

Applying Artificial Intelligence Analysis in Software Engineering for

Considering Popularity as a quality parameter

 EKBAL RASHID
Postdoc Researcher,

Technical University of Sofia, Sofia, BULGARIA

Abstract: - The utility of artificial intelligence in Software Engineering opens the technique for a period of renovation in
which the ability to improve effectiveness of software parameters in software engineering. On the other AI can be utilized for
making revolutionary changes in software quality parameters and add new parameters such as popularity as a quality
parameter. This paper is a discussion about popularity as a novel parameter in a software project quality. In this
research paper. We are considering the popularity of a particular software project to be a parameter of the quality of
that software project. This discussion is based on numerous previous studies that have explored this issue in detail.
The authors have explored several scholarly writings in great depth and details. At the same time many industries’
white papers have also been studied to understand the trend that is being used in the industry at the present time.
Going through all such study, the authors are on the verge of concluding that popularity of a particular software
project may outweigh several other quality parameters in one sense. Rather, it would not be a mistake to look at the
popularity of software and guess its quality. This popularity of a particular software project can be determined in a
number of ways starting from its rating in the software repository site to the number of downloads or the number of
forks related to it. The present paper stresses on the popularity issue and also highlights several ways to measure
the popularity of a particular software project.

Key-Words: -Artificial Intelligence, Popularity, quality parameter, security, forks, stars

Received: March 5, 2024. Revised: July 14, 2024. Accepted: August 18, 2024. Published: September 25, 2024.

1. Introduction

Nowadays, AI applied in software engineering for
identifying popularity as a software quality parameter
[1]. AI in the software engineering offers a vision for
potential future to add new parameters in software
quality. There are big hopes for involving AI
technology in software engineering. As the global
competition increases for maintaining the standard of
quality of software product which is written in any
programming language. There are national efforts also
to increase AI applications in order to boost accuracy.
The main idea is faster training and more skillful people
for adoption of AI technologies for maintaining the
precision in the field of software engineering. AI
describes the work processes of machines that would
require intelligence if performed by humans. The term
AL means investigating intelligent problem-solving
behavior and creating intelligent computer systems.
Computers can understand by means of the right
software/programming and are able to optimize their
own behavior on the basis of their former behavior and
their experience. This includes automatic networking

with other machines. AI is a diverse field of research,
and the following sub-fields are essential to its
development. These include neural Network, Fuzzy
Logic evolutionary computations and probabilistic
methods. Since the importance of open-source software
projects began to rise, engineers, developers and
scientists have thought about the quality of these
software projects. It all began from the world of Linux
when the source code was shared and people began to
contribute into it. So as people started contributing
more and more to the project, the project grew
substantially. This was what we might call, a stochastic
development, something like the creation of life forms
on earth, wherein many inorganic materials came into
countless combinations and interactions giving birth to
organic materials and eventually to life forms. This may
also be compared to the development of the solar
system, of the milky way and even of the human society
wherein countless processes are taking place, simple
processes, giving birth to complex ones and matter is
coming into being and going out of being through these
processes, giving birth to newer and newer things,

Ekbal Rashid, Nikos Mastorakis
International Journal of Education and Learning Systems

http://iaras.org/iaras/journals/ijels

ISSN: 2367-8933 7 Volume 9, 2024

NIKOS MASTORAKIS

Sector of Electrical Engineering and Computer Science, Hellenic Naval

Academy, Piraeus, GREECE

and English Language Faculty of Engineering, Technical University of

Sofia, Sofia, BULGARIA

stochastically but surely not violating causality. There
has always been debates in the philosophical domain
between the deterministic scholar and the stochastic
theoretician and the matter never seems to settle out.
Nevertheless, stochastic methods have been proved to
be decisive, and are being seriously used in many forms
of epistemology. Hence the very idea of looking at
development of software projects from the stochastic
point of view may be interesting. Now that might mean
a lot of technical and rigorous effort which we aim to
target somewhere later in our course of research. At
present, we are discussing something that is much
simple to understand. And for that we have decided to
take the analogy of the world in which we live in. The
question before us is quality and what does that finally
come down to? The authors believe that quality finally
comes down to the ability to exist in a particular
domain. Looking at the example of evolution of life
forms, we see that so many kinds of species have
evolved over millions of years, but why has it been
possible for the human race to exist amidst so many
hurdles, odds and perishable situations? This is quality.
The rise in quality makes such an evolution possible.
Taking up the analogy, what has made projects such as
Linux, Apache, Mozilla, grow and reach its present
stature? Definitely it is quality. Existence demands
quality although sorrowfully it may not be the other
way out. We may easily find examples of projects that
have been high on quality standards but that have failed
to exist in the stochastic run. Many have wondered why,
and have discussed the issue whether it is enough for us
to just keep track of classical quality parameters and
exist substantially, meaningfully, popularly, usefully in
our domain. The authors have presented their thoughts
on this very subject in this paper and have felt that there
is more to just following the trail of classical software
development parameters. What has emerged out as a
result of such continuous thinking and pondering is that
popularity of software projects may be considered to be
a parameter of quality. Again, the authors have felt that
this is important because popularity may be easily
measured from a number of obvious things related to
the software project. This paper aims to highlight and
define the ways to measure popularity of the project and
to try to establish how popularity may be considered a
parameter of quality of the software project itself. This
paper takes a look at some of important projects hosted
at GitHub because GitHub is the host to the most
important software projects in the open-source world.
GitHub is the host to Linux, Fedora, Mozilla, Apache,
Facebook-React, Flutter, React-Native, Node, JQuery
and what not. If someone has to look for data in the
open-source world then it can not be anywhere else
other than GitHub. So the authors have mined different
repositories and have tried to establish the importance
of popularity and the different aspects that go into the
measure of popularity.

2. Motivation

Recently, the use of AI technique has proven the great
practical value in solving a variety of software
engineering problems including software quality
parameters such as popularity as a quality
parameter.The whitepaper published by Altexsoft [2]
deals with two levels of software quality namely
functional and non-functional. In the functional type
they have given due stress on the ‘practical use of the
software’ from the ‘point of view of the user’ along with
things like features, performance and absence of
defects. However, this was not the original normal as
most researchers had written to show that there is no
evidence to accept that popularity actually denotes
quality of the software. Then again, they were looking
at quality simply from the classical viewpoint. One such
work is of Sajnani et. al. [3] where there has been
evaluation of maven components on the basis of such
classical quality parameters such as efferent coupling,
afferent coupling, lack of cohesion, depth of
inheritance, ratio of derived to base interface, etc.
Simultaneously there has been a discussion about
popularity parameters such as projects using the
component, files using the component, and such things.
The conclusion drawn here is that there is no evidence
from such an empirical study that could lead to the
conclusion that there is indeed a relation between
popularity of the software and its quality. Another work
by Siavvas et. al. [4] discusses about the relation
between the popularity of software projects and the
security of the project. In this paper the authors have
used a parameter called Static Analysis Vulnerability
Density (SAVD) to get the number of vulnerabilities per
thousand lines of code and then used this parameter to
determine the security of the software. The Spearman’s
rank correlation value turns out to be negative in this
statistical analysis and that makes the authors of this
paper arrive at the conclusion that greater the
popularity, more the vulnerability. However, authors of
[4] further state that this is a contradiction of the
thresholds proposed by Cohen in [5] where the
understanding goes such that widely used software
products are more likely to be secure and so on the
basis of this the conclusion should have been that
‘popular software are more secure’. Now security can
definitely be considered to be a quality parameter. This
is because more secure a software is, better is its
quality. The very fact that the analysis of data does not
satisfy the expected Cohen thresholds is a motivation to
work more in this field. Similarly, another work by
Carvalho et. al. [10] discusses about several popular
software projects and the different vulnerability issues
they face. The authors of this academic article have
shown that there are indeed quite some software
projects that are very popular but have serious security
threats. This boils down to the situation that if indeed
we do consider security to be a quality parameter, then

Ekbal Rashid, Nikos Mastorakis
International Journal of Education and Learning Systems

http://iaras.org/iaras/journals/ijels

ISSN: 2367-8933 8 Volume 9, 2024

from this study we have to use caution to call popularity
as a quality parameter. Then the authors of this paper
came across another work by Alsmadi et. al. [6] where
the authors have clearly stated that popularity increases
with increase of several quality parameters. The authors
have tested the quality of several Java based open-
source software projects from GitHub on the basis of
sixty-five quality parameters using several tools and
then have done the necessary analysis work to come to
this conclusion. Since we have a concrete discussion
here about the direct relationship between popularity of
software projects and their quality, the authors of the
present paper were motivated to look further into the
issue whether popularity can itself be considered to be a
quality parameter as it is being directly affected by the
other quality parameters that are more or less popularly
used. Another work of Borges et. al. needs to be
mentioned here. The authors in this paper [7] have
measured popularity of software projects from the
number of stars they received. Then they have tried to
relate the popularity of these software projects to the
growth pattern of some other parameters such as
number of forks etc. and in this way, they have tried to
show that the popularity increases as these growth
parameter increases. In this way, the authors here have
spoken in favor of popularity being proportional to
several parameters which may affect the quality of the
software projects. In this discussion [7] the authors have
also shown that apps that are highly rated show specific
patterns related to seventeen parameters which may
show the quality of the software project. Another study
by Bavota et. al. [8] discusses the popularity of Android
apps and related the same to the use of types of APIs.
The gist of their discussion is that apps that tend to use
fault free APIs or stable APIs tend to be more highly
rated than those apps that use comparatively fault prone
APIs and those that are often subject to changes.
Although this may sound highly intuitive, we believe
that this too speaks in favor of considering popularity as
a software quality parameter. Another recently and
popularly used parameter for estimating popularity
specially in mobile applications is customer churn rate
which is defined as the percentage of difference
between customers joining and leaving against the total
number of customers joining. In a simplified manner we
can put it like this:

churn rate

=
no. of customers leaving − no. of customers joining

no. of customers joining

There is a work by Guerrouj et. al. in [9] which tries to
relate this churn of mobile applications with the success
of the app. The findings led to the conclusion that
mobile apps with larger number of churns seem to be

less successful. This discussion also calls for different
kinds of relative studies between discussions on Stack
Overflow forums about the code of a specific
application and the changes that have been made to the
classes or other APIs by developers in the real
development scenario. Worth mentioning is the
approach taken by some important industry players
while considering the quality of software. Now, we
know that the software development process is
important in determining quality. The white paper [11]
discusses the need to come out of traditional methods
and processes and opt for other ways that may not be of
the text book type but are more suited to the needs of
business and market. This seems to be taking the side of
popularity of the software project in the market
compared to the other quality parameters that are
usually considered. There is another interesting
discussion by Bissyandé et. al. [12] in which the authors
have made a survey of a hundred thousand projects
from GitHub and seen which is the most popular
language that is being used. It can be seen from the
discussion in this paper [12] that the most successful
projects are using the most popular programming
languages. Although, this is not something to do with
the popularity of the software projects as such, but still,
there seems to be a link between the popularity of
programming languages and the success of software
projects. The authors in [12] have also mentioned that
since the development of web application languages
like JavaScript have flourished. They have also shown
that Object C has gained popularity with the success of
Apple. Another discussion by Kwan et. al. [13] is about
socio technical congruence. The authors after a
thorough study have decided to conclude that an
increase in socio technical congruence may not improve
the software development process. However, after
stating so they have gone further to state that socio
technical congruence will help understand the
relationship between socio and technical areas and the
area of software development. To us, this remark seems
to be somewhat contradictory. An increase in socio
technical congruence can only mean that the popularity
of the software is increasing. Without increase in
popularity how can people socialize within the
ecosystem of a particular software development work?
Hence, if it does help in understanding relation between
socio-technical areas and software development, the
authors in [13] perhaps are agreeing to the fact that
there is indeed some relation between the two which
needs to be studied and this motivates us further for the
present study. Betz et. al. in [14] has worked on
Conway’s laws which assumes a strong association
between system’s architecture and the system’s
communication structure. Right back in 1968 Conway
had suggested that “any organization which designs a
system will inevitably produce a design whose structure
is a copy of the organization's communication
structure” [15]. The work by Betz. et. al. [14] has made
an extensive survey of literature and has concluded that
there are significant differences between how one

Ekbal Rashid, Nikos Mastorakis
International Journal of Education and Learning Systems

http://iaras.org/iaras/journals/ijels

ISSN: 2367-8933 9 Volume 9, 2024

interprets and applies this law. Now, we find this study
relevant because communication system in an open-
source software project is not limited to within the
system but rather is also open in nature.
Communications in open-source software projects also
involve the naïve and the dexterous. The extent of
communications cannot be seen as isolated from the
popularity of the software project. Any intuitive
assumption would be that greater the popularity, more is
the degree of communication in the project ecosystem.
The work by Betz et. al. [14] has highlighted the
existence of extensive literature that has validated
Conway’s law and that means one has to say that in the
case of open-source software projects, the quality of the
software (at least the structure) has indeed deep
association with the communication system, which in
turn is associated with the popularity of the project. A
white paper on the standards of modelling software
development [16] deals about selection of programming
language for a particular software project in terms of its
popularity. It enlists the popular software programming
languages in different fields and solicits looking at
popular programming languages while making such
selections. Now, why should one select a popular
programming language if it is not of good quality. Thus,
a practical method in the industry is towards looking at
things from the viewpoint of popularity to make an
estimate of its quality. Numerous industry white papers
like the ones listed from [17] to [21] are highlighting
the importance of user satisfaction, user experience and
end-user management in their development systems.
[21] has in fact prepared a check list to ensure that the
goals for usability are properly fulfilled. All this and
much more thus serve material for the authors of the
present work to consider popularity as a parameter of
software quality.

3. Scope of Study and Methodology

While the issue of considering popularity as a software
quality parameter is a broad and debatable issue which
may be approached from various angles, the authors of
the present work have decided to limit their discussion
to the trends in the modern development world,
especially in the domain of open-source software
projects. Most of the works cited here are from this
domain. There are few that are not from the domain of
open-source software projects. But they too seem to
have followed an approach similar in nature. Open-
source software projects like the ones hosted on GitHub
are increasingly getting more and more popular and are
overtaking other software projects. The authors have
attempted to discuss whether their popularity is due to
their enhanced qualitative standards. To achieve this,
the authors have decided to go through several rounds
of research. This work may be considered to be the first
work in this direction. The first round is the publication

of a survey result and the possible directions evident
from it. For this, as stated earlier, a number of academic
papers and industry white papers have been consulted
and screened. It is not that academic papers have
spoken against the consideration of popularity as a
quality measure. However, the existence of a number of
academic papers in support of the same makes the study
all the more interesting. Besides, recent white papers
from the world of industry seem to unequivocally
suggest that popularity is an important metric that needs
to be achieved and more than often stress is laid upon
this metric rather than other traditional quality
parameters.

4. Significance of Research

As far as AI is concerned in software engineering,
software engineers wanted to incorporate artificial
intelligence (AI) techniques into their work, so that by
the help of AI technique they can fixed the errors
automatically without time consuming. The
significance of this research lies in the fact that
popularity is a very easily measurable metric and that
many works have already tried to define it earlier. If we
do consider popularity to be a quality parameter, we can
study the pattern of quantitative changes in popular
software projects and emulate them as a system of
software development model. The quantitative
parameters of open-source software projects are easily
measurable, and their threshold values can be planned
to be achieved by setting suitable time-bound targets.
So in this way it would be possible to control the
quantitative parameters suitably in order to achieve high
quality and in that manner popularity.

5. Discussion and Conclusion

The following conclusions may be drawn from this
study:

As the AI technology is accepted globally and users or
software engineers can expect to see even more
innovative uses of AI in software engineering. Right
From automation of testing to creating new software
quality parameter. AI has the huge potential to
transform and maintain the accuracy, reliability,
correctness of software. A particular software or
software project which is of high quality may not enjoy
popularity among users. However, software or software
projects that enjoy popularity are definitely having a
qualitative standard and hence looking at the popularity
of a software we may safely assume that the software or
the software project is of high quality.

Ekbal Rashid, Nikos Mastorakis
International Journal of Education and Learning Systems

http://iaras.org/iaras/journals/ijels

ISSN: 2367-8933 10 Volume 9, 2024

Software and software projects that are intended for the
common man user strive for end user satisfaction. This
may not be the case with scientific automated software
which may be used only by technical people. For
software projects with common people as the user base,
there would be no real use of all the hard work even if
the project is of good quality but fails to satisfy the
users at large. Hence for such software projects, quality
actually means popularity.

Software companies are working round the clock to
improve user satisfaction and popularity and for that
matter, they are improving the software from the user
experience point of view. Other things for such projects
seem to acquire lesser importance.

Many software firms have started speaking in terms of
two types of quality. One is the code quality and the
other is usability. If the product is meant to be
marketed, the code quality is tested with a standard
benchmark and passed. However, the usability remains
continuously on the road to improvement. It is more
than evident that what the firms target the most is the
popularity of their product.

There have been instances that higher versions tend to
freeze while lower versions continue to thrive because
they are more popular. Then the so-called higher
versions go out of commission, but the lower ones
continue to roll. Can we consider the on-the-path-to-
becoming-extinct software to be of higher quality
compared to the ones that may be one version below but
are liked and successfully used by the people at large?

The concept of quality of a software often becomes a
victim of metaphysical approach, in which the software
is studied in isolation and not in relation to other things
that are associated with it (use of hardware, level of
users, etc.). The authors believe that the quality of the
software should be considered not in isolation but in
relation to other things that are associated with it.

Another tendency is to understand the concept of
quality of software project from the viewpoint of an
absolutist where quality is something that once defined
may not change and all engineers are supposed to
adhere to the same, whatever may be the objective
reality. On the contrary, the users believe that the
concept of software quality should be viewed from the
standpoint of something that is continuously evolving
with time and that different ideas need to emerge and
wither away as per the objective situation.

In the wake of the above considerations and conclusions
the authors propose the following metrics for the
measure of software projects as hosted on GitHub:

Stars: This is the random rating given by users and non-
users who happen to pass by the project and happen to
audit it due to some reason or the other. This may be
just the casual passing glance of the onlooker, or the
analytical view of the developer. However, a five-star
rating definitely means that the project has earned some
respect and in that sense some popularity.

Forks: Although the number of forks may be considered
to be a quantitative parameter, it does indicate
popularity. This is because only a person who is in
some way interested with the software project actually
will fork the project. Now, this forking may not be from
any development point of view. It may be just a reuse of
the codebase in some form. Or, it may be just for an
audit of the codebase. Whatever may be the case, forks
indicate interest in the project and hence definitely
show popularity.

Contributors: An increase in the number of contributors
indicates popularity. In open-source projects, most of
the contributors are volunteers and are not paid. Hence,
a person joins as a contributor only out of interest of
some kind and hence the authors feel that the number of
contributors are in a way an indicator of the popularity
of the software.

Comments: Comments are also an indicator of
popularity because more the number of comments,
more is the involvement of people in the project and
more is the rate of communication within it. It is here
where Conway’s law comes into reckoning.

Likes: In some software projects there is a feature of
‘likes’ much similar to that of social networking sites.
This obviously becomes a metric for measuring
popularity.

6. Future Scope

Measurement of the different metrics of popularity and
comparing them to other metrics of software quality is
something that needs to go on. But the authors feel that
if some traditional software quality metric does not
confirm to the popularity test, then that metric should be
question marked. This may be done at least for those

Ekbal Rashid, Nikos Mastorakis
International Journal of Education and Learning Systems

http://iaras.org/iaras/journals/ijels

ISSN: 2367-8933 11 Volume 9, 2024

categories of software which are intended for the
common people. For such categories, traditional quality
metrics may have little value which do not improve the
user experience and involvement. Similarly newer
quality metrics may be improvised that augment the
popularity of the software by improving the user
experience and overall performance. A study may be
conducted by taking into consideration the software in
relation to all other factors associated with it such as
hardware and others. The study of quality in isolation
needs to be done away with.

References:

[1]. Stahl, B.C., Artificial intelligence for a better
future: an ecosystem perspective on the ethics of AI and
emerging digital technologies. 2021: Springer Nature.
[2]. https://www.altexsoft.com/whitepapers/quality-
assurance-quality-control-and-testing-the-basics-of-
software-quality-management/
[3]. Sajnani, Hitesh & Saini, Vaibhav & Ossher, Joel &
Lopes, Cristina. (2014). Is Popularity a Measure of
Quality? An Analysis of Maven Components.
Proceedings - 30th International Conference on
Software Maintenance and Evolution, ICSME 2014.
231-240. 10.1109/ICSME.2014.45.
[4]. Siavvas, Miltiadis & Jankovic, Marija & Kehagias,
Dionysios & Tzovaras, Dimitrios. (2018). Is popularity
an indicator of software security? A preliminary study
on Maven Repository. 10.13140/RG.2.2.21269.58085.
[5]. Cohen J., Statistical Power Analysis for the
Behavioral Sciences, Hilsdale N.J., Earlbaum
Associates, 1988
[6]. I. Alsmadi and I. Alazzam, "Software attributes that
impact popularity," 2017 8th International Conference
on Information Technology (ICIT), 2017, pp. 205-208,
doi: 10.1109/ICITECH.2017.8080001.
[7]. Y. Tian, M. Nagappan, D. Lo, and A. E. Hassan,
“What are the Characteristics of High-Rated Apps? A
Case Study on Free Android Applications,” in 31st
International Conference on Software Maintenance and
Evolution (ICSME), pp. 1–10, 2015.
[8]. G. Bavota, M. Linares-Vásquez, C. E. Bernal-
Cárdenas, M. D. Penta, R. Oliveto and D. Poshyvanyk,
"The Impact of API Change- and FaultProneness on the
User Ratings of Android Apps," in IEEE Transactions
on Software Engineering, vol. 41, no. 4, pp. 384-407,
April 1 2015.
[9]. L. Guerrouj, S. Azad and P. C. Rigby, "The
influence of App churn on App success and
StackOverflow discussions," IEEE 22nd International
Conference on Software Analysis, Evolution, and
Reengineering (SANER), Montreal, QC, 2015, pp. 321-
330,2015.
[10]. M. Carvalho, J. DeMott, R. Ford and D. A.
Wheeler, "Heartbleed 101," in IEEE Security &
Privacy, vol. 12, no. 4, pp. 63-67, July-Aug. 2014, doi:
10.1109/MSP.2014.66.
[11].
https://www.trigent.com/resources/whitepaper/pitfalls-

of-not-transitioning-from-waterfall-to-agile-
devops.html
[12]. Bissyandé, Tegawendé & Thung, Ferdian & Lo,
David & Jiang, Lingxiao & Reveillere, L.. (2013).
Popularity, Interoperability, and Impact of
Programming Languages in 100,000 Open Source
Projects. Proceedings - International Computer
Software and Applications Conference. 303-312.
10.1109/COMPSAC.2013.55.
[13]. Kwan, I., Schroter, A., & Damian, D. (2011).
Does Socio-Technical Congruence Have an Effect on
Software Build Success? A Study of Coordination in a
Software Project. IEEE Transactions on Software
Engineering, 37(3), 307–324. doi:10.1109/tse.2011.29
[14]. Betz, S., mite, D., Fricker, S., Moss, A., Afzal, W.,
Svahnberg, M., … Gorschek, T. (2013). An
Evolutionary Perspective on Socio-Technical
Congruence: The Rubber Band Effect. 2013 3rd
International Workshop on Replication in Empirical
Software Engineering Research.
doi:10.1109/reser.2013.8
[15]. M. Conway, "How do Committees Invent?,"
Datamation, vol. 14, no. 4, pp. 28-31, 1968
[16]. Erich Wimmer, Volker Eyert, Kurt Stokbro, White
paper for standards of modelling software development,
EMMC-CSA – GA N°723867 (2019)
https://emmc.info/wp-content/uploads/2018/04/EMMC-
CSA-WP-StandardsMOD_SOFTW-DEV.pdf
[17]. White Paper on Why Master Data Management is
Critical to the Modern Customer Data Platform, (2021),
Deloitte,
https://media.bitpipe.com/io_15x/io_155658/item_2336
767/IO155658_Deloitte_2342337_EGuide_4.14.2021.p
df
[18]. White Paper on Your Ultimate Chat Solution
Checklist (2021), Genesys,
https://media.bitpipe.com/io_15x/io_154292/item_2264
634/Your-ultimate-chat-solution-checklist-ebook-GB-
pictures.pdf
[19]. White Paper on An Expert Guide to Desktop
Virtualization Implementation (2019), Dell,
http://viewer.media.bitpipe.com/1182112995_571/1263
417896_281/DellsVirtualDesktopVirtEguide.pdf
[20]. White Paper on Usability as ERP Selection
Criteria (2008), IFS,
http://hosteddocs.ittoolbox.com/wpusability.pdf
[21]. White Paper on High Usability Check List,
Outsystems,
https://www.bitpipe.com/data/loadAsset.action?resId=1
378207002_81

Ekbal Rashid, Nikos Mastorakis
International Journal of Education and Learning Systems

http://iaras.org/iaras/journals/ijels

ISSN: 2367-8933 12 Volume 9, 2024

