarcity of 
training data. 

 
Meta-learning, intends to design ML methods and 
models that could improve the process of learning 
new tasks or adapting to new environments rapidly 
with a few training examples.  [25]  
 
Meta-learning is an essential concept in the domain 
of power grid control and operations, particularly in 
circumstances where DERs are prevalent. It presents 
innovative strategies and methods for the real-time 
control and adaptation of power grids in response to 
changing grid operation scenarios, which are 
characterised by uncertainties arising from the high 
penetration of DER  [26], [27]. 
 
7.2 AI/ML Challenges in Power Systems  
Despite numerous opportunities, significant 
challenges persist in the application of AI/ML to 
power systems. Utilities acknowledge the 
importance of AI/ML but require convincing results 
before further investment. Thus, cross-domain 
synergy is crucial. Concerns regarding ML methods 
and result interpretability exist, and incorporating 
domain knowledge and physics representation into 
ML frameworks remains challenging in this 
evolving field. 
 
The major challenges in applying AI/ML 
technologies to power systems can be summarised 
as follows:  
 
7.2.1 Data Quality and Availability 

The efficiency of AI and machine learning models is 
heavily dependent on the quality and accessibility of 
data. The diversity, quantity, and currency of the 
data used in the training, validation, and ongoing 
learning of AI models are crucial for determining 
their effectiveness and flexibility. 
Obtaining comprehensive and accurate data in 
power systems, particularly from diverse sources, 
can be challenging. Ensuring the integrity and 
accessibility of such data remains a significant 
obstacle. 
 
7.2.3 Field expertise Incorporation 

 Incorporating field knowledge into scientific 
machine learning requires interdisciplinary 
collaboration between experts in machine learning 
and power systems. This process requires a 
thorough comprehension of both the underlying 
physics principles and machine-learning techniques. 
Transforming power system knowledge into 
actionable features or input representations for 
machine-learning models can be a challenging task. 
 

Abderrahmane El Rhatrif et al.
International Journal of Internet of Things and Web Services 

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 25 Volume 9, 2024



7.2.4 Explainability and Trust 

The challenges posed by the intrinsic complexity of 
AI/ML algorithms extend to generating conclusions 
that are both interpretable and comprehensible as 
well as extracting actionable insights from ML 
predictions to reinforce confidence in the outcomes. 
To foster trust among stakeholders, it is crucial to 
invest in measures such as XAI methods that 
promote transparency and comprehensibility of 
these systems. 
 
7.2.5 Robustness:  

Developing dependable and sturdy scientific 
machine learning methods is essential to ensure that 
the outcomes are not overly sensitive to any 
disruption in training data or model selection. This 
involves the ability to handle different 
configurations and uncertainties in power systems 
and the capacity to remain resilient to changes in the 
training data and model selection. To achieve 
robustness, extensive testing and validation are 
required. 
 
7.2.6 Interoperability/ 

Power systems are typically comprised of a 
multitude of equipment and technologies from 
various manufacturers. The challenge lies in 
achieving interoperability and standardisation across 
these diverse components, thereby enabling the 
seamless integration of AI/ML solutions. 
 
7.2.7 Human-machine interactions  

Human-machine interactions are essential for the 
successful integration of AI/ML techniques in the 
power industry. Establishing clearly defined roles, 
interfaces, and workflows for human operators and 
machines is necessary to ensure the collection of 
high-quality data and high-fidelity models, which 
will improve the system resilience and 
responsiveness while addressing human factors. 
 
8 Limitations in Applying Artificial 

Intelligence to Power Systems 
Over the past two decades, extensive research has 
focused on applying artificial intelligence (AI) to 
power systems with a significant integration of 
renewable energy sources (RES). This section 
critically examines the primary limitations hindering 
the practical implementation of AI in addressing the 
challenges within power systems. Key issues 
include the proportion of RES within grids, reliance 
on synthetic data, scarcity of real measurement data, 
challenges related to protection selectivity and 

coordination, and inherent "black box" nature of 
machine learning models. 
 
A significant limitation of academic research is the 
lack of precise quantification of the proportion of 
RES in power grids. Studies often refer to the "high 
penetration of Distributed Energy Resources 
(DER)" without providing specific metrics. 
However, empirical evidence suggests that power 
systems can effectively operate with 30-50% 
distributed generation from RES without 
necessitating the development of new AI-based 
techniques for stability and protection. 
 
Another challenge arises from the prevalent use of 
simulation-generated data, as opposed to real-world 
observations, for training machine-learning models. 
The authenticity and complexity of these synthetic 
data are often insufficient, raising concerns about 
the applicability and effectiveness of machine 
learning-based protection systems in real-world 
power grids. 
 
The scarcity of relevant real measurement data 
further complicates the development and training of 
machine-learning models for power system 
protection and stability. Even when real data are 
available, they may not be ideal for training 
purposes, as power systems are typically engineered 
to maintain stable operations over extended periods, 
resulting in a limited amount of data from unusual 
fault situations. 
 
Additionally, current research on machine-learning-
based protection methods frequently overlooks the 
critical aspects of selectivity and coordination across 
different levels of the grid. Many studies have failed 
to address the interactions between protection 
systems at various voltage levels, leading to a lack 
of comprehensive research in these areas. This 
oversight significantly hampers the practical 
application of AI in power-system protection. 
 
Finally, the " black-box nature of machine-learning 
models poses a significant challenge within power 
systems, where high standards of accountability and 
transparency are required. The opacity of AI 
decision-making processes can undermine operator 
trust, complicating the acceptance, validation, and 
justification of AI-driven recommendations in 
power system management. 
 
4 Conclusion 
Machine learning methods have been used to 
address the challenges of integrating distributed 
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energy resources in modern power grids. Although 
effective in load forecasting, renewable energy 
prediction, and energy optimisation, these methods 
struggle with power system stability and protection 
issues. Synthetic datasets are often inadequate to 
ensure the applicability of simulated solutions to 
real-world power systems. Categorising power grids 
based on distributed energy resources is essential for 
efficiently identifying and solving these issues, 
saving time, and enabling precise and tailored 
strategies. Physics-informed machine learning 
models and meta-learning methods can be integrated 
to address data scarcity and quality issues. The 
black box effect in AI systems for power grids can 
be mitigated through advancements in Explainable 
Artificial Intelligence (XAI). The implementation of 
grid edge computing offers a unique opportunity to 
improve the reliability and efficiency of the power 
grid in the context of distributed energy generation.  
The future appears to hold the potential for 
advanced AI systems to be comprehensively 
understood and efficiently utilised in the operations 
and management of power grids and energy 
systems. 
In summary, harnessing AI/ML in power system 
applications is characterised by both promising 
prospects and intricate obstacles. The 
implementation of strategic measures that tackle 
data challenges, interoperability issues, and 
transparency will be crucial for realising the 
transformative potential of AI/ML and shaping the 
future of power systems. 
 

 

References: 

[1] North American Electric Reliability 
Corporation (NERC), “Considerations for 
Power Plant and Transmission System 
Protection Coordination Tech". 2015 

[2] Hatziargyriou, Nikos, et al. "Definition and 
classification of power system stability–
revisited & extended." IEEE Transactions on 

Power Systems 36.4 (2020): 3271-3281. 
[3] El Rhatrif, Abderrahmane, Bouchra Bouihi, 

and Mohammed Mestari. "Challenges and 
Limitations of Artificial Intelligence 
Implementation in Modern Power 
Grid." Procedia Computer Science 236 (2024): 
83-92. 

[4] Manohar, Murli, Ebha Koley, and Subhojit 
Ghosh. "Enhancing resilience of PV-fed 
microgrid by improved relaying and 
differentiating between inverter faults and 
distribution line faults." International Journal 

of Electrical Power & Energy Systems 108 
(2019): 271-279. 

[5] Gao, Wei, et al. "Improving DFIG performance 
under fault scenarios through evolutionary 
reinforcement learning based control." IET 

Generation, Transmission & Distribution 16.19 
(2022): 3825-3836. 

[6] Jones, C. Birk, Adam Summers, and Matthew 
J. Reno. "Machine learning embedded in 
distribution network relays to classify and 
locate faults." 2021 IEEE Power & Energy 

Society Innovative Smart Grid Technologies 

Conference (ISGT). IEEE, 2021. 
[7] Poudel, Binod P., et al. "Zonal machine 

learning-based protection for distribution 
systems." IEEE Access 10 (2022): 66634-
66645. 

[8] Yu, Qiusheng, et al. "Fault Diagnosis Based on 
Tensor Computing and Meta-Learning for 
Smart Grid and Power Communication 
Network." Electronics 13.9 (2024): 1655. 

[9] Zamzam, Ahmed S., Xiao Fu, and Nicholas D. 
Sidiropoulos. "Data-driven learning-based 
optimization for distribution system state 
estimation." IEEE Transactions on Power 

Systems 34.6 (2019): 4796-4805. 
[10] Garcia, Daniel Ruiz, et al. "Substation-level 

circuit topology estimation using machine 
learning." 2022 IEEE Power & Energy Society 

Innovative Smart Grid Technologies 

Conference (ISGT). IEEE, 2022. 
[11] Zhang, Liang, Gang Wang, and Georgios B. 

Giannakis. "Real-time power system state 
estimation and forecasting via deep unrolled 
neural networks." IEEE Transactions on Signal 

Processing 67.15 (2019): 4069-4077. 
[12] Kurup, Aswathy Rajendra, et al. "Deep 

learning based circuit topology estimation and 
fault classification in distribution 
systems." 2021 IEEE PES Innovative Smart 

Grid Technologies Europe (ISGT Europe). 
IEEE, 2021. 

[13] Zhao, Tianqiao, Meng Yue, and Jianhui Wang. 
"Deep-Learning-Based Koopman Modeling for 
Online Control Synthesis of Nonlinear Power 
System Transient Dynamics." IEEE 

Transactions on Industrial Informatics 19.10 
(2023): 10444-10453. 

[14] Moya, Christian, et al. "Deeponet-grid-uq: A 
trustworthy deep operator framework for 
predicting the power grid’s post-fault 
trajectories." Neurocomputing 535 (2023): 166-
182. 

[15] Nandanoori, Sai Pushpak, et al. "Graph neural 
network and Koopman models for learning 

Abderrahmane El Rhatrif et al.
International Journal of Internet of Things and Web Services 

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 27 Volume 9, 2024



networked dynamics: A comparative study on 
power grid transients prediction." IEEE 

Access 10 (2022): 32337-32349. 
[16] Zhao, Tianqiao, Meng Yue, and Jianhui Wang. 

"Structure-informed graph learning of 
networked dependencies for online prediction 
of power system transient dynamics." IEEE 

Transactions on Power Systems 37.6 (2022): 
4885-4895. 

[17] Zhang, Ying, Meng Yue, and Jianhui Wang. 
"Off-policy deep reinforcement learning with 
automatic entropy adjustment for adaptive 
online grid emergency control." Electric Power 

Systems Research 217 (2023): 109136. 
[18] Bourechak, Amira, et al. "At the confluence of 

artificial intelligence and edge computing in 
iot-based applications: A review and new 
perspectives." Sensors 23.3 (2023): 1639. 

[19] Haugen, Mari, et al. "Representation of 
uncertainty in market models for operational 
planning and forecasting in renewable power 
systems: a review." Energy Systems (2023): 1-
36. 

[20] Gunning, David, and David Aha. "DARPA’s 
explainable artificial intelligence (XAI) 
program." AI magazine 40.2 (2019): 44-58. 

[21] Arrieta, Alejandro Barredo, et al. "Explainable 
Artificial Intelligence (XAI): Concepts, 
taxonomies, opportunities and challenges 
toward responsible AI." Information fusion 58 
(2020): 82-115. 

[22] Raissi, Maziar, Paris Perdikaris, and George E. 
Karniadakis. "Physics-informed neural 
networks: A deep learning framework for 
solving forward and inverse problems 
involving nonlinear partial differential 
equations." Journal of Computational 

physics 378 (2019): 686-707. 
[23] Misyris, George S., Andreas Venzke, and 

Spyros Chatzivasileiadis. "Physics-informed 
neural networks for power systems." 2020 

IEEE power & energy society general meeting 

(PESGM). IEEE, 2020. 
[24] Stiasny, Jochen, George S. Misyris, and Spyros 

Chatzivasileiadis. "Physics-informed neural 
networks for non-linear system identification 
for power system dynamics." 2021 IEEE 

Madrid PowerTech (2021): 1-6. 
[25] Hospedales, Timothy, et al. "Meta-learning in 

neural networks: A survey." IEEE transactions 

on pattern analysis and machine 

intelligence 44.9 (2021): 5149-5169. 
[26] Chen, Yexiang, et al. "A meta-learning 

approach to the optimal power flow problem 
under topology reconfigurations." IEEE Open 

Access Journal of Power and Energy 9 (2022): 
109-120. 

[27] Yu, Qiusheng, et al. "Fault Diagnosis Based on 
Tensor Computing and Meta-Learning for 
Smart Grid and Power Communication 
Network." Electronics 13.9 (2024): 1655. 

 

Abderrahmane El Rhatrif et al.
International Journal of Internet of Things and Web Services 

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 28 Volume 9, 2024

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US



