

Low Cost, Easy-to-Use, IoT and Cloud-Based Real-Time Environment
Monitoring System Using ESP8266 Microcontroller

NUBA SHITTAIN MITU a, b, VASSIL T. VASSILEV a, MYASAR TABANY a

Khm0225@my.londonmet.ac.uk, V.Vassilev@londonmet.ac.uk, M.Tabany@londonmet.ac.uk
a School of Computing and Digital Media, London Metropolitan University, 166-220 Holloway Road,

London, N7 8DB, UK.
b Bangladesh Atomic Energy Research Establishment,Ganakbari, Savar, Dhaka, 1349, BANGLADESH.

Abstract— This paper proposes a low-cost, Easy-to-use, IoT and cloud-based system solution for
environmental data monitoring in real-time through the combination of Internet of Things (IoT) and Cloud
Computing technology via Arduino IDE. This paper is present a low implementation cost Data Collection
Circuit (DCC) using AT-Arduino commands-based microcontroller ESP8266 and custom IoT device for
environment data collection from any physical circumstances. This paper has the scope to introduce the
NoSQL, scalable, serverless, real-time database that is Google's firebase, to store the sensor data for real-time
monitoring and management of the database. This paper is giving access to environmental information about a
UK university library during busy exam weeks includes the major atmosphere parameters: temperature and
humidity, which has a massive effect on the Earth's weather, human physical and mental health. The data can
be monitored in the firebase database through terminal devices like Laptop, Smart Phone and Tablet which is
endowed with the internet facility. This paper is also present a designed and developed Android App using the
MIT App Inventor tool for synchronizing the firebase cloud data on it and monitoring these data in real-time
from anywhere in the world in no time.

Keywords— IoT; Cloud Computing; ESP8266; Firebase; Cloud Integration; Android App.

1. Introduction

 Now we are entering an era of the "Internet
of Things" (abbreviated as IoT). This term has been
defined by different authors in many different ways.
Let us look at the most popular definition of IoT. The
Internet of Things is simply an interaction between
the physical and digital worlds and the 'digital world
interacts with the physical world using a plethora of
sensors and actuators [1]. The emerging concept of
IoT plays a vital role to help in attaining this mission
and policy decisions can be made based on real data
'and more importantly, their impact can be monitored
almost in real-time. The increasing growth of mobile
devices and development in the area of
communication, cloud computing, embedded systems
have made the IoT concept more relevant [2].
Internet of Things (IoT) [3] refers to objects that are
connected through Internet, which means using
modern information technology such as intelligent
sensing, identification technology and wireless
communication to realize the interconnection
between objects. It is known as the third wave of
information industry development after computer and
the Internet. Cloud Computing [4] refers to an
emerging development platform that addresses on-

demand-shared resources and has the potential to
handle several sources, for example, servers,
networks, applications, etc. Cloud computing allows
centralized usage and management of services in a
flexible and optimized manner. The computing
capabilities and storage facilities of the Cloud allow
IoT to handle, store and compute such vast data. The
most commonly utilized cloud for IoT is Amazon,
Microsoft Azure, Google Cloud, Open IoT, etc.

Nowadays, most IoT researchers are dealing
with this subject. One of them presenting real
applications other presenting their research
advancements on IoT inhabitants. Our IoT and cloud-
based system target the temperature and humidity
data collection using a designed and developed low-
cost, Data Collection Circuit (DCC) of the system. In
practice, we want to demonstrate that a relatively
cheap, easy-to-use, time-optimised IoT and cloud-
based real-time environmental data monitoring
system solution. The Data Collection Circuit (DCC)
is designed using wi-fi enabled microcontroller
ESP8266, DHT11 sensor devices, etc. and must be
well-configured within the Arduino IDE to
communicate with the rest of the components of the
system architecture.

Nuba Shittain Mitu et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 30 Volume 6, 2021

mailto:Khm0225@my.londonmet.ac.uk
mailto:V.Vassilev@londonmet.ac.uk
mailto:M.Tabany@londonmet.ac.uk

Schwartz [5] demonstrates how to configure and
upload code to the ESP8266 chip and for that
Schwartz [5] using the Arduino IDE. This makes
using the ESP8266 much easier, and it'll be using as a
well-known interface and language to configure the
chip with most of the existing Arduino Libraries [5].

A fundamental aspect of the Internet of Things is the
integration with the Cloud infrastructure, which hosts
interfaces and web-based applications that enable
communication with sensors and external systems.
Therefore, the Cloud computing infrastructure might
provide data access and management features, to
collect and manage data made available by smart
objects. Firebase-driven approaches use protocols
that are specifically designed for the communication
between different devices, such as REST API over
HTTP/HTTPS. IoT objects generate a significant
amount of information, because of the extensive
coverage of sensors and the continuous sensing of
data. Gartner report1 estimated that 2.9 billion
connected things were in use in the consumer sector
in 2015 and will reach over 13 billion in 2020, while
by 2019 there will be 780 million wearable devices
and 2.2 billion smartphones. As a result, real-time
data processing has become a new challenge, since
one of the fundamental aspects of the IoT is the
ability to respond to a trigger in real-time. In the IoT
context, the best approach for data storage and
retrieval is the use of a NoSQL or a Time Series (TS)
database, which is optimized for managing arrays of
numbers indexed by time and all the data is provided
in the JSON format and can be retrieved and plotted
[6]. The widespread of IoT devices make it possible
to collect an enormous amount of data. The
traditional SQL (Structured Query Language)
database management systems are not suitable for
storing this huge amount of data. For this task,
distributed NoSQL database management systems are
the most appropriate. However, for professionals
developing such applications, the effective design
and practical implementation of live sensor data
collection from extreme condition site and cloud
storage is a major challenge because of the huge
amount of data [7,8]. Traditionally, real-time systems
manage their data (e.g. chamber temperature, aircraft
locations) in application dependent structures. As
real-time systems evolve, their applications become

more complex and require access to more data. It
thus becomes necessary to manage the data in a
systematic and organized fashion. Database
management systems provide tools for such
organization, so in recent years there has been
interested in "merging" database and real-time
technology. The resulting integrated system, which
provides database operations with real-time
constraints is generally called a real-time database
system (RTDBS) [9, 10].

During our research, one of the main aims is to set up
a distributed, NoSQL, scalable, serverless database
system in the cloud to store and manage the sensor
data. We select firebase as our data storage
component under Google's original server, which is
NoSQL and use REST API for database
management. At a time, it will minimise the server
maintenance cost and can save time in the context of
making complex SQL query. Real-time monitoring of
the collected sensor data is possible from firebase
console using terminal devices like laptop,
smartphone, etc. The firebase console data is more
useful for data analytics, future prediction, real-time
system behaviour monitoring and statistical analysis
and more especially data will remain safe without
any malicious infection. People must have to concern
about their vast sensor IoT data security, which is
produced every day from smart home, smart health
system, etc. Getting back those sensitive data from
the cloud to own hand might jeopardize the insecurity
feeling of the smart IoT application system owner.
Firebase is a good example of the IaaS (Infrastructure
as a Service) service model of cloud computing.

Firebase is a framework that is useful for building
portable and web applications for businesses that
require real-time database which implies when one
user updates a record in the database, the update
should be conveyed to every single user instantly. A
real-time Database is a cloud-hosted database. Data is
stored as JSON and synchronized continuously to
each associated client. When any cross-platform
application is developed with iOS, Android, and
JavaScript SDKs, the greater part of the user's
demand is based on one Real-time database instance
and this instance gets updated with each new data.
This feature allows developers to skip the step of
developing a database, and Firebase handles most of
the backend for the applications [11].

With the advent of new mobile technologies, the
mobile application industry is advancing rapidly.
Consisting of several operating systems like Symbian

Nuba Shittain Mitu et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 31 Volume 6, 2021

OS, iOS, blackberry, etc., Android OS is recognized
as the most widely used, popular and user-friendly
mobile platform. This open-source Linux kernel-
based operating system offers high flexibility due to
its customization properties making it a dominant
mobile operating system. Android applications are
programmed in java language. Google Android SDK
delivers a special software stack that provides
developers with an easy platform to develop android
applications. Moreover, developers can make use of
existing java IDEs which provides flexibility to the
developers. Java libraries are predominant in the
process of third-party application development [12].

This paper also targets the enormous flexibility for
cloud data accessing and monitored in real-time from
anywhere. In this point of view, we designed and
developed an Android App using MIT App Inventor
for seamless cloud data accessing in no time. The
MIT build App of the system can monitor the live
firebase data in real-time which fulfilled the goal set
of the authors. ‘Firebase Integration’ is a term which
must be successfully done within the firebase and
Android Application of the system to get
synchronized with the firebase database for real-time
data monitoring on the App and it is also presented
and discussed in the proposed system.

In forthcomings, the paper includes section 2 which
presents a detailed system architecture description
and considers all the software and hardware
components of the system. Section 3 and 4 contains
operating results and discussions, economic
advantages of the system respectively. Finally,
section 5 concludes the research, future works of this
IoT and cloud-based real-time environment
monitoring system.

2. System Architecture

System architecture presented in Figure 1, shows
three major components of the proposed system. The
initial part is represented a Data Collection Circuit
(DCC) which is designed and developed using wi-fi
enabled microcontroller ESP8266 12-E version and
custom IoT device-DHT11 for collecting live
environmental data of the system. The DCC can
collect the live data via Arduino IDE from any
physical circumstances after a successful
configuration within the IDE. On top of that, the
Arduino Design and Implementation on IDE must be
successful for the seamless data collection and to
communicate with the data storage component of the
proposed system and is discussed well in section 2.3.
The data collection made using DCC of the system

print on IDE serial monitor before push to the cloud
according to the Arduino design too. The design and
development of the Data Collection Circuit (DCC) of
the system clarifying it as a low-cost, easy-to-use and
time-optimised which is discussed and justified well
in section 2.1 and 3.

The data storage component of this IoT and Cloud-
based system is a NoSQL, serverless, real-time
database under the Google’s cloud which is Firebase
to store the data updates and monitoring the data in
real-time. Firebase also has a built-in database
management facility that can perform the database
actions: Read, Write, Delete, retrieve data through
REST API used. The data transferred and or pushed
to the cloud can be used for more complex analysis
that will predict and prioritise more precisely the
environmental conditions, optimise the time needed
to reach the system implemented locations and
provide timely information about the environmental
conditions. Through the accessible devices admin or
user of the system can monitor the data from firebase
console in real-time over http request made. The
firebase setup must be successful using the google
credentials to get access of its real-time database is
discussed in section 2.2. The data loading delay to the
firebase cloud according to the Arduino design and
implementation of the system is discussed in section
2.3 and visualized in section 3. The data storage
component selection of the proposed system
introduced and clarifying as a low-cost, easy-to-use
and time-optimised and is discussed and justified
well in section 2.2 and 3.

 The Android Application (App) of the system is
suitable to any android compatible devices and is
designed and developed using MIT App Inventor.
The App of the system can monitor the air data of the
implemented area in real-time from anywhere in no
time. Towards a very handy and flexible real-time
monitoring the ‘Firebase integration’ within the
developed App must be successful to get
synchronized with the firebase database for the real
updates on the App which is discussed in section 2.4.
The Android Application development for real-time
monitoring of the system addressed and clarifying the
low-cost, easy-to-use, time-optimised parameters
well through the discussions and justifications in the
section 2.4 and 3. The App can be installed on user’s
android devices if the authors willingly share it to any
media like Google play, etc. also discussed in section
2.4.

Nuba Shittain Mitu et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 32 Volume 6, 2021

Fig. 1 System Architecture: includes the software and
hardware components of the system for data

collection, data storage and monitoring from firebase
console and App.

2.1 Data Collection Circuit (DCC) Design,
Development and Configuration with
Arduino IDE

The Data Collection Circuit (DCC) component of
the system architecture is designed and developed
using wi-fi enabled ESP8266 microcontroller,
DHT11 humidity and temperature sensor and fewer
jumper wires, is low cost, low power consumptions
and easy-to-use. It saved the programming space, use
of many wires and chipsets at a time.

DHT11: The DHT11 Temperature & Humidity
sensor is an economical peripheral manufactured by
D-Robotics UK (www.droboticsonline.com). DHT11
features a temperature & humidity sensor complex
with a calibrated digital signal output which includes
a resistive-type humidity and an NTC temperature
measurement component and connects to a high-
performance 8-bit microcontroller, offering excellent
quality, fast response, anti-interference ability and
cost-effectiveness [13] These sensors are small,
economical, user-friendly and have low energy
consumption. They have four pins, one of which is
enabled for data transmission is up to 100 meters
[14]. It is capable of measuring relative humidity
between 20 and 90% RH within the operating
temperature range of 0 to 50°C with an accuracy of
±5% RH. Temperature is also measured in the range
of 0 to 50°C with an accuracy of ±2°C. Both values
are returned with an 8-bit resolution [15].

ESP8266: The NodeMCU ESP8266 is a
microcontroller with integrated Wi-Fi, which means
that there is no need for an additional Wi-Fi chipset.
The design of the SoC allows communication
through the GPIOs by connecting to the Internet and
transmitting data over the Internet. This is a perfect
connection for the Internet of Things (IoT). It has a
price of about $2.50, with a physical size of 49 ×24.5
×13 mm, consumes 0.00026–0.56 W of power,
current consumptions during flashing 10uA-170mA
to 800mA and the operating temperature is 40ºC to
+125 ºC. It allows maximum 5 TCP connections and
it’s work through the several Network Protocol’s
IPv4, TCP / UDP / FTP / HTTP. This is the best
hardware around in terms of cost and this chip is the
future of the IoT [14][16]. ESP8266 on-board
processing and storage capabilities allow it to be
integrated with the sensors and other application-
specific devices through its GPIOs with minimal
development up-front and minimal loading during
runtime. With its high degree of on-chip integration,
which includes the antenna switch balloon, power
management converters, it requires minimal external
circuitry, and the entire solution, including the front-
end module, is designed to occupy minimal PCB
area. ESP8266 offers a complete and self-contained
Wi-Fi networking solution, allowing it to either host
the application or to offload all Wi-Fi networking
functions from another application processor [17].
The ESP8266 12-E microcontroller is used for data
collection in this IoT based system is the latest
version and has a Cp2102 driver installed on it.
market and is used for establishing a wireless
network connection for a microcontroller or ESP8266

Nuba Shittain Mitu et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 33 Volume 6, 2021

http://www.droboticsonline.com/

12-E: The ESP-12E or NodeMCU version 12E is a
miniature Wi-Fi module present in the processor. The
core of ESP-12E is ESP8266EX, which is a high
integration wireless SoC (System on Chip). It is a
low-cost solution for developing IoT applications
[18]. The ESP8266 12E module has 30 pins including
17 GPIO pins. The GPIO port connections of the
ESP8266 module are summarised in Table 1 found
in [18]; which is partially edited by the authors.

Table 1: Summary of the GPIO port connections of
the ESP8266 module

Microcontroller-
ESP8266 Pin

GPIO Purpose

3v3 +3.3V Power input
GND Ground pin
Vin Power (+5

Recommended, +10v)
))Max)

4 16 General Purpose Input
Output Pin 20 5 General Purpose I/O
Pin 19 4 General Purpose I/O
Pin 18 0 General Purpose I/O
Pin 17 2 General Purpose I/O
Pin 5 14 General Purpose I/O
Pin 6 12 General Purpose I/O
Pin 7 13 General Purpose I/O
Pin 16 15 General Purpose I/O
Pin 14 6 Clock Pin of SPI
interface 10 7 MISO Pin of SPI
interface 9 11 Chip selection Pin of
SPI interface Source: [Datasheet-ESP8266]

https://components101.com/wireless/esp12e-pinout-
datasheet;https://www.make-it.ca/nodemcu-
arduino/nodemcu-details-specifications/

Figure 2 present the IoT diagram and design snap of
the Data Collection Circuit (DCC) component of the
system.

Fig. 2 Data Collection Circuit (DCC) component of
the system

The Data Collection Circuit (DCC) can collect the
live temperature and humidity data from any physical
circumstances seamlessly and following is the
specification.

Data Collection Circuit (DCC) Specification: The
DCC can be power up through the PC and certainly
there is no access power plug is needed. The DCC
will consume a maximum of +10 volt to operate the
circuit but +5volt is recommended [17] because the
NodeMCU device of this DCC is only required a
voltage +5 to +10v to power up. There is no power
converter, and or battery, are required to operate this
circuit. This circuit is straightforward to use and can
power up through the PC using a USB cable. One
thing noted here, the PC must be connected to any
trusted wi-fi network and the DCC must belong to the
same wi-fi network.

DCC Connectivity- 1. DHT11 GND (Ground) pin to
NodeMCU ESP8266 V12E-1 GND pin. 2. DHT11
power (+ve) pin to ESP8266's 3V3 logic (power) pin.
3. DHT11 data pin (Pin No.-2) to ESP8266's data pin
D4. It can be get connected to any data pin D0-D8 of
ESP8266.

DCC Configuration with Arduino IDE: The
NodeMCU ESP8266 offers a variety of development
environments, including compatibility with the
Arduino IDE (Integrated Development Environment).
In our system context, the initial and one of the vital
tasks is the complete and successful configuration of
the DCC within the software tool- 'Arduino IDE' for
seamless sensor data collection.

Arduino IDE: The Arduino is a microcontroller
development board series - Uno, Mega, Nano, Mini
etc. are the examples. Arduino IDE (Integrated
Development Environment) is open-source software
and that enables better and assisted code editing,
compiling, and debugging. It runs on Windows, Mac
OS X, and Linux. The environment is written in Java
and based on processing and other open-source
software. Arduino IDE has inbuilt functions and
commands that though work on the Java platform, is
customised to run on the Arduino board. Thus,
Arduino IDE serves for code editing, its compilation,
debugging and then burning the code into the
Arduino board [19]. In [20], the Arduino software is
found with necessary installation guidelines and steps
which is runs on the Java Platform. Our IoT based
system used the Arduino software version 1.8.9. In
[21], ESP8266 wifi module board manager
installation steps are found to get it configured within
the Arduino IDE. In [22]-[26], the required Arduino
libraries for the communications are found which are

Nuba Shittain Mitu et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 34 Volume 6, 2021

https://components101.com/wireless/esp12e-pinout-datasheet
https://components101.com/wireless/esp12e-pinout-datasheet
https://www.make-it.ca/nodemcu-arduino/nodemcu-details-specifications/
https://www.make-it.ca/nodemcu-arduino/nodemcu-details-specifications/

installed in Arduino IDE and updated with its every
recent release, whereas some of them talk properly
with its older version.

ESP8266 configuration testing within the Arduino
IDE: A small circuit is designed and developed using
1 (one) LED and 1 (one) Resistor and some jumper
wires with the ESP8266 and uploaded to the built-in
Arduino command 'BLINK' in IDE to test the
successful configuration of the esp8266 module
within the Arduino IDE. After a successful
configuration, the ESP8266 module will show its
connection status on Arduino IDE via COM port.

2.2 Cloud Selection and Setup for the Data
Storage Component of the System

Sensor data storage and management in a preferred
cloud platform is an inevitable task for most IoT
based real-time monitoring system. In our system,
data collected from Data Collection Circuit are stored
in Firebase, a NoSQL Backend-as-a-
Service (BaaS) that handles a wide variety of data
types, including JSON files. Some of the exciting
features of firebase such as NoSQL data
management, real-time database, cloud integration
within the several applications, etc., help us to fix the
right cloud selection. An example of Infrastructure as
a Service model is provided by Firebase, which uses
a REST API approach for the communication
between IoT devices and the Cloud.

Firebase: It is a Real-Time and cloud-hosted database
developed by Google. Data in Firebase is stored in
the JSON (JavaScript Object Notation) format and is
updated in real-time as soon as one of the clients
connected to that database changes the data [27]. It
provides one of the most stable and fastest real-time
databases and offers so many useful features like
NoSQL, real-time data synchronization to every
connected client, firebase analytics, hosting, storage
and many more.

The real-time databases like firebase are used to
interface some controller which can be connected to
the internet and can be able to exchange data with
cloud server. The data structure stored for the DHT11
sensor of this IoT based system contains live
temperature and humidity values.

Firebase Setup: To own the project space under the
firebase in google cloud requires some necessary and
major steps like set up a project, writing real-time
database security rules for data security, database
secret key and database host address generation, etc.,

are found in [28]. The auto-generated firebase
database 'secret key' and 'host address' for this system
will have several major uses like, in 'Arduino design
and implementation' -to communicate with the cloud
storage and in 'Cloud Integration'- to synchronise the
firebase database with a designed and developed
Android APP for user communication. The database
'secret key' and 'host address' will be defined as
'FIREBASE_HOST' and 'FIREBASE_AUTH'
respectively where needed. The following figure 5
shows the data stored under the firebase project of the
google cloud. The real-time database of our IoT and
the cloud-based system is available at [29] through
any client HTTPS request made. The database data
can be retrieved as a JSON document will be
available at [30]. Appending. JSON after the URL
address of this IOT and cloud-based system in every
HTTP request made must be needed.

Firebase is well featured to manage the real-time
database using its RESTful API (Application
Programming Interface). The state-of-the-art topic
'Real-time data monitoring (RTDM)' is playing
through the NoSQL data storage component selection
for our IoT and cloud-based system.

Firebase Database REST API: Firebase is used the
REST API to manage the database and allow the
database actions include: PUT, GET, POST, PATCH,
DELETE etc., are found in [31]. In our IoT based
system, the firebase database is managed by the
admin following the above-mentioned REST API
actions if required. Firebase only responds to
encrypted traffic so that all data remains safe and
HTTPS is required to respond.

2.3 Arduino Design and Implementattion

The Arduino design and implementation are
considered as the paramount task for communicating
with the Data Collection Circuit (DCC) and data
storage component of the system. In figure 3, the
Arduino Commands are shown with necessary
Arduino libraries via a trusted wi-fi SSID.
#include <DHT.h>#include <ArduinoJson.h>

#include <ESP8266WiFi.h> #include

<FirebaseArduino.h> #include <Adafruit_Sensor.h>

#include <ESP8266HTTPClient.h>

#defineFIREBASE_HOST “"#define FIREBASE_AUTH ""

#define WIFI_SSID " " ; #define WIFI_PASSWORD " "

#define DHTPIN D4; #define DHTTYPE DHT11; DHT

dht(“”, “”);

Nuba Shittain Mitu et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 35 Volume 6, 2021

void setup() Serial.begin(115200); delay(1000);

WiFi.begin(WIFI_SSID, WIFI_PASSWORD);

while (WiFi.status() != WL_CONNECTED) {

Serial.print("........"); delay(500); }

Firebase.Begin(FIREBASE_HOST, FIREBASE_AUTH);

dht.begin(); //Start reading dht sensor } void loop() {

……………………. return; } //string conversion

String fireHumid = String(h) + String("%");

Serial.print("Humidity: "); Serial.print(h);

 String fireTemp = String(t) + String("°C");

Serial.print("% Temperature: "); Serial.print(t);

delay(4000);//after 4 seconds delay values will send to

cloud

 Firebase.pushString(" ", variable) Firebase.pushString("

", variable); }

Fig. 3 Arduino Commands for enviromental data
collection and store to the firebase database

The Arduino commands in Figure 3, needs to be
uploaded on IDE after a successful connection of the
Data Collection Circuit (DCC) via COM port of the
PC.

After 100% uploading of Arduino commands on
IDE, live temperature and humidity data will be
collected and at the same time displays in the IDE
Serial Monitor. The collected data then can be pushed
to the cloud after a predefined delay of approx. 4
seconds.

2.4 Android Application (APP) Development
using MIT App Inventor to get access
and monitoring of Firebase real-time
data through ‘Cloud Integration’

Google cloud is collaborating with MIT to allows
IoT builders to integrate their IoT application system
with popular platforms like Android and IOS through
its Application Program Interface (API) and client
libraries and also allows Android Applications to get
real-time updates from their database through cloud
integration. This paper also targets the real-time data
monitoring in a very flexible way, and it is
implemented by developed an android app using the
MIT App Inventor and installed that app on an
android device.

MIT: MIT is the most advanced cloud-based app
building tool maintained by the Massachusetts

Institute of Technology (MIT). The MIT App
Inventor development environment is supported for
macOS, GNU/Linux, and Windows operating
systems, and several popular Android phone models
and the applications created with App Inventor can
be installed on any Android devices.

MIT Platform Setup: To set up the MIT Platform for
this system, we choose MIT App Inventor 2 found in
[32] and it includes a list of considerable works such
create a project on MIT using google credentials,
firebase database integration with MIT, design and
develop the android App and finally the installation
of that app on any android device. The created
project on MIT for our system is available at [33].

Cloud Integration: Firebase Integration with an MIT
build Application (APP) is treated as one of the major
tasks of our IoT and a cloud-based system for making
the App accessible and to getting access to the cloud
data from anywhere. The following figure 4 shows
the firebase cloud integration with MIT.

Fig. 4 Firebase Cloud Integration on MIT.

'Drag and Drop' the Firebase Database and property
value set on the MIT workspace are the considerable
works towards firebase cloud integration. Drag the
Firebase Database from the 'Experimental' menu and
drop it to the viewer window and the properties
'Firebase Token' and 'Firebase URL' must be filled up
with values which are same as the 'Firebase Secret
Key' and 'Firebase URL' of the firebase database and
are indicated in above figure 4 using the red mark.
After successful cloud integration, the MIT
workspace is ready to design and develop the App.

App Design: The App design of this system includes
front end and back-end design using built-in MIT

Nuba Shittain Mitu et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 36 Volume 6, 2021

App Inventor’s user interfaces and functions
respectively. The front-end design is the screen view
of the app for our system. The front-end design of the
app occupied some of the built-in user interfaces
components such as button, label, horizontal and
vertical arrangement, etc. And it required various
property settings for each component. The back-end
design of the App for our system includes logic
development using built-in functions such as control,
logic, math, text, etc. The logic design is a major
task to talk accurately with the designed front-end of
the app. However, these logics are mainly
responsible to read the firebase data and monitor
these data in real-time on the developed app. The
following figures 5 and 6 shows the Front-end design
view and Back-end logic design of the APP on MIT.

 Fig. 5 Front-end design view of the APP on MIT.

Fig. 6 Back-end logic design of the APP on MIT.

App Development: App development is surely
important to make it usable on any android device
and it includes a list of necessary steps such build an
executable file, app installation to the android
devices, export and import the MIT Project file, etc.
To build an APK or executable (Android Package
Kit) file is basically to make the app usable on any

android devices and it includes some steps using
MIT. The following figure 7 shows the App
development progress on MIT.

Fig. 7 APP building progress on MIT.

Supported File Types of MIT App Inventor and
Android OS:

AIA File: Source code file created and used by App
Inventor; web program used by beginning developers
to create applications for Android devices; contains
the source code blocks of an application project in
development. App Inventor is a blocks-based
programming tool that uses the source code in the
AIA file to create applications.

APK File: An Android Package Kit (APK for short)
is the package file format used by the Android
operating system for the distribution and installation
of mobile apps. Just like Windows (PC) systems use
a .exe file for installing software, Android does the
same [34].

Export and Import the MIT Project file: These are the
important steps to get this instance save to any
desired location of the PC for further use. After
saving this MIT project it’ll get an extension *.aia.
This is not only useful for admin of this App, but
anyone could use this designed App if it is shared to
any media like Google Play, etc. In other words, it
can be usable by anyone just clicking on download
from shared places and import it to their own desired
location using MIT platform. The following figure 8
shows the export and import steps of the MIT Project file.

Sharing and Packaging the App: The source code
(.aia) files are not executable Android programs --
those are .apk files. The source code (.aia) files is
also not Java SDK code -- it can only be loaded into
App Inventor.

Nuba Shittain Mitu et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 37 Volume 6, 2021

Fig. 8 Export and Import the MIT Project file.

App Installation: After building the executable file it
must need the implementation on any android
devices. And it requires a list of primary setups in
any android operating systems such as security setup,
downloading the APK file and installation of that file,
etc. After all the steps successfully done, the App will
be ready to monitor the cloud data in real-time from
anywhere in no time. The following figure 9 to 11
shows the APP Installation progress and installed
ready-to-use App on an Android Device of the
system to monitor the firebase database data in real-
time.

Fig. 9 APP Installation progress on an Android

Device.

Fig. 10 Installed App ‘NubaRealTimeDB’ of the
system on an Android Device.

Fig. 11 Ready-to-Use Android Application for cloud
data monitoring in real-time.

App Installation Pre-requisites on Android Devices:
The installation instructions are very simple, but
some prerequisites have to be attended before.
Firstly, the android devices have the built-in wi-fi
facilities. Operating System need to be upgraded to at least
1.4 or more. Finally, the App needs to be minimum 4-
megabyte of space on android device to install.

3. Results and Discussions

The presented system architecture of this IoT and
cloud-based system were tested, and they are well-
suited for single-point measurement. Sensors and
sensor nodes can be added to this system to have
multiple measurement points. The system
architecture of the system is horizontally scalable. All
the software components of the system architecture
are developed in a unified way considering the
various IoT objects and microcontroller, tools,
platforms, and an android application (APP)
development. The system performance is adequate,
and it is capable to perform its desired roles.

Usually, most of the university library remains full
during each semester’s early exam preparation hours.
The results have the access to the major
environmental information of a UK university central
library facility deploying the system during the very
busy exam preparation hours of the autumn semester
in 2019.

The following figures 12 to 17 shows the results of
the system are, data collection using developed Data
Collection Circuit (DCC), live sensor data store and
real-time monitoring in firebase console,
environmental information monitoring graphs and

Nuba Shittain Mitu et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 38 Volume 6, 2021

real-time cloud data monitoring on a developed
Android Application from anywhere.

The Data Collection Circuit (DCC) of the system can
constantly collect temperature and humidity data and
print it to the IDE serial monitor according to the
Arduino design, once it is plugged into the PC via
Arduino IDE. The DCC can certainly collect massive
amounts of data and the cloud storage of the system
can store and manage the enormous amount of data
too. We strongly believe that our IoT and cloud-
based system addressed the emerging 'Big Data'
concept from a data collection point of view.

The authors demand the proposed system can satisfy
a list of parameters on its each component are Low-
cost, Easy-to-use, Time-optimised in design,
development, implementation point of view. The
developed Data Collection Circuit (DCC) of the
proposed system architecture are low-cost, Easy-to-
use, time-optimised which are justified and discussed
well in section 2.1. The initial and total
implementation cost of this IoT and Cloud-based
system will be less than 20 GBP (Great British
Pound) and which is the development cost of the
Data Collection Circuit (DCC). The system
implementation will cost nothing for the data storage
component setup and no further cost for the real-time
data monitoring as well. The platform setup for the
android application development of the system for
real-time monitoring also free-of-cost. No doubt,
the implementation of the proposed system for
collecting live sensor data from any physical
circumstances, store data and monitoring in real-time
will be completely low-cost. As this system is
horizontally scalable so the system implementation
cost might be rise after adding nodes for collecting
various types of data. As this proposed system
introduces ‘big data’ and the further storage
implementation might add costs in the context to the
data storage selection, migration to the payment plan
according to the storage required, etc.

The design and development of the Data Collection
Circuit (DCC) of the system possess simple circuitry,
less wiring and user can handle it easily. At a time, it
required less time to develop the circuit and simple
Arduino commands to talk with the Data Collection
Circuit (DCC) towards the data collection of the
system can clarify the time-optimised parameters.
The data collection using the DCC of the system
from the test bed was so speedy. The authors were
realizing the speediness of the live sensor data
collection and calculating the data updates into
graphs results. The authors also have concern to put

time stamp against the data updates in future research
also.

NoSQL database selection and setup as the data
storage component of the system for storing and
monitoring of the live environmental data also clarify
the low-cost, easy-to-use, and time-optimisation
parameters which is justified and discussed well in
section 2.2. Traditional database required complex
query to manage the database which involves much
time needed and in most cases the handling of the
database is not so easy. On top of that, database setup
and maintenance also costly in most cases. In our
proposed system the database setup and maintenance
costs us nothing.

Low-cost, easy-to-use, and time-optimisation
parameters are also playing through our proposed
system in the context of the flexible data monitoring
in real-time from anywhere in no time using the
developed Android Application (APP) of the system.
We select the MIT App Inventor 2 for design and
develop an APP which costs us nothing for create and
maintain the App. There are no additional costs to
setup the MIT platform as well. No doubt, the
platform selection for design and develop the App of
the system meet up the effective use of time. The
cloud data monitoring on the App from anywhere and
without the physical presence of that experimented
and or implemented area is successfully present in
our case. The parameters are addressed well for cloud
data monitoring in real-time using a developed app of
the proposed system in section 2.4. In figure 12,
shows the collected live humidity and temperature
data print on the Arduino IDE serial monitor.

Fig. 12 Sensor Data printed on Arduino IDE Serial
Monitor.

If the amount of data collected exceeds datastore
capacity, storage increase, and migration is possible
in firebase according to the payment plan set up.
Figure 13 shows the live humidity and temperature

Nuba Shittain Mitu et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 39 Volume 6, 2021

data updates under the firebase project which got a
rapid change from its initial count after few gusts.

Fig. 13 Sensor Data Updates under the firebase project in
google cloud

It is very important that the temperature and
humidity of the environment monitored for a high-
quality environment and has massive effects on
human physical and mental health [35]. Following
figures, 14 to 16 are shown the environmental
information monitoring graphs according to the
sensor data updates under the firebase console and
are drawn using MS-XL Sheet. Firebase is not
visualizing the data like other popular IoT platform
Things speak, etc. instead it can show the real-time
data updates in the console and allows the database
management actions.

Fig. 14 Air humidity and temperature counts per
second using Data Collection Circuit (DCC) on IDE
Serial Monitor.

In figure 14 shows the humidity and
temperature monitoring only for 10 seconds and the
air humidity was exponentially increased after few
gusts outside whereas the temperature was remained
mostly flat. To start with the per second air humidity
and temperature count and monitoring at the library
helps us to collect a countable amount of
environmental data and which are the primary and
inevitable tasks of our IoT and cloud-based system.

In every 250 milliseconds, one temperature or
humidity data can be read by the DHT11 device,
which is found in the DHT tester example of Arduino
1.8.9 [20].

Fig. 15 Air humidity and temperature data loading
delay to the firebase.

 In figure 15 shows, the sensor data loading
delay in the firebase database according to the
Arduino design and implementation which is
discussed in section 2.3. To be more exact, collected
sensor data using a data collection circuit (DCC) of
the system will take only 4 seconds to push and save
in the firebase cloud.

 Fig. 16 Hourly Variation of the environmental data
during a week.

Nuba Shittain Mitu et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 40 Volume 6, 2021

In figure 16 shows the air humidity is mostly
fluctuated in 40% - 90% and got the highest 95% in
the middle of the week, whereas air temperature is
mostly flat within 20°C - 29°C in every 24 hours
monitoring count during a very busy autumn
semester exam preparation week.

Humidity is the amount of water vapour in the air. It
has a large effect on human mental and physical
health. Humidity must be in 40-50%. Our
experimented library service is equipped with the
central humidifier to provide humidity control
throughout the entire library but sometimes the
unpredicted autumn gusts can increase the air
humidity which is monitored in real-time by
deploying our system. The authors are not concerned
to establish these little findings to their research work
instead put efforts to prove the low-cost, easy-to-use,
time optimized parameters to the embedded IoT
system.

Finally, the authors can present the targeted flexible
data monitoring in real-time through the designed and
developed android app of the system. We experiment
with this application on an Android compatible
smartphone with an updated version of the operating
system, and it must be wi-fi enabled. This App will
take at least 4-megabyte of free storage to install.
Following figure 17 shows the environmental data
monitoring on the app from anywhere in no time.

 Fig. 17 Cloud data monitoring in real-time

In conclusion of this section, the authors are strongly
commented that the proposed IoT and Cloud-based
system is a Low-cost, Easy-to-use, Time-optimised
solution for real-time environment monitoring
towards the organizations with the similar needs.

4. Economic Advantages
[[[

Economic Advantages of this IoT and cloud-
based system includes satisfying a list of criteria.
Firstly, it mitigates the implementation costs
compared with other IoT systems which are designed
with popular microcomputer like the raspberry pi.
The initial and total implementation cost of this
system will be less than 20 GBP (Great British
Pound). Secondly, this system must be useful for
collecting physical data from any extreme condition
site where a human cannot reach easily, or it is
difficult to visit there frequently. Thirdly, real-time
data monitoring from anywhere in the world without
any physical presence at that place in no time using a
developed android APP proves the system is flexible
and time optimized. The traditional monitoring
system has many more shortcomings, such as hard-
wiring, high transmission bit error rate, high costs
and small coverage compare with this kind of IoT
and cloud-based system. The cloud data of our
system will be more useful for further data analytics,
monitoring of the real-time system behaviour,
statistical analysis and processing, and interpretation
for the future use case.
The authors put concentration on these issues
basically for future use cases of the system. No
doubt, this system can introduce the ‘Big Data’
concept. As this proposed system architecture is
‘horizontally scalable’ more sensor nodes can be
added for various types of data collection and will
resulting huge IoT data. Data and ‘Big Data’ both
need to be analysed to find trends and draw
conclusions about the information contained of the
data. However, now a days, ‘Big Data Analytics’ is a
trend for IoT and Smart IoT systems with the various
technologies fog, cloud computing, internet of things
(IoT), etc to make the SMART IoT data more usable.

There also arise a future use case of the proposed
system in the context of the statistical analysis and
processing of the data. It might be performed to
collecting and analysing the data Big data to identify
patterns and trends of the massive data and which
might introduce the integration of the AI technologies
with the system.

Any real-time system behaves in a predictable way.
Now a days, IoT developers are intended to do more
research based on Traffic Control Systems or Process
control-based applications in industries such Driver
behaviour monitoring and in health care for patient’s
abnormal behaviour monitoring, workers behaviour
analysis on a large construction site, etc. with the
essence of various technologies. Behaviour is a term

Nuba Shittain Mitu et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 41 Volume 6, 2021

which might be suited with the environment and or
weather behaviour as well. In our proposed real-time
system, two major atmospheric parameters and or
weather component is collected and monitored in
real-time which must address the weather behaviour
monitoring. The weather data has a major acceptance
to predict the weather condition. In other way around,
the proposed system can be expanded into a SMART
weather system and will introduce the real-time
monitoring of the huge SMART weather data and its
behaviour. It might help to predict the weather
condition and take an urgent decision according to
the weather abnormalities found.

However, our IoT and cloud-based system
also associated with fewer limitations. This system
can monitor the data in real-time using a designed
and developed android compatible APP of the
system, and it might introduce security
vulnerabilities. Android is more prone to security
vulnerabilities that most users do not consider. This
system is not gone through rigorous security check
which is the concern of the author's future study.

5. Conclusions and Future Scopes
In this paper, a low-cost, easy-to-use, and time-

optimised IoT and cloud-based system for the real-
time environment monitoring has been present and
experimented and that could be used by organizations
who are searching the solutions with these similar
needs. A simple, low-cost Data Collection Circuit
(DCC) has been presented for major environmental
data collection and which minimizes the initial and
total implementation cost of the system compare than
other IoT system which are using popular
microcontroller like Raspberry pi, etc. The Data
Collection Circuit (DCC) has been tested and well-
configured within the Arduino IDE and according to
the Arduino design it was collected huge amounts of
environmental data from the experimented field, and
it is believed to collect huge amounts of IoT data
from any physical circumstances too. Google’s
firebase cloud selection for the data storage
component of the system ensures ‘flexible data
management’, ‘the effective use of time’, and ‘no
maintenance cost’ according of its REST API, NO
SQL and serverless features respectively compare
than other IoT systems those who are configured and
managed the traditional database for the similar
needs. Based on IoT principles, a complete
communication of the Data Collection Circuit (DCC)
with the Google’s firebase cloud platform is
established.

The environmental information data of a UK
university library during a busy semester exam
preparation week has been experimented with, huge
live data stored and monitored in real-time in the
firebase console, which is believed to has a massive
effect on human physical and mental well-being. The
collected huge environmental data during a week has
been calculated and visualized in a graph format
which is discussed and justified well in section 3.

To chasing enormous flexibility of cloud data
monitoring, an android application (APP) is designed
and developed using the MIT App Inventor tool and
has been successfully installed and or experimented
on an android device which is capable to monitor the
data from anywhere in no time. Firebase integration
is a new launched facility of the Google’s cloud
which allows the synchronization of its database with
any MIT build application and has taken place
successfully in the paper. And it results the live
updates monitoring in real-time using the App which
also declares the tactical platforms and tools selection
towards flexibility of any proposed system. The live
data updates have been monitored in real-time using
the developed APP of the system during a week,
which is also presented in the section 3.

Every research can contribute towards different
findings which sometimes are not the goal set. In this
context, our research has a contribution on a little
finding and is discussed in section 3.

Our future works intents to implement this
system in extreme condition site to measure the
major atmosphere parameters where human cannot
reach easily or visit there frequently. We also intend
to design and develop the low-cost SMART IoT
system on Environment and healthcare and will put
concentration to perform the Big Data Analytics on
huge amounts of IoT data. This system will be very
useful and helpful that if other organizations hope to
use some solutions with low cost, easy-to-use, time-
optimised and risks for similar needs.

Declaration of Competing Interest

The authors declare that they have no known
competing financial interests and or personal
relationships that would have appeared to influence
the work reported in this paper.

Nuba Shittain Mitu et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 42 Volume 6, 2021

Acknowledgement

This work is inspired and accredited by the School of
Computing and Digital Media of London
Metropolitan University, UK. Kh. Nuba Shittain Mitu
would like to thank Cyber Security Research Centre,
School of Computing and Digital Media, London
Metropolitan University, UK for their unconditional
support.

References

[1] Vermesan, O., Friess, P., Internet of things:

global technological and societal trends,
Aalnorg: River Publishers, 2011.

[2] Zanella, A., Bui, N., Castellani, A., Vangelista,
L. and Zorzi, M., Internet of Things for Smart
Cities, IEEE Internet of Things Journal, 1(1),
2014, pp. 22–32, doi:
10.1109/JIOT.2014.2306328

[3] C. Perera, C. H. Liu and S. Jayawardena, The
Emerging Internet of Things Marketplace From
an Industrial Perspective: A Survey, IEEE

Transactions on Emerging Topics in Computing,
vol. 3, no. 4, Dec. 2015, pp. 585-598, doi:
10.1109/TETC.2015.2390034.

[4] Mobasshir Mahbub, M. Mofazzal Hossain, Md.
Shamrat Apu Gazi, IoT-Cognizant cloud-assisted
energy efficient embedded system for indoor
intelligent lighting, air quality monitoring, and
ventilation, Elsevier Internet of Things Journal,
Volume 11, 2020, 100266, ISSN 2542-6605,
https://doi.org/10.1016/j.iot.2020.100266,
Available at-
(https://www.sciencedirect.com/science/article/pi
i/S2542660520301001).

[5] Schwartz, M., Internet of things with ESP8266:

build amazing internet of things projects using

the ESP8266 Wi-Fi chip, ISBN 978-1-78646-
802-4, Birmingham Mumbai: Packt, 2016.

[6] International Forum on Research and
Technologies for Society and Industry and
Engineers, I. of E. and E., 2016 IEEE 2nd

International Forum on Research and

Technologies for Society and Industry

Leveraging a better tomorrow (RTSI): 7-9 Sept,

2016. Available at:
http://ieeexplore.ieee.org/servlet/opac?punumber
=7704484 (Accessed: 14 January 2020).

[7] Ferencz, K. and Domokos, J., IoT Sensor Data
Acquisition and Storage System Using Raspberry
Pi and Apache Cassandra, in 2018 International
IEEE Conference and Workshop in Óbuda on
Electrical and Power Engineering (CANDO-
EPE). 2018 International IEEE Conference and

workshop in Óbuda on Electrical and Power

Engineering (CANDO-EPE), Budapest: IEEE,
2018, pp. 000143–000146. doi:
10.1109/CANDO-EPE.2018.8601139.

[8] Mehmood, N. Q., Culmone, R. and Mostarda, L.,
Modeling temporal aspects of sensor data for
MongoDB NoSQL database, Journal of Big

Data, 4(1), 2017, p. 8. doi: 10.1186/s40537-017-
0068-5.

[9] R. Abbott, H. Garcia-Molina, What is a Real-
Time Database System?, Abstracts of the Fourth

Workshop on Real-Time Operating systems,

IEEE, July 1987, 134–138.
[10] Kao B., Garcia-Molina H., An Overview of Real-

Time Database Systems. In: Halang W.A.,

Stoyenko A.D. (eds) Real Time Computing.

NATO ASI Series (Series F: Computer and

Systems Sciences), vol 127, 1994, Springer,
Berlin, Heidelberg. https://doi.org/10.1007/978-
3-642-88049-0_13.

[11] Volume 6, Issue 4, April 2018, International

Journal of Advance Research in Computer

Science and Management Studies, Research
Article / Survey Paper / Case Study, Available
online at: www.ijarcsms.com Real-time
Communication Application Based on Android
Using Google Firebase ISSN: 2321-7782
(Online) e-ISJN: A4372-3114 Impact Factor:
7.327 Nilanjan Chatterjee1 Department of
Computer Science St. Xavier’s College
(Autonomous) Kolkata, India.

[12] A. Sarkar, A. Goyal, D. Hicks, D. Sarkar and S.
Hazra, Android Application Development: A
Brief Overview of Android Platforms and
Evolution of Security Systems, Third

International conference on I-SMAC (IoT in

Social, Mobile, Analytics and Cloud) (I-SMAC),
2019, pp. 73-79, doi: 10.1109/I-
SMAC47947.2019.9032440.

[13] [Datasheet] D-Robotics, (2010), DHT Manual,
Available at- www.droboticsonline.com/

[14] Bajrami, X. and Murturi, I., An efficient
approach to monitoring environmental conditions
using a wireless sensor network and NodeMCU,
e & i Elektrotechnik und Informationstechnik,
135(3), 2018, pp. 294–301. doi: 10.1007/s00502-
018-0612-9.

[15] Gay, W., DHT11 Sensor, in Gay, W., Advanced

Raspberry Pi. Berkeley, CA: Apress, 2018, pp.
399–418. doi: 10.1007/978-1-4842-3948-3_22.

[16] Jaffe, S. R., Design of Inexpensive and Easy To
Use DIY Internet of Things Platform, California

Polytechnic State University, 2016, doi:
10.15368/theses.2016.55.

Nuba Shittain Mitu et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 43 Volume 6, 2021

https://doi.org/10.1016/j.iot.2020.100266
http://www.droboticsonline.com/

[17] [Datasheet] Espressif Systems, Espressif Smart

Connectivity Platform: ESP8266,2013. Available
at- https://www.electroschematics.com/wp-
content/uploads/2015/02/esp8266-datasheet.pdf
(Accessed: 5 August 2019).

[18] [Datasheet] ESP 12E PIN OUT, Available At-
https://components101.com/wireless/esp12e-
pinout-datasheet; https://www.make-
it.ca/nodemcu-arduino/nodemcu-details
specifications/.

[19] Arduino software-Available at
https://www.arduino.cc/

[20] Arduino IDE online version, Available:
https://www.arduino.cc/en/Main/Software
(Accessed March 2019)

[21] NodeMCU ES8266 board manager installation
steps : available at-

[22] Arduino firebase Master- Available at-
https://github.com/FirebaseExtended/firebase-
arduino

[23] ArduninoJson Available at-
https://github.com/bblanchon/ArduinoJson/tree/5.
x

[24] DHT by adafruit Available at-
https://github.com/adafruit/DHT-sensor-library

[25] Adafruit universal sensor Available at
https://github.com/adafruit/Adafruit_Sensor

[26] ESP8266 wi-fi module Available at-
https://github.com/esp8266/Arduino

[27] A. Alsalemi et al., Real-Time Communication
Network Using Firebase Cloud IoT Platform for
ECMO Simulation, IEEE International

Conference on Internet of Things (iThings) and

IEEE Green Computing and Communications

(GreenCom) and IEEE Cyber, Physical and

Social Computing (CPSCom) and IEEE Smart

Data (SmartData), Exeter, 2017, pp. 178-182,

doi: 10.1109/iThings-GreenCom-CPSCom-
SmartData.2017.31

[28] Firebase Setup Available At-
https://console.firebase.google.com/?pli=1;

[29] This system- IoT and Cloud based environment
monitoring system- realtime Database, Available
At-
https://console.firebase.google.com/project/nubar
ealtimedb/database/nubarealtimedb/data.

[30] This system- IoT and Cloud based system
Database Data Retreived as Json Document
Available At-
https://nubarealtimedb.firebaseio.com/.json

[31] Firebase Rest API Usage, Available At-
https://firebase.google.com/docs/reference/rest/da
tabase#section-cond-ifmatch

[32] MIT Tool Available At-
"http://appinventor.mit.edu/explore/"

[33] MIT project space for the app development of
this IoT and Cloud based system available at-"
http://ai2.appinventor.mit.edu/#59487862837773
952."

[34] Montegriffo, N., What is an APK file and how to
install APKs on Android, 2020. Available at -
“https://www.nextpit.com/android-for-beginners-
what-is-an-apk-file”.

[35] Brenner, L., How Does the Weather Affect Us,
2018. Available At-https://sciencing.com/ather-
affect-us

Nuba Shittain Mitu et al.
International Journal of Internet of Things and Web Services

http://www.iaras.org/iaras/journals/ijitws

ISSN: 2367-9115 44 Volume 6, 2021

https://github.com/adafruit/DHT-sensor-library
https://github.com/adafruit/Adafruit_Sensor
https://github.com/esp8266/Arduino
https://console.firebase.google.com/?pli=1
https://www.nextpit.com/user/7529367/nicholas-montegriffo

