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Abstract: - Gyrogroups are generalized groups, which are best motivated by the algebra of Möbius 

transformations of the complex open unit disc. Groups are classified into commutative and non-commutative 

groups and, in full analogy, gyrogroups are classified into gyrocommutative and non-gyrocommutative 

gyrogroups. Some commutative groups admit scalar multiplication, giving rise to vector spaces. In full 

analogy, some gyrocommutative gyrogroups admit scalar multiplication, giving rise to gyrovector spaces. 

Furthermore, vector spaces form the algebraic setting for the standard model of Euclidean geometry and, in 

full analogy, gyrovector spaces form the algebraic setting for various models of the hyperbolic geometry of 

Bolyai and Lobachevsky.The special grouplike loops, known as gyrocommutative gyrogroups, have thrust the 

Einstein velocity addition law, which previously has operated mostly in the shadows, into the spotlight. We 

will find that Einstein (Möbius) addition is a gyrocommutative gyrogroup operation that forms the setting for 

the Beltrami-Klein (Poincaré) ball model of hyperbolic geometry just as the common vector addition is a 

commutative group operation that forms the setting for the standard model of Euclidean geometry. The 

resulting analogies to which the grouplike loops give rise lead us to new results in (i) hyperbolic geometry; (ii) 

relativistic physics; and (iii) quantum information and computation.Time Tensors functions have been used to 

describe the flows of time. The magnitude of the value of time tensor function means the temporal coordinates 

in a flow of time. We also use a function to describe the motion of particles in quantum mechanics but it has 

different meanings. The function is called time tensor function. Time tensor imposes space and time 

measurements and space and time probing. Although using optimised space and time probe fields will allow 

to deep probing in a position and time measurement beyond the space and time measurements of the probe 

field stil result in a time tensor. 
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1 Introduction 
The evolution from Möbius to gyrogroups began 

soon after the discovery in 1988 [1] that Einstein 

velocity addition law of relativistically admissible 

velocities,which is seemingly structureless, is in fact 

rich of structure. Later, the rich structure that 

Einstein velocity addition law encodes turned out to 

be a gyrocommutative gyrogroup and a gyrovector 

space. The resulting notions of gyrogroups and 

gyrovector spaces preserve the flavor of their 

classical counterparts, groups and vector spaces. 

They are useful and fascinating enough to be made 

part of the lore learned by all undergraduate and 

graduate mathematics and physics students. Being a 

natural generalization of groups and vector spaces, 

gyrogroups and gyrovector spaces lay a fruitful 

bridge between nonassociative algebra and 

hyperbolic geometry, just as groups and vector 

spaces lay a fruitful bridge between associative 

algebra and Euclidean geometry.More than 150 
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years have passed since the German mathematician 

August Ferdinand Möbius (1790 – 1868) first 

studied the transformations that now bear his name 

[33, p. 71]. Yet, the rich structure he thereby 

exposed is still far from being exhausted, as the 

evolution from Möbius to gyrogroups demonstrates 

in its. 

Time Tensors concern the whole of physical reality, 

considered in usefully physical fields. The physical 

world appears to have temporal aspects, so the 

existence and nature of time are general fields. We 

analyze time tensors and space and time curvatures, 

using the framework of fluctuation and dissipation 

mechanisms arising when time tensors and 

spacetime metric are combined. 

Mathematical foundations and applications” [2], and 

“Beyond the Einstein addition law and its 

gyroscopic Thomas precession: The theory of 

gyrogroups and gyrovector spaces” [4, 12], raise 

expectations for novel applications of special 

grouplike loops in hyperbolic geometry and in 

relativistic physics. Indeed, these fields lead their 

readers to see what some special grouplike loops 

have to offer, and thereby give them a taste of loops 

in the service of the hyperbolic geometry of Bolyai 

and Lobachevsky and the special relativity theory of 

Einstein. 

Seemingly structureless, Einstein’s relativistic 

velocity addition is neither commutative nor 

associative. Einstein’s failure to recognize and 

advance the rich, grouplike loop structure [5] that 

regulates his relativistic velocity addition law 

contributed to the eclipse of his velocity addition 

law of relativistically admissible 3-velocities, 

creating a void that could be filled only with the 

Lorentz transformation of 4-velocities, along with 

its Minkowski’s geometry. 

Minkowski characterized his spacetime geometry as 

evidence that preestablished 

harmony between pure mathematics and applied 

physics does exist [6]. Subsequently, the study of 

special relativity followed the lines 

laid down by Minkowski, in which the role of 

Einstein velocity addition and its interpretation in 

the hyperbolic geometry of Bolyai and Lobachevsky 

are ignored [5]. The tension created by the 

mathematician Minkowski into the specialized 

realm of theoretical physics, as well as Minkowski’s 

strategy to overcome disciplinary obstacles to the 

acceptance of his reformulation of Einstein’s special 

relativity is skillfully described by Scott Walter in 

[16]. 

According to Leo Corry [11], Einstein considered 

Minkowski’s reformulation of his theory in terms of 

four-dimensional spacetime to be no more than 

“superfluous erudition”. Admitting that, unlike his 

seemingly structureless relativistic velocity addition 

law, the Lorentz transformation is an elegant group 

operation. 

Therefore, suppose that there is a price to pay in 

mathematical elegance and regularity when 

replacing ordinary vector addition approach to 

Euclidean geometry with Einstein vector addition 

approach to hyperbolic geometry. But, this is not the 

case since grouplike loops, called gyrocommutative 

gyrogroups, come to the rescue. It turns out that 

Einstein addition of vectors with magnitudes cv   

is a gyrocommutative gyrogroup operation and, as 

such, it possesses a rich nonassociative algebraic 

and geometric structure. The best way to introduce 

the gyrocommutative gyrogroup notion that 

regulates the algebra of Einstein’s relativistic 

velocity addition law is offered by Möbius 

transformations of the disc [2]. The subsequent 

transition from Möbius addition, which regulates the 

Poincaré ball model of hyperbolic geometry, Fig. 1, 

to Einstein addition, which regulates the Beltrami-

Klein ball model of hyperbolic geometry, Fig. 6, 

expressed in gyrolanguage, will then turn out to be 

remarkably simple and elegant [5, 7]. 

Evidently, the grouplike loops that we naturally call 

gyrocommutative gyrogroups, along with their 

extension to gyrovector spaces, form a new tool for 

the twenty-first century exploration of classical 

hyperbolic geometry and its use in physics. 

 

 

2 Möbius transformations of the disc 
Möbius transformations of the disc D, 

 1:  zCzD                     (1) 

of the complex plane C offer an elegant way to 

introduce the grouplike loops that we call 

gyrogroups. More than 150 years have passed since 

August Ferdinand Möbius first studied the 

transformations that now bear his name [35]. Yet, 

the rich structure he thereby exposed is still far from 

being exhausted. 

Ahlfors’ book [1], Conformal Invariants: Topics in 

Geometric Function Theory, begins with a 

presentation of the Möbius self-transformation of 

the complex open unit disc  1:  zCzD  

 zae
za

za
ez M

ii 


 

1
    (2) 

RDza  ,,  

where a is the complex conjugate. 

Suggestively, the polar decomposition (2) of 

Möbius transformation of the disc gives rise to  
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Möbius addition, M  , 

za

za
za M






1
 (3)  

Naturally, Möbius subtraction, M  is given by  

 zaza MM   

so that  

0 zz M  

  zzzz MMM  00  

Remarkably, Möbius addition possesses the 

automorphic inverse property 

  baba MMMM  (4) 

and the left cancellation law 

  zzaa MMM  (5) 

for all Dzba ,,  

Möbius addition gives rise to the Möbius disc 

groupoid  MD , , recalling that a groupoid 

 ,G is a nonempty set, G, with a binary 

operation,   and that an automorphism of a 

groupoid  ,G   is a bijective self map f of G that 

respects its binary operation  that is,  

     bfafbaf  .  

The set of all automorphisms of a groupoid  ,G  

forms a group, denoted  ,GAut . 

Möbius addition M  in the disc is neither 

commutative nor associative.  

To measure the extent to which Möbius addition 

deviates from associativity we define the gyrator 

 MDAutDDgyr  ,:  (6)  

by the equation  

      MMMMM babazbagyr , (7)  

for all Dzba ,, .  

The automorphisms  

   MDAutbagyr  ,,  (8)  

of D , Dba , called gyrations of D , have an 

important hyperbolic geometric interpretation [6].  

Thus, the gyrator in (6) generates the gyrations in 

(8).  

In order to emphasize that gyrations of D are also 

automorphisms of  MD , , as we will see below, 

they are also called gyroautomorphisms.  

Clearly, in the special case when the binary 

operation M in (7) is associative,  

 bagyr ,  reduces to the trivial automorphism,  

  zzbagyr ,   for all Dz .  

Hence, indeed, the self map  bagyr ,  of the disc D 

measures the extent to which Möbius addition M

in the disc D deviates from associativity. 

One can readily simplify (7) in terms of (3), 

obtaining  

  z
ba

ba
zbagyr






1

1
,  (9)  

Dzba ,, , so that the gyrations  

 
ab

ba

ba

ba
bagyr

M

M











1

1
,  (10) 

are unimodular complex numbers. As such, 

gyrations represent rotations of the disc D about its 

center, as shown in (9). 

Gyrations are invertible.  

The inverse,      11 ,,
  bagyrbagyr , of a 

gyration  bagyr ,  is the gyration  abgyr ,  

   abgyrbagyr ,,1 
 (11)  

Moreover, gyrations respect Möbius addition in the 

disc,  

      dbagyrcbagyrdcbagyr MM ,,, 

(12) for all a, b, c, d∈D, so that gyrations of the disc 

are automorphisms of the disc, as anticipated in (8).  

Identity (10) can be written as  

    abbagyrba MM  ,  (13) thus giving 

rise to the gyrocommutative law of Möbius addition.  

Furthermore, Identity (7) can be manipulated, by 

mean of the left cancellation law (5), into the 

identity  

     zbagyrbazba MMMM , (14) 

thus giving rise to the left gyroassociative law of 

Möbius addition. The gyrocommutative law, (13), 

and the left gyroassociative law, (14), of Möbius 

addition in the disc reveal the grouplike structure of 

Möbius groupoid  MD , , that we naturally call a 

gyrocommutative gyrogroup. Taking the key 

features of Möbius groupoid  MD ,   as axioms, 

and guided by analogies with group theory, we thus 

obtain the following definitions of gyrogroups and 

gyrocommutative gyrogroups.  

Definition 1. (Gyrogroups).  

A groupoid  ,G  is a gyrogroup if its binary 

operation satisfies the following axioms. In G there 

is at least one element, 0, called a left identity, 

satisfying 

(G1) aa 0 for all Ga . 

(G2)  a a = 0 .  

(G3)      cbagyrbacba , .  

(G4)     ,, GAutbagyr  
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(G5)    bbagyrbagyr ,,   

The gyrogroup axioms (G1) – (G5) in Definition 1 

are classified into three classes: 

(1) The first pair of axioms, (G1) and (G2), is a 

reminiscent of the group axioms.  

(2) The last pair of axioms, (G4) and (G5), presents 

the gyrator axioms. 

(3) The middle axiom, (G3), is a hybrid axiom 

linking the two pairs of axioms in (1) and (2).  

Definition 2. (Gyrocommutative Gyrogroups).  

A gyrogroup  ,G  is gyrocommutative if its 

binary operation obeys the gyrocommutative law 

(G6)   abbagyrba  , for all Gba ,  . 

Temporal space is a set of temporal elements or 

points satisfying specified time dimensions. Von 

Neumann says that "First of all we must admit that 

this objection points at an essential weakness which 

is, in fact, the chief weakness of quantum 

mechanics: its non-relativistic character, which 

distinguishes the time t  from the three space 

coordinates zyx ,,  and presupposes an objective 

simultaneity concept. In fact, while all other 

quantities especially those zyx ,,  closely connected 

with t by the Lorentz transformation are represented 

by operators, there corresponds to the time an 

ordinary number-parameter t , just as in classical 

mechanics."  

Reference Frames   

A frame of reference or reference frame is a 

coordinate system or set of axes used by an observer 

to measure the position, orientation, everything of 

objects in space..  

Lorentz Tensor 

Lorentz tensor is, by definition, an object whose 

indices transform like a tensor under Lorentz 

transformations; what we mean by this precisely 

will be explained below.  

4-vector is a tensor with a first rank tensor. 

We write a 4-vector in components as 























3

2

1

0

G

G

G

G

G 
 

where we use Greek indices to run over all the 

spacetime indices,  3,0 .  

The Lorentz transformation 

We write the components of the Lorentz 

transformation matrix in index notation.  

We transform the components of a 4-vector from an 

unprimed frame to a frame which is moving at 

speed v in the x  direction relative to F . 

We use the Lorentz transformation 



















































































3

2

1

0

3

2

1

0

1000

0100

00

00

x

x

x

x

x

x

x

x





 

where  

2

2

1

1

c

v


 and 
c

v
 . 

Now we write the components of the Lorentz 

transformation matrix as 

S where   is a row 

index and   is a column index, such that 























3

3

3

2

3

1

3

0

2

3

2

2

2

1

2

0

1

3

1

2

1

1

1

0

0

3

0

2

0

1

0

0

SSSS

SSSS

SSSS

SSSS

S  

Then, the Lorentz transformation for 
x can be 

written in the compact notation 

  










xSxSx  



3

0

 

  3

3

2

2

1

1

0

0 xSxSxSxSx  
 

  zSySxStcSx  

3210  

      xtctcx  
0

 

      xtcxx  
1

 

    yyx 
2

 

    zzx 
3

 

is the usual Lorentz transformation to a frame 

moving in the x direction. 

 

 

 

 

 

 

























































































z

y

xtc

xtc

z

y

x

tc

x

x

x

x





3

2

1

0

 

The inverse Lorentz transformation should satisfy 

  







  SS 1
 

where  1,1,1,1diag
 is the Kronecker delta. 

    




  xxxS 1
 

The inverse  1S  is also written as 


S . 

The left index denotes a row while the right index 

denotes a column, while the top index denotes the 

frame we're transforming to and the bottom index 

denotes the frame we're transforming from. 

We present the components of S and 
1S in their 
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transformations. 























3

3

3

2

3

1

3

0

2

3

2

2

2

1

2

0

1

3

1

2

1

1

1

0

0

3

0

2

0

1

0

0

SSSS

SSSS

SSSS

SSSS

S  































3

3

2

3

1

3

0

3

3

2

2

2

1

2

0

2

3

1

2

1

1

1

0

1

3

0

2

0

1

0

0

0

1

SSSS

SSSS

SSSS

SSSS

S  

The inverse to the transformation 



















































































3

2

1

0

3

2

1

0

1000

0100

00

00

x

x

x

x

x

x

x

x





 















































































3

2

1

0

3

2

1

0

1000

0100

00

00

x

x

x

x

x

x

x

x





 

The metric 

The metric L is a special Lorentz tensor, which for 

Minkowski spacetime in our convention is given by 

 1,1,1,1

1000

0100

0010

0001




























 diagL  

The other convention is to use

 1,1,1,1  diagL , which will change around 

minus signs in various places.  

We use the metric to raise and lower Lorentz 

indices.  

By de_nition 


 GLG  given a 4-vector 
G

with an upstairs index.  

We think that 
G as a column vector, and G as a 

row vector. 

The inverse metric 
L with upstairs indices 

satisfies 



 LL then, we can show that 

 1,1,1,1  diagL
. 

 In other words, the Minkowski metric is its own 

inverse. We can then use the 

inverse metric to raise indices, as in 
 GLG   

given a 4-vector with a lower index. 

The Lorentz group 

We can write down the condition for an object S to 

be a Lorentz transformation. 






 LSSL   

It translates to  LLSS T  for 
TS  the matrix 

transpose of S . 

LLSS T 























1000

0100

0010

0001

 

This condition is both necessary and sufficient for a 

44 matrix S  to leave the inner product of any 

two 4-vectors invariant. 

Any group is a set of elements with an operation 

that combines any two elements to form a third, 

which satisfies certain properties are closure, 

associativity, identity, and inverse. 

Here, the elements are the S and the group 

operation is matrix multiplication. 

Closure 

The product of any 2 Lorentz transformations is 

another Lorentz transformation. 

Associativity 

Associativity of Lorentz transformations which 

follows from the properties of matrix multiplication. 

Identity 

The identity is 




 S  

Inverse 

The inverse of 

S  is   





 SS 1
. 

3. Möbius Addition in the Ball  
If we identify complex numbers of the complex 

plane C with vectors of the Euclidean plane 
2R  in 

the usual way,  

 

 

 

 

 
As such, it survives unimpaired in higher 

dimensions, suggesting the following definition of 
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Möbius addition in the ball of any real inner product 

space.  

Definition 3. (Möbius Addition in the Ball).  

Let V  be a real inner product space , and let sV be 

the s-ball of V , 

 
  for any fixed 0s .  

Möbius addition M in the ball Vs is a binary 

operation in sV given by the equation  

 
Möbius addition in the ball sV  is known in the 

literature as a hyperbolic translation [2, 4]. 

Following the discovery of the gyrocommutative 

gyrogroup structure in 1988 [5], Möbius hyperbolic 

translation in the ball sV  now deserves the title 

“Möbius addition” in the ball sV , in full analogy 

with the standard vector addition in the space V that 

contains the ball. 

Möbius addition in the ball sV satisfies the gamma 

identity  

sVvu .  

 

 

 

4. Gyrogroups Are Loops 
A loop is a groupoid  ,G  with an identity 

element, 0, such that each of its two loop equations 

for the unknowns x and y,  

bxa   

bay   (30)  

possesses a unique solution in G for any Gba ,  

[3, 4].  

Any gyrogroup is a loop. Indeed, if  ,G is a 

gyrogroup then the respective unique solutions of 

the gyrogroup loop equations (30) are [56]. 

5. Möbius scalar multiplication in the 

Ball 
Having developed the Möbius gyrogroup as a 

grouplike loop, we do not stop at the loop level. 

Encouraged by analogies gyrogroups share with 

groups, we now seek analogies with vector spaces 

as well. Accordingly, we uncover the scalar 

multiplication, M  between a real number Rr

and a vector sVv , that a Möbius gyrogroup 

 MsV ,  admits, so that we can turn the Möbius 

gyrogroup into a Möbius gyrovector space 

 MMsV  ,, . 

Definition 4. (Möbius Scalar Multiplication).  

Let  MsV ,  be a Möbius gyrogroup. Then its 

corresponding Möbius gyrovector space 

 MMsV  ,,  involves the Möbius scalar 

multiplication 

rvvr MM   in sV  given by the equation 

 

 
where  Rr , sVv 0v ; and 00 Mr .  

6. Möbius Gyroline and More  
In full analogy with straight lines in the standard 

vector space approach to Euclidean geometry, let us 

consider the gyroline equation in the ball sV   

 
 Rt , sVBA , , in a Möbius gyrovector space 

 MMsV  ,, .  

The Möbius Gyroline LAB through the points A and 

B 
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Fig.1In “gyroformalism”, hyperbolic geometric 

expressions take the graceful forms of their 

Euclidean counterparts.  

  

 
Fig.2 Möbius gyrotriangle and its standard notation 

and identities in a Möbius gyrovector space 

 MMsV  ,, . 

In Euclidean geometry vector addition coincides 

with the parallelogram addition law. In contrast, in 

hyperbolic geometry gyrovector addition, given by 

Möbius addition, and the Möbius gyroparallelogram 

addition law are distinct.  

7. Einstein Operations in the Ball  
Definition 5. (Einstein Addition in the Ball).  

Let V  be a real inner product space and let sV  be 

the s-ball of V,  

 
 (4) where 0s  is an arbitrarily fixed constant 

(that represents in physics the vacuum speed of light 

c).  

Einstein addition E is a binary operation in sV   

given by the equation  

 
where u  is the gamma factor,  in sV , and where   

and   are the inner product and norm that the ball 

sV  inherits from its space V .  

We may note that the Euclidean 3-vector algebra 

was not so widely known in 1905 and, 

consequently, was not used by Einstein. Einstein 

calculated in his founding paper [12] the behavior of 

the velocity components parallel and orthogonal to 

the relative velocity between inertial systems, which 

is as close as one can get without vectors to the 

vectorial version (4). Seemingly structureless, 

Einstein velocity addition could not play in 

Einstein’s special theory of relativity a central role. 

Indeed, Borel’s attempt to “repair” the seemingly 

“defective” Einstein velocity addition in the years 

following 1912 is described in [16]. Fortunately, 

however, there is no need to “repair” the Einstein 

velocity addition law since, like Möbius  

addition in the ball, Einstein addition in the ball is a 

gyrocommutative gyrogroup operation, which gives 

rise to the Einstein ball gyrogroups  EsV ,   and 

gyrovector spaces  EEsV  ,, [5,8]. Furthermore, 

Einstein’s gyration turns out to be the Thomas 

precession of relativity physics [5], so that Thomas 

precession is a kinematic effect rather than a 

dynamic effect as it is usually portrayed [58]. A 

brief history of the discovery of Thomas precession 

is presented in [3].  

The gamma factor is related to Einstein addition by 

the gamma identity  

 
 This gamma identity provided the historic link 

between Einstein’s special theory of relativity and 

the hyperbolic geometry of Bolyai and 

Lobachevsky, as explained in [6]. 

 
Fig.3 The Einstein gyroparallelogram addition law 

of relativistically admissible velocities.   

 

The classical interpretation of particle aberration is 

obvious in terms of the triangle law of Newtonian 

velocity addition (which is the common vector 

addition in Euclidean geometry), as demonstrated 
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graphically. The relativistic interpretation of particle 

aberration is, however, less obvious. 

 

8 Conclusion 
Gyrogroups are suitable generalization of groups, 

whose origin is described in [7, 8]. They share 

remarkable analogies with groups. In fact, every 

group forms a gyrogroup under the same operation. 

Many of classical theorems in group theory also 

hold for gyrogroups, including the Lagrange 

theorem [4], the fundamental isomorphism theorems 

[5], and the Cayley theorem [5] . Gyrogroup actions 

and related results, such as the orbit-stabilizer 

theorem, the orbit decomposition theorem, and the 

Burnside lemma have been studied in [6]. The 

present note deals with a connection between groups 

and gyrogroups, namely with the gyrogroup 

associated to any group central by a 2-Engel group. 

We determine conditions for such a gyrogroup to be 

gyrocommutative and for such two gyrogroups to be 

isomorphic.  

 

References 

[1] Herbert Goldstein. Classical mechanics. 

Addison-Wesley Publishing Co., Reading, Mass., 

second edition, 1980. Addison-Wesley Series in 

Physics.  

[2] Robert E. Greene and Steven G. Krantz. 

Function theory of one complex variable. John 

Wiley & Sons Inc., New York, 1997. A Wiley-

Interscience Publication.  

[3] Hiroshi Haruki and Themistocles M. Rassias. A 

new invariant characteristic property of Möbius 

transformations from the standpoint of conformal 

mapping. J. Math. Anal. Appl., 181(2):320–327, 

1994.  

[4] Hiroshi Haruki and Themistocles M. Rassias. A 

new characteristic of Möbius transformations by use 

of Apollonius points of triangles. J. Math. Anal. 

Appl., 197(1):14–22, 1996. 

[5] Hiroshi Haruki and Themistocles M. Rassias. A 

new characteristic of Möbius transformations by use 

of Apollonius quadrilaterals. Proc. Amer. Math. 

Soc., 126(10):2857–2861, 1998.  

[6] Hiroshi Haruki and Themistocles M. Rassias. A 

new characterization of Möbius transformations by 

use of Apollonius hexagons. Proc. Amer. Math. 

Soc., 128(7):2105–2109, 2000.  

[7] Melvin Hausner. A vector space approach to 

geometry. Dover Publications Inc., Mineola, NY, 

1998. Reprint of the 1965 original.  

[8] Michael A. Nielsen and Isaac L. Chuang. 

Quantum computation and quantum information. 

Cambridge University Press, Cambridge, 2000. 

[9] Abraham A. Ungar. Thomas rotation and the 

parametrization of the Lorentz transformation 

group. Found. Phys. Lett., 1(1):57–89, 1988. 

[10] Abraham A. Ungar. The relativistic 

noncommutative nonassociative group of velocities 

and the Thomas rotation. Resultate Math., 16(1-

2):168–179, 1989. The term “K-loop” is coined 

here.  

[11] Abraham A. Ungar. Thomas precession and its 

associated grouplike structure. Amer. J. Phys., 

59(9):824–834, 1991. 

[12] Abraham A. Ungar. Beyond the Einstein 

addition law and its gyroscopic Thomas precession: 

The theory of gyrogroups and gyrovector spaces, 

volume 117 of Fundamental Theories of Physics. 

Kluwer Academic Publishers Group, Dordrecht, 

2001.  

[13] Abraham A. Ungar. The density matrix for 

mixed state qubits and hyperbolic geometry. 

Quantum Inf. Comput., 2(6):513–514, 2002.  

[14] Abraham A. Ungar. The hyperbolic geometric 

structure of the density matrix for mixed state 

qubits. Found. Phys., 32(11):1671–1699, 2002.  

[15] Abraham A. Ungar. Analytic hyperbolic 

geometry: Mathematical foundations and 

applications. World Scientific Publishing Co. Pte. 

Ltd., Hackensack, NJ, 2005.  

[16] Abraham A. Ungar. Gyrovector spaces and 

their differential geometry. Nonlinear Funct. Anal. 

Appl., 10(5):791–834, 2005.  

[17] Abraham A. Ungar. Thomas precession: a 

kinematic effect of the algebra of Einstein’s velocity 

addition law. Comments on: “Deriving relativistic 

momentum and energy. II. Three-dimensional case” 

[European J. Phys. 26 (2005), no. 5, 851–856; 

mr2227176] by S. Sonego and M. Pin. European J. 

Phys., 27(3):L17–L20, 2006. 

[18] Abraham A. Ungar. The relativistic hyperbolic 

parallelogram law. In Geometry, integrability and 

quantization, pages 249–264. Softex, Sofia, 2006. 

[19] Abraham A. Ungar. Einstein’s velocity addition 

law and its hyperbolic geometry. Comput. Math. 

Appl., 53(8):1228–1250, 2007.  

[20] Abraham A. Ungar. From Möbius to 

gyrogroups. Amer. Math. Monthly, 2007. in print. 

[21] Abraham A. Ungar. Analytic hyperbolic 

geometry and Einstein’s special theory of relativity. 

World Scientific Publishing Co. Pte. Ltd., 

Hackensack, NJ, 2008. in print.  

[22] J. Vermeer. A geometric interpretation of 

Ungar’s addition and of gyration in the hyperbolic 

plane. Topology Appl., 152(3):226–242, 2005. 

[23] Scott Walter. Minkowski, mathematicians, and 

the mathematical theory of relativity. In The 

expanding worlds of general relativity (Berlin, 

Cebrai̇l Ozan Oktar
International Journal of Instrumentation and Measurement 

http://www.iaras.org/iaras/journals/ijim

ISSN: 2534-8841 18 Volume 9, 2024



1995), pages 45–86. Birkhäuser Boston, Boston, 

MA, 1999.  

[24] Scott Walter. The non-Euclidean style of 

Minkowskian relativity. In The symbolic universe 

(J. J. Gray (ed.), Milton Keynes, England), pages 

91–127. Oxford Univ. Press, New York, 1999.  

[25] Scott Walter. Book Review: Beyond the 

Einstein Addition Law and its Gyroscopic Thomas 

Precession: The Theory of Gyrogroups and 

Gyrovector Spaces, by Abraham A. Ungar. Found. 

Phys., 32(2):327–330, 2002. 

 

Cebrai̇l Ozan Oktar
International Journal of Instrumentation and Measurement 

http://www.iaras.org/iaras/journals/ijim

ISSN: 2534-8841 19 Volume 9, 2024




