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Abstract: Inspite of so universally accepted, control performance by NN depends on many of the varying factors such as output 
weights. To ensure the functional accuracy of the NN, it is required to have an defined value of these performance effecting 
factors. Control scheme proposed in this paper uses an emerging optimization technique naming, PSO to get the optimal value of 
the parameters, naming spread factor and weights of output layer in RBNN. Thus, this hybrid controller possesses the advantageous 
qualities of RBNN and PSO both. For the further improvement in the basic PSO algorithm, inertia weight factor of PSO is made 
adaptive.This projected controller has been verified by comparing it with a basic PSO and the basic RBNN controller for the 
trajectory tracking control of a 2-DOF remotely driven robotic manipulator. To check the robustness of the controller its 
performance has been checked by incorporating uncertainties naming payload masses and friction. Appropriate conclusions have 
been drawn in last. 
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1. Introduction 
With the increase in present applications of computers and its 

everyday increasing future prospects; areas of artificial 
intelligence based controllers have been expanded exponentially. 
Since the last few decades, because of highly non-linear mapping 
capabilities, neural network is one of the most widely used AI 
techniques [1]. There are a wide number of types of neural 
networks proposed in literature. Each one has its own advantages 
and disadvantages. In terms of time-taken, accuracy in results and 
non-linear mapping capabilities for non linear systems like 
motion control of robotic manipulator, RBNN (Radial Bias 
Neural Network) is found to superior when compared with back 
propagation neural network [2-8]. RBNN is given by Broomhead 
and Lowe [9], and its interpolation and generalization properties 
are thoroughly investigated in [10, 11]. As stated, although 
RBNN is one of the commonly used NN based control scheme for 
the non linear, time varying control system, yet the accuracy in 
performance of RBNN depends mainly upon the specific values 
of some of its parameters. A few of the important performance 
deciding RBNN factors are spread factor, (𝜎𝑗 ) and weights from 
hidden to output layer, (wjk). Most favorable value of these 
parameters can be chosen by either some expert’s experience or 
by trial and error (TAE) method. This limitation of RBNN 
restricts its use to an expert or by using time consuming, tedious 
and frustrating TAE method by an amateur. This limitation of 
RBNN restricts its use or deteriorates its performance. From the 
above discussions it can also be inferred that improvements in 
RBNN can be made by choosing its accurate parameters. One of 
the global optimization techniques like PSO can be very 
constructive to search out the optimized value of RBNN 
parameters. PSO, developed by Kennedy and Elbert, in 1995 [12] 
is based on the simulation of simplified animal social behavior 
such as fish schooling, bird flocking etc.. Stochastic based search 
algorithm PSO is a global searching technique with simplicity and 
practicability and has been widely used in recent years to get the 
optimal solutions [13]. 

Henceforth, in this paper, to develop the proposed hybrid 
controller two important techniques naming Particle Swarm 
Optimization (PSO) and the Neural Network (NN) have been 
combined. This type of control schemes, taking advantageous 
features of both the above mentioned PSO and NN intelligent 
techniques and is named as Evolutionary Neural Networks 
(ENN). By choosing PSO, auto adaptability quality is developed 
in the RBNN [14]. In [15-16] such adaptive hybrid controllers 
have been shown better control performance as compared to other 
prevailing controllers. ENN has been called as the next generation 
Neural Networks [17]. Moreover, some improvements in PSO 
further add on performance quality as, Cao et al. [18] and Shi et 
al. [19] used modified PSO to optimize RBNN and obtained 
effective results. 

Robotic manipulator is a highly non-linear, time-varying and 
highly coupled system. For a manipulator, almost all kinds of 
control techniques naming classical PD, PID, SMC, NN, etc. have 
been compiled in literature [20, 21 and references there in]. But 
because of the presence of the various structured and unstructured 
uncertainties in the model dynamics; still the thrust for a perfect 
and accurate controller is there. 

In this paper, controller used is the hybrid of two model free 
control techniques naming, PSO and NN. PSO is used to get the 
finest possible performance deciding RBNN constants, naming 
spread factor ( σj ) and weights of output layer (wjk). Thus, a 
successful attempt to make a controller with great control outputs 
for a manipulator has been made. For further improvement in the 
control scheme, inertia weight factor of PSO is made adaptive. 
For simulation purpose, a 2-DOF robotic manipulator having 
planar elbow with remotely driven links manipulator has been 
taken here. This type of model is with gear, linear, well 
understood as the non-linear coupling between the motors has 
been reduced. On the other hand, this gear introduces friction, 
compliance, backlash in the dynamics. It has been observed from 
the literature survey that a very few controllers has been 
implemented for trajectory tracking control of this planar elbow 
with remotely driven links manipulator. Performance of the 
controller with this manipulator has been checked in presence of 
payload mass changes and the unavoidable friction. 
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Furthermore, the paper is organized as follows: Section II 
deals with manipulator dynamics and the fundamentals of the 
controllers; next, Section III contains the basic scheme of the 
proposed controller of the paper. Simulation example and results 
are given in Section IV. Finally, conclusions have been complied 
in Section V. 

 

2. Fundamentals 

This section of the paper contains a brief review of the 
manipulator dynamics and the intelligent techniques naming, 
RBNN and PSO. 

2.1 Manipulator Dynamics: 

 

 

 

 

 

 
Fig. 2: Generalized coordinates for planar elbow manipulator with 

remotely driven links 
 

The excitation values of this Gaussian function are 
distributed between the input values. The output of the hidden 
layer is given by equation (2) as 

 
2 

The dynamics of revolute joint type of robot can be 
described by following nonlinear Lagrange equation (1) [22], 

n 
j=1      j exp [

−ǁs−cj ǁ  
]
 

σj 
2 

(2) 

M(q)q¨ + V(q, q˙) + G(q) = τ (1) 
 

with q є Rn as the joint position variables, τ as vector of input 
torques, M (q) is the symmetric and positive definite inertia 
matrix, V(q, q˙) is the coriolis and centripetal matrix, G(q) 
includes the gravitational forces. Input torque given to the 
manipulator is of pivotal significance. 

Manipulator used in this work is a planar elbow manipulator 

with remotely driven link. Unlike planar elbow manipulator, in 
this type of manipulator both the joints are driven by motors 
mounted at the base. The first joint is turned directly by one of the 
motors, while other is turned via a gearing mechanism or a timing 
belt as in Fig 1. Here, the generalized coordinates taken are as in 
Fig. 2, as the angle 𝑝2 is determined by driving motor number 2 
and is not affected by the angle 𝑝1. 

 
2.2 Radial Bias Neural Network (RBNN) 

A typical RBNN consists of input layer, hidden layer and 
output layer as represented if Fig [3]. Input layer consists of input 
signals; hidden layer consists of radial bias functions (Gaussian 
function); output layer gives output by multiplying weights with 
the output of hidden layer. In this paper, input given to the RBNN 
is error and velocity error (e and e˙) and output is obtained from 
NN is the input torque to be given to the manipulator for 
trajectory tracking control purpose. 

 

Fig. 1: Two link revolute joint arm with remotely driven link 
 

 

y 

where j is the jth neuron of the hidden layer, 
cj is the central position of the neuron j, 

σj is the spread factor of Gaussian function. 
 

In output layer, output vector is given by y = [τ1 τ2]T which 
vectorily can be written as the output of kth neuron is given by 
equation (3) 

𝑛 

yk = ∑ 𝑤𝑗𝑘 ∗ uk , 
𝑗 =1 

k 1,2 … . number of hidden layer neurons (3) 
 

where wjk represents the linking weight of the neuron in the 
output layer. 

 

 
Fig. 3: RBNN architecture 

 
Significance of the RBNN parameters to be optimized: 

 

This section covers a brief discussion about the significance 
of the spread factor ( ) and the output weights (wjk) in RBNN, 
followed by a discussion on the proposed control scheme. 

 
a. Spread factor ( ) is the first parameter to be optimized 

using PSO. Spread factor () is of vital significance in 
RBNN. Its too small value can result in a solution that 
does not generalize from the input/target vectors and 
with a large value of it, the radial basis neurons will 
output large values (near 1.0) for all the inputs used to 
design the network. If radial basis neurons always 
output 1, any information presented to the network as 
input becomes lost. Hence, it is required to choose 
spread factor larger than the distance between adjacent 

 
 
 
 

x 

  𝑝2 

𝑝1 

u = ∑ 
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input vectors, so as to get good generalization, but 
smaller than the distance across the whole input space. It 
can be assumed that, it is crucial to have accurate results 
with the optimal value of this spread factor 

 
b. Another performance deciding factor of RBNN is the 

selection of output weights (wjk). Generally, these 
weights from hidden to output layer are decided by 
Least Square (LS) estimation [23]. In RBNN, these 
output weights could be affected by very commonly 
occurring noise and outliers in a nonlinear function. 
Hence, the approximation precision of RBNN could be 
consequently damaged with the presence of this external 
noise and outliers in the data set. Hence, it is always 
required to use some optimization technique to get the 
values of these weights for the improvements in the 
results and accuracy of NN based controllers. 

 
2.3 Particle Swarm Intelligence (PSO) 

In PSO starting with random population in search space, it 
results in the optimal solution. During each step every particle is 
accelerated towards its best neighboring position as well as in the 
direction of global best position. Calculation of new position of 
the swarm is given by equations (4) & (5) [12]. 

 
vid = vid + c1 ∈1 (pid − xid ) + c2 ∈2 (pxd − xid ) (4) 
xid = xid + vid (5) 

 
where, in a D-dimensional space ̅x→i  = (xi1 , xi2 , … xiD ) is a present 
position  vector,  ̅p→i  = (pi1 , pi2 , … piD )  is  a  best  position  vector, 
v̅ →i  = (vi1, vi2 , … viD ) is  a velocity vector,  , c1  and c2 are constant 
acceleration coefficients 2, ∈1 and ∈2 are the random number 
generators. In [24, 25] it has been proved that PSO finds the 
global best solution. PSO is becoming popular due to its 
simplicity in implementation and ability to converge quickly to a 
reasonably good solution. 

 
Adaptive Weights in PSO 

Although PSO is a new efficient emerging algorithm to the 
family of evolutionary algorithms and proven to be better than 
many other classical evolutionary techniques available (like 
Genetic Algorithm (GA)), yet there lies a huge scope for multi 
dimensional improvement in the basic PSO algorithm. One such 
improvement is made by incorporating a weight parameter on the 
previous velocity of the particle. The resulting equations for the 
manipulation of the swarm are [26] given in equations (6) & (7) 

 
vid = w ∗ vid + c1 ∈1 (pid − xid ) + c2 ∈2 (pxd − xid ) (6) 
xid = xid + vid (7) 

 
where w is the inertia weight which manipulates the effects of the 
previous velocities on the current velocity. It can be said that w 
resolves the tradeoff between the global and the local exploration 
ability of the swarm. Literature reveals that w should have greater 
value in starting and should decrease gradually with iterations. As 
suggested by Hou in 2008[27] w adjusted adaptively proves itself 
as given in equation (8). 

where a = 0.6, b = 1, iter is the current iteration. 
This proposed adaptive weight in PSO has been applied to 

the manipulator of a planar robot with remotely driven links for 
the first time. Here, in this work i.e. for trajectory tracking control 
of robotic manipulator, this adaptive PSO has proven itself. 

 

2.4 Friction Modeling 
Friction forces between two surfaces in contact arises as a 

consequence of the irregularities and asperities at microscopical 
level, and their effects depend on many factors, such as 
displacement and relative velocity of bodies, properties of the 
surface materials, presence of lubrication, temperature etc. The 
experimental observation of friction phenomenon has led to 
various, deeply different models, which capture the friction 
component in a more or less accurate way. Friction is very 
important for the control engineer. Friction should be as much as 
reduced by good hardware design. But, with the advancements in 
the computers, computer control has also shown the possibility to 
reduce the effects of friction. This has been made possible using 
various mathematical friction modes. Interesting reviews of the 
main friction characteristics and classical models starting from 
the basic concept of friction as a force that opposes motion, 
captured by pure Coloumb model, up to complex static and 
dynamic models like LuGre friction model has been provided in 
literature. As opposed to classical static friction model, dynamic 
friction models attempt to incorporate a variety of other friction 
characteristics such as stiction, zero slip displacement, stribeck 
effect etc. Dynamic friction models also tend to capture 
effectively the changing friction characteristics that are caused 
primarily due to wear and aging. One of the most accurate 
dynamic frictions proposed is LuGre friction model. LuGre 
Fiction can be modeled mathematically as in equations (9) 

 
F = σoz + σ1z˙ + σ2v 

z˙ = v − |v| z (9) 
g(v) 

g(v) = Fc + (Fs − Fc )exp( v )2 
s 

 

where z is average bristle deflection, σo is stiffness of bristles, σ1 
is bristle damping coefficient, σ2 is viscous damping coefficient, 
v is relative velocity between moving parts, Fc is coulomb 
coefficient, Fs is static coefficient, vs is striberk velocity. 

 
3. Proposed Controller 
Even input output mapping in NN can be made by one of the 
many possible mapping functions yet the key issue in RBNN is 
not the selection of non-linear function but the key factor is the 
selection of constant parameters of these non-linear functions. 
Improper selection of some of the factors of RBNN can lead to 
unsatisfactory control results from RBNN. Spread factor (σj) and 
the network output weights (wjk) are the few most performance 
deciding factors of RBNN. In other words, it can be said that 
proper selection of spread factor ( σj ) and the network output 
weights (wjk) can be adjusted using one of the upcoming latest 
swarm intelligent technique naming PSO. 

 

w = a 
b+[1g∗iter ] 

 
(8) 

 
 
 
 
 
 

2 
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1 

1 c1 2 1 

Compare fitness evaluation with 
population’s overall previous best 

for finding global best. 

Calculate new updated velocity 
and position of the particles. 

the total length; lci is the distance from the joint to the centre of 
gravity; g is gravitational constant; τi is the torque input; where i 
is 1 & 2 for link 1 & link 2. Parameters for the manipulator taken 
for trajectory tracking are: 

 
m1 = 10 ; m2 = 5 ; I1 = 0.2 ; I2 = 0.2 ; lc1 = 0.25; lc2 = 0.5 ; 
g = 9.8. 

 

 
 

Fig. 4: Working of the proposed control scheme 
 

In Fig. 4, it can be seen that PSO is used to obtain the 
optimized values of the RBNN parameters. PSO is initialized 
using a random population. Adaptive inertia weight in PSO has a 
different value for each iteration and hence, changes to adapt 
itself to the running PSO. As fitness function is a part of the basic 
PSO algorithm hence, it is evaluated for each iteration. Output of 
this PSO (optimized spread factor and output weights) is provided 
to RBNN. 

This manipulator is made to track the path for a two-link 
manipulator given by equation (12) 

 
q1 = sin(0.67t) + sin(0.3t) (12a) 
q2 = sin(0.39t) + sin(0.5t) (12b) 

 

 
Table 1: PSO Parameters 

 

Population size 20 
Number of Iterations 50 
Inertia Weight (w) 2 
Acceleration factors (c1,c2) 2 
Fitness function Root mean square of tracking error 

(RMSE) 
 

This RBNN (with optimized constant parameters) is used to find 
the control input torque to be given to the manipulator for 
trajectory tracking. Tracking error and velocity tracking error are 
the inputs to the RBNN to have the control torque (given to the 
system to be controlled) as output.   To have the values of error 
and velocity error actual trajectory tracked is compared to the 
desired trajectory. Flowchart representing the working of the 
control system is given in Fig. 5. 

 
4. Simulation Example and Results 

 

For the verification of the proposed controller, in this section a 
simulation study has been carried out. Control for a 2 DOF planar 
elbow with remotely driven links has been using the proposed 
controller has been implemented here. Dynamic model of the 
manipulator has been given in equations (10), (11) [22] 

 
d  ̈

11 p1¨ + d¨ 
12 p2  ̈ + c221 p2˙ + ∅1 = τ1 (10) 

d¨ 
21 p1  ̈ + d¨ 

22 p2  ̈ + c112 p2  ̇ + ∅2 = τ2 (11) 

where 
d11 = m  l2 + m l2 + I 
d12 = m2l1lc2 cos(p2 − p1) 

 

 
 

 

 

No 
Criterion met or 
max. no. of iter? 

 
Yes 

 
 

Stop to get the 
optimized values 
of spread factor 

d21 = m2l1lc2 cos(p2 − p1) 
and output 
weights. d22 = m l2 + I 

2 c2 2 

c221 = −m2l1lc2 sin(p2 − p1) 
c112 = m2l1lc2 sin(p2 − p1) 
g1 = (m1lc1 + m2l1)g cos(p1) 
∅2 = m2lc2g cos(p2) 
subscripts 1 & 2 indicates the link 1 & link 2; pi is the angle with 
respect to horizontal axis; mi is the weight; Ii is the inertia; li is 

Fig. 5: Flowchart representing control scheme for the proposed 
controller 

In this simulation study, for the trajectory tracking problem 
of planar manipulator, various controllers discussed in this paper 
have been implemented and the results have been compared. For 
payload changes (m2 + ∆m) is taken as 1.35 kg i.e. 35 % rise in 

Compare particle’s fitness 
evaluation with pbest. 

Start 

Initialize spread factor (s) and 
output weights randomly. 

Evaluate Fitness Function. 

Trained RBNN. 

1 

Inertia 
Weight 

Iterations 

Initialize 
Random 
Population 

Fitness 
Function 

Optimized Parameters 

Desired 

Actual 

PSO 

Adaptive 
Weight 

Manipulator 
System 

RBNN 
Controller  
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the mass of joint 2 of the manipulator. Parameters for LuGre 
friction model are chosen as: 

 
σo = 0.6, σ1 = 0.009, σ2 = 0.6, Fs = 0.01, Fc = 10 

4.1 RBNN Controller 
For the implementation of the RBNN controller, given in 

Section II, the spread factor has been tuned manually between 0- 
2. The performance of the RBNN has been found best with spread 
factor as 2. 

 
4.2 PSO Controller 

Parameters chosen for a basic PSO controller have been 
given in Table 1 and results have been compiled in Fig. [6-9]. 

 
4.3 Proposed Controller 

In proposed controller parameters for PSO are given in table 
1 except the weight factor w, which is the adaptive in nature and 
is given in (8). Search range for spread factor has been taken as 
(0-2) and range for output weight factors has been taken as (0-1). 
Results for the trajectory tracking by the manipulator have been 
presented Figs. [6-9]. Although the graphs in Figs. [6-7] presents 
that the trajectory tracked by  the manipulator using different 
control schemes is very close to each other, but the control 
performance of controllers can be easily differentiated with the 
help of tracking error graphs plotted in Figs. [8-9]. These graphs 
clearly represent that the best tracking performance is given by 
the proposed controller. Tracking errors of various controllers are 
given in Figs. [8-9]. Table 2 contains the performance indices to 
evaluate the performance of the controllers with all the 
uncertainties in terms of mean and mean square error (mse). 
Other type of error measuring performance indices like 2-norm 
error, integral square error (ISE) can also be evaluated and are 
found to show the similar type of results. It has been observed 
from table 2 that the max and mean error in Joint 1 & 2 is about 
100 times lesser that the max and mean error of the other 
controllers. In joint 1, it can be observed that the mse is about 104 
times lesser than the mse in other two control schemes whereas in 
joint 2 mse in the proposed controller is about 103 times lesser 
than the mse in other two control schemes. Hence, along with the 
robustness in the proposed control scheme, there is a rise in the 
accuracy in the tracking performance of the system under study. 

 
Execution time (in seconds) for each control technique has been 
tabulated in table 3. It has been observed that RBNN is taking the 
maximum time for control execution. Proposed controller, along 
with less tracking error, is implementing the control action in 
lesser time when compared with RBNN. 

 
5. Conclusion 
As said, it would be safe here to infer again that the most 
commonly and widely used neural networks (NN) are not 
flawless, rather they have various shortcomings of their own 
including the dependency on experts for tunings its parameters, 
such as spread factor and output weights for good accuracy in 
results. This need is fulfilled by the proposed controller which 
uses one of the most emerging optimization techniques named as 
particle swarm optimization (PSO) to get the optimized 
parameters of RBNN for enhanced performance. This PSO 
enhanced RBNN controller has proved itself with accuracy in 
trajectory tracking. This controller also converges itself in lesser 

time as compared to a simple RBNN controller. Hence, as the 
outcome of the paper, it can be said that with the proposed robust 
control scheme perfect trajectory tracking problem of robotic 
manipulator has been solved upto a mark. 

The study opens new vistas and futuristic avenues for 
further study, the more advanced and upgraded versions of PSO 
may be used for optimizing RBNN. 
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Table 2: Tracking Errors: Joint 1 & 2 
 

 
 

Uncertainties 

 

Control 
Scheme 

Joint 1 Joint 2 
max. 

abs. error 
Mean 
error 

 

mse 
max. 

abs. error 
Mean 
error 

 

mse 
 

Payload 
changes 

RBNN 0.0494 0.0326 0.0013 0.0686 0.0337 0.0014 
PSO 0.0613 2.15e-02 7.51e-04 0.0545 2.24e-02 7.00e-04 

Proposed 0.002 0.0018 3.32e-06 4.13e-04 2.56e-04 6.69e-08 
 

LuGre Friction 
RBNN 0.116 0.0318 0.002 1.03e-01 0.0306 0.0018 
PSO 0.0697 0.0199 7.57e-04 0.0587 0.0173 5.70e-04 

Proposed 2.53e-04 7.80e-05 1.75e-08 2.92e-04 1.77e-04 3.44e-08 
 

Both 
RBNN 0.0587 0.0257 9.18e-04 0.0618 0.0248 9.15e-04 
PSO 0.0637 0.0236 8.35e-04 0.0505 0.0197 5.72e-04 

Proposed 4.31e-04 2.55e-04 7.58e-08 4.52e-04 3.81e-04 1.47e-07 
 

 
 

Table 3: Control execution time (in seconds) 

 

Controllers RBNN PSO Proposed 
Controller 

time 101.99 28.77 48.34 
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Fig. 6: Trajectory tracking response by Joint 1 

 

 
Fig. 7: Trajectory tracking response by Joint 2 

 

 
Fig. 8: Tracking error for Joint 1 

 

 
Fig. 9: Tracking error for Joint 2 
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