
I. INTRODUCTION 

-D (Two-Dimensional)  filter design  is not a simple  
task due to the heavy computational load and to the 

non-existence of stability conditions in an explicit form.   
Roughly speaking,  the  design of 2-D filters FIR includes 
a Fourier method that uses Fourier analysis, where 
appropriate window Functions can also eliminate the so 
called  Gibbs’ oscillations as in 1-D case, a 
Transformations’ method which is based on McClellan 
Transformations from appropriate 1-D filters [1],[2] and 
an optimization method i.e. the minimization of an 
appropriate norm, [1],[2]. 
      On the other hand,  the  design of 2-D filters IIR 
includes also transformations, Mirror Image Polynomials, 
SVD (Singular Value Decomposition) and Optimization, 
[1],[2]. Several Authors have published works on 
optimization-based 2-D filter design while a great number 
of papers are dedicated to transformations and mainly to 
McClellan Transforms. 
 
McClellan Transformations were introduced in [3] and 
have been used for the last forty years. A brief overview 
with the various extension of McClellan Transformations 
can be found in [1],[2],[4],[8],[9]. In general, a McClellan 
Transformation  is described by   
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  is the frequency of the original 1-D filter, whereas    

1 2,   the frequencies of the 2-D filter in design. 

As Harn and Shenoi pointed out in [5] and as Nguyen and 
Swamy reported in [6], till now a transformation for IIR 
filter design analogous to McClellan transformation does 
not exist due to the requirements of 2-D stability.  
Nguyen and  Swamy  in [7]  use the usual McClellan 
transformation in the special case of separable 
denominator. Fundamental results on McClellan 
transformation can be found in [8] and [9] while 
remarkable studies are given [10]÷[18]. Various useful 
results for 2-D IIR Filters’ design are presented in 
[19]÷[25]. In [26], we proposed some transformations for 
the  first-order  IIR 2-D and second-order  IIR 2-D notch 
filters. In [26], we propose the transformation 
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  with 1 2,    real numbers or simply 
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For first-order  and  second-order  IIR 2-D notch filters’ 
design.  
 
This paper examines this transformation as well as its 
generalization to the general 2-D filters design. 

 
 
 
 

II.  THE TRANSFORMATION AND ITS GENERALIZATIONS 

Instead of the classic McClellan Transformation 
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frequency of the original 1-D filter, whereas  1 2,   the 

frequencies of the 2-D filter in design, we propose here 
the transformation of [26] 
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  with 1 2,    real numbers or simply 

or simply 1 1 1
1 1 2 2z C z C z     where in [26], for the 2-D 

notch filters, we demanded 1 2 1C C   

     
 
 
 
As a simple generalization of this transformation we 
propose the following transformation not only for the 
design of Notch Filters, but for every 2-D filter (either 
IIR or FIR): 
 

1 1 1
1 1 2 2z C z C z     

 

where 1 2,C C are real numbers with 1 2 1C C   and 

1 2 0C C   

 
Unlike the original McClellan Transform 

1 1 2 2cos cos cosC C     where we demand only 

1 2 1C C  , in our transformation 1 1 1
1 1 2 2z C z C z     we 

demand not only 1 2 1C C  ,but also 1 2 0C C  . The 

disadvantage of McClellan Transform is that it can be 
applied in FIR filters i.e. in a filter with transfer function  
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  with  1B z =1. In this paper with the 

new proposed transformation we can apply it in every 1-

D prototype filter with  1B z in general polynomial of 

1z
. We are ready now to prove the Theorem. 

 
Theorem 1. Consider a prototype 1-D BIBO stable filter 
a filter with transfer function    
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Under the transformation 
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with 1 2 1C C   and 1 2 0C C  , the prototype 1-D BIBO 

of (1) gives  
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where the new transfer function  1 1
2 1 2,H z z  is also 

stable and the origin of the axes  ( 0)  is depicted to 

the point  1 2( , ) (0,0)    

 

 

Proof .  Start first to prove that the origin of the axes  
( 0)  is depicted to the point 1 2( , ) (0,0)   which is 

obvious because from (2) one has 1 2
1 2

j jje C e C e     or 

equivalently 1 1 2 2cos cos cosC C    . Therefore 

because  1 2 1C C   the solution of the equation 

1 1 2 21 cos cosC C    (i.e. ( 0)   must be 

1 2( , ) (0,0)   . Hence the origin of the axes  ( 0)  is 

depicted to the point  1 2( , ) (0,0)   . 

For Stability we have to prove that  1 1
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that makes our 1-D filter with transfer function                           
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       non-stable (in BIBO sense), but this 

contradicts to the assumption. So, this completes the 
Proof.                                                                               █ 
 
 
 
A very interesting extension of this transformation can be 
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1 2, 0,1,...,k k N  and 1 2, 0,1,...,l l M and the following 

theorem can be proved. 
 
 
 
Theorem 2. Consider a prototype 1-D BIBO stable filter 
a filter with transfer function    
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with 
0 0
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  and 
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0k l k lC C  , for all 

1 2, 0,1,...,k k N  and 1 2, 0,1,...,l l M  the prototype 1-D 

BIBO of (1) gives  
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where the new transfer function  1 1
2 1 2,H z z  is also 

stable and the origin of the axes  ( 0)  is depicted to 
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Proof .  It is easy to prove that necessary and sufficient 
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(all the klC  have the same sign) that makes our 1-D filter 

with transfer function       
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       non-stable (in 

BIBO sense), but this contradicts to the assumption. So, 
this completes the Proof.                                                 █ 
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under what circumstances this transformation would 
transform the prototype 1-D BIBO stable filter of (1) to a 
stable 2-D filter? 
 
The 2-D rational function  
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After these preparations we are ready to prove the 
following theorem 
 
 
Theorem 3. Consider a prototype 1-D BIBO stable filter 
a filter with transfer function    
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Proof .  It is easy to prove that necessary and sufficient 
condition for the depiction of the origin of the axes  
( 0)   to the point 1 2( , ) (0,0)   is also 
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For Stability we have also to prove that 
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this contradicts to the assumption.                                  █ 
 
 
 
 
 

III. NUMERICAL EXAMPLES 

Example 1. Consider the example of 6.4 of [27].  A 1-D 
(digital) IIR three-pole Butterworth filter is described as 
follows 
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with magnitude response in Fig.1 
 

 
Fig 1. Magnitude response of the filter of (6) 
 
Consider now the transformation 
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with the 2-D magnitude response in Fig.2. 
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Fig.2 Magnitude Response of the 2-D filter of (7) 
 
Example 2. Chebyshev filters ([28]) have the property 
that the magnitude of the frequency response is either 
equiripple in the passband and monotonic in the stopband 
or monotonic in the passband and equiripple in the 
stopband. The digital filter for this 4th-order Chebyshev I 
digital lowpass filter is expressed as follows: 
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with magnitude response in Fig.3 
 
 

 
Fig 3. Magnitude response of the filter of (8) 
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with the 2-D magnitude response in Fig.4. 
 

 
Fig.2 Magnitude Response of the 2-D filter of (8) 

 

 
 

Nikos E. Mastorakis, Stavros Kaminaris
International Journal of Instrumentation and Measurement 

http://www.iaras.org/iaras/journals/ijim

ISSN: 2534-8841 15 Volume 2, 2017



 6

IV.  CONCLUSION 

New general transformations have been introduced for 
the design of 2-D (Two-Dimensional) FIR and IIR filters. 
It seems that this methodology can be viewed as an 
extension of the McClellan Transformations and can be 
applied in several cases of 2-D FIR and IIR filter design, 
while the McClellan Transformations are applied only for 
the design of  2-D FIR filters. Two Numerical examples 
illustrated the validity and the efficiency of the method. 
The proposed methods ensure stability in all the cases due 
to Theorems 1, 2, 3. 
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