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Abstract: - An optimal controller is developed for linear time variant systems described using transfer 
operators, where the noise response is described using a time variant moving average autoregressive model and 
the control response is described using a time variant autoregressive moving average model.  Following the line 
of minimum variance control methods, this controller can achieve minimum variance output tracking without 
using noise variance information even when the speed of parameter variation in the system is arbitrarily fast. 
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1 Introduction 
The minimum variance controller [1] developed by 
Astrom is the base of a family of very popular 
stochastic optimal controllers including self-tuning 
controller [2], generalized minimum variance 
controller [3] and generalized predictive controllers 
[4 and 5].  These controllers are easy to understand 
and fit easily into parameter estimation schemes for 
parameter adaptive control.    

The minimum variance controller also provides 
the lower bound for output tracking error variance 
and is a benchmark to gauge the performance that is 
suboptimal.   The minimum variance controller is 
based on transfer functions and, therefore, are for 
linear time invariant systems only.  It cannot be 
extended to linear time variant systems in a 
straightforward way because the transfer functions 
do not apply to linear time variant systems.  Linear 
time variant transfer operators [6] replaces the 
complex variable of the transfer functions using a 
one-step-delay-operator and extends the transfer 
function from linear time invariant systems to linear 
time variant plants.  One of the important 
differences between the linear time invariant 
transfer operators and the linear time variant transfer 
operators is that the linear time variant transfer 
operators are not commutative with respect to 
multiplication.  

A pseudo commutation technique was developed 
in 1997 [6].  It allows a linear time variant 
autoregressive operator to exchange position in 
multiplication with a linear time variant moving 
average operator using an equivalent transfer 
operator in different form but the same input and 
output relation.  Based on this technique the first 
minimum variance controller for linear time variant 
systems with colored noise disturbances was 
developed in 1997 [7] based on a linear time variant 
controlled autoregressive moving average 
(CARMA) model.   

In this paper we develop a minimum variance 
controller for different linear time variant systems 
that can be represented using a linear time variant 
model whose response to noise is a moving average 
autoregressive process and whose response to 
control variable is an autoregressive moving average 
process.  We call this model a CMAAR model, 
which is different from the CARMA model because 
time variant transfer operators are not commutative 
with respect to multiplication. It will be shown that 
the CMAAR model represents at least an equally 
large class of linear time variant systems as the 
linear time variant CARMA model and the linear 
time variant minimum variance controller can 
ensure both closed-loop exponential stability and the 
minimum variance output tracking error regardless 
the variation speed of the plant dynamics. 
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2 Linear Time Variant System and 

Control Objective 
We consider the following linear time variant 
CMAAR model, 

𝑦(𝑘 + 𝑑) = 𝐴−1(𝑘, 𝑞−1)𝐵(𝑘, 𝑞−1)𝑢(𝑘) 

                +𝐶(𝑘, 𝑞−1)𝐷−1(𝑘, 𝑞−1)𝑤(𝑘 + 𝑑)  (1) 

where y(k), u(k) and w(k) are the plant output, input, 
and noise.  d is a positive integer representing time 
delay of the system.   

𝐴(𝑘, 𝑞−1) = 1 + 𝑎1(𝑘)𝑞−1 + ⋯+𝑎𝑛𝑎(𝑘)𝑞−𝑛𝑎 

𝐵(𝑘, 𝑞−1) = 𝑏0(𝑘) + 𝑏1(𝑘)𝑞−1 + ⋯+ 𝑏𝑛𝑏(𝑘)𝑞−𝑛𝑏 

𝐶(𝑘, 𝑞−1) = 1 + 𝑐1(𝑘)𝑞−1 + ⋯ 𝑐𝑛𝑐(𝑘)𝑞−𝑛𝑐 

    𝐷(𝑘, 𝑞−1) = 1 + 𝑑1(𝑘)𝑞−1 + ⋯𝑑𝑛𝑑(𝑘)𝑞−𝑛𝑑 (2) 

are time-varying polynomials in the one-step-delay 
operator q-1. The polynomials are time variant 
because their coefficients are time varying.  The 
one-step-delay operator is applicable to the time-
varying coefficients, input, output, and noise 
variables as follows.  
 
  q-1f(k)=f(k-1)   (3) 
 
The polynomials in (2) are not transfer functions but 
transfer operators because q is an operator not a 
complex number.   Consequently, we call the 
operators 𝐷(𝑘, 𝑞−1), 𝐶(𝑘, 𝑞−1), 𝐵(𝑘, 𝑞−1) and 
 𝐴(𝑘, 𝑞−1) transfer operators rather than transfer 
functions for linear time variant processes.  The 
moving average operation for the input is described 
using the following linear time variant equation, 
 
  𝑣(𝑘) = 𝐵(𝑘, 𝑞−1)𝑢(𝑘)  (4) 
 
and we call 𝐵(𝑘, 𝑞−1) a linear time variant moving 
average operator.  A zero initial condition solution 
of the following linear time variant autoregressive 
equation  

𝐷(𝑘, 𝑞−1)𝑧(𝑘 + 𝑑) = 𝑤(𝑘 + 𝑑)  (5) 

is denoted as 

 

𝑧(𝑘 + 𝑑) = 𝐷−1(𝑘, 𝑞−1)𝑤(𝑘 + 𝑑) (6) 

 
𝐷−1(𝑘, 𝑞−1) is called a linear time variant 
autoregressive operator because of the 
autoregressive operation (5).  When the 
autoregressive model (5) is exponentially stable we 
say the linear time variant autoregressive operator, 
𝐷−1(𝑘, 𝑞−1), is exponentially stable.  The 
difference between this time variant CMAAR model 
and the linear time variant CARMA model is that 
the operation order of moving average and 
autoregressive process for the noise response is 
reversed in comparison with the CARMA model.  
For the CMAAR model the noise is first 
autoregressed and then, moving averaged.  
However, for the linear time variant CARMA model 
the noise is first moving averaged and then, 
autoregressed.  Because of noncommutativity of 
linear time variant operators the CARMA model 
and the CMAAR model represent different time 
variant systems. However, the CMAAR model 
represents at least an equally large class of linear 
time variant plants as the linear time variant 
CARMA model because the linear time variant 
ARMA model 𝐷−1(𝑘, 𝑞−1)𝐶(𝑘, 𝑞−1) corresponds 
to a linear time variant nd step observable state 
space model and the linear time variant MAAR 
model 𝐶(𝑘, 𝑞−1)𝐷−1(𝑘, 𝑞−1) represents a linear 
time variant nd step reachable state space model [8]. 
However, when the system is linear time invariant 
the CMAAR model will reduce to a CARMA model 
because of the commutativity of linear time 
invariant transfer operators.  The linear time variant 
CMAAR model can be rewritten as follows. 
 

{

𝐴(𝑘, 𝑞−1)𝑣(𝑘) = 𝐵(𝑘, 𝑞−1)𝑢(𝑘)

𝐷(𝑘, 𝑞−1)𝑧(𝑘 + 𝑑) = 𝑤(𝑘 + 𝑑)

𝑦(𝑘 + 𝑑) = 𝑣(𝑘) +  𝐶(𝑘, 𝑞−1)𝑧(𝑘 + 𝑑)

 (7) 

 
The first equation is a linear time variant ARMA 
model, the second equation is an AR model, and the 
third equation is an MAX model.  The following 
assumptions are made about the CMAAR model. 

i. The noise w(k) is an independent Gaussian 
noise with time variant variance and zero 
mean.  The variance is uniformly bounded. 

ii. The linear time variant autoregressive 
operators 𝐷−1(𝑘, 𝑞−1), 𝐶−1(𝑘, 𝑞−1), 
𝐵−1(𝑘, 𝑞−1) and 𝐴−1(𝑘, 𝑞−1)  are all 
exponentially stable.    

iii. The coefficients in the linear time variant 
moving average operators (2) are uniformly 
bounded. 

iv. The absolute value of 𝑏0(𝑘)   is also 
uniformly not zero. 
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These assumptions are natural extensions of those 
made by the original linear time invariant minimum 
variance controller [1] from linear time invariant 
plants for linear time variant systems.  Degrees of 
𝐷(𝑘, 𝑞−1), 𝐶(𝑘, 𝑞−1), 𝐵(𝑘, 𝑞−1) and 𝐴(𝑘, 𝑞−1) are 
time-varying because their coefficients are allowed 
to be zero. However, the delay between input and 
output is time invariant because of assumption iv. 

Minimum Variance Control Objective 

Given a desired plant output sequence {𝑦∗(𝑘 + 𝑑)} 
the objective is to design a linear time variant 
minimum variance controller that minimizes the 
following output control error variance for the linear 
time variant system model (1). 
 
𝐽(𝑘 + 𝑑) = 𝐸{[𝑦∗(𝑘 + 𝑑) − 𝑦(𝑘 + 𝑑)]2│𝐷𝑎𝑡𝑎(𝑘)}
      (8) 
where E represents mathematical expectation 
conditioned on Data(k) that is a set of all plant input 
and output up to and including the current time k. 
 

 

3 Minimum Variance Controller 
We apply the following right polynomial division to 
the noise response of the linear time variant 
CMAAR model (1). 
 
         𝐶(𝑘, 𝑞−1)𝐷−1(𝑘, 𝑞−1) = 𝐹(𝑘, 𝑞−1) + 

            𝐺(𝑘, 𝑞−1)𝑞−𝑑𝐷−1(𝑘, 𝑞−1)   (9) 

where 
 

𝐹(𝑘, 𝑞−1) = 1 + 𝑓1(𝑘)𝑞−1 + 𝑓2(𝑘)𝑞−2  + 
 

…+ 𝑓𝑑−1𝑞
−𝑑+1 (10) 

is the quotient of the polynomial right division and 

 𝐺(𝑘, 𝑞−1) = 𝑔0(𝑘) + 𝑔1(𝑘)𝑞−1 

         +𝑔2(𝑘)𝑞−2 + ⋯  (11) 

the remainder.  Substitute (9) into (1) we have  

𝑦(𝑘 + 𝑑) = 𝑈(𝑘) + 𝑤+ + 𝑤−  (12) 

where 

𝑈(𝑘) = 𝐴−1(𝑘, 𝑞−1)𝐵(𝑘, 𝑞−1)𝑢(𝑘) (13) 

is the response for the control variable u(k), 

 𝑤+ = 𝐹(𝑘, 𝑞−1)𝑤(𝑘 + 𝑑) 

= 𝑤(𝑘 + 𝑑) + 𝑓1(𝑘)𝑤(𝑘 + 𝑑 − 1) + 

   …+ 𝑓𝑑−1(𝑘)𝑤(𝑘 + 1)       (14) 

is the future noise response, and 

 𝑤− = 𝐺(𝑘, 𝑞−1)𝑞−𝑑𝐷−1(𝑘, 𝑞−1)𝑤(𝑘 + 𝑑) 

  = 𝑓𝑑(𝑘)𝑤(𝑘) + 𝑓𝑑+1(𝑘)𝑤(𝑘 − 1) 

      +⋯  (15) 

is the response for the current and past noises.  
Substituting (12) into (8) we have the following. 

Minimum Variance Controller Theorem 

Consider the linear time variant CMAAR model (1).  
If the linear time variant autoregressive operators 
𝐷−1(𝑘, 𝑞−1), 𝐶−1(𝑘, 𝑞−1), 𝐵−1(𝑘, 𝑞−1) and 
𝐴−1(𝑘, 𝑞−1) are all exponentially stable the linear 
time variant minimum variance controller has the 
following form. 

 𝐴(𝑘 − 𝑑, 𝑞−1)𝐶(𝑘 − 𝑑, 𝑞−1)𝑧̂(𝑘) = 

  𝐴(𝑘 − 𝑑, 𝑞−1)𝑦(𝑘) − 𝐵(𝑘 − 𝑑, 𝑞−1)𝑢(𝑘 − 𝑑)
   (16) 

 𝐵(𝑘, 𝑞−1)𝑢(𝑘) = 𝐴(𝑘, 𝑞−1)𝑦∗(𝑘 + 𝑑) 

  −𝐴(𝑘, 𝑞−1)𝐺(𝑘, 𝑞−1)𝑧̂(𝑘)  (17) 

The closed loop system is exponentially stable, and 
the minimum variance control error covariance has 
the form, 

𝐽(𝑘 + 𝑑) = σ2(k + d) + σ2(k + d − 1)𝑓1
2 (𝑘) + 

…+ σ2(k + 1)𝑓𝑑−1
2  (𝑘)   (18)    

Proof 

Substituting (9) into (1) we have 

 𝑦(𝑘 + 𝑑) = 𝐴−1(𝑘, 𝑞−1)𝐵(𝑘, 𝑞−1)𝑢(𝑘) 

  +𝐹(𝑘, 𝑞−1)𝑤(𝑘 + 𝑑) 

 +𝐺(𝑘, 𝑞−1)𝑞−𝑑𝐷−1(𝑘, 𝑞−1)𝑤(𝑘 + 𝑑)  (19) 

Comparing it with the linear time variant minimum 
variance controller (17) and noting the second 
equation in (7) we have 
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 𝑦̃(𝑘 + 𝑑) − 𝑤+ = 𝐺(𝑘, 𝑞−1)𝑧̃(𝑘)  (20) 

where 

 𝑦̃(𝑘 + 𝑑) = 𝑦(𝑘 + 𝑑) − 𝑦∗(𝑘 + 𝑑) (21) 

is the output tracking error and 

 𝑧̃(𝑘) = 𝑧(𝑘) − 𝑧̂(𝑘)  (22) 

is the estimation error for z(k) when (16) is used.   

Subtracting (16) from (1) and noting the second 
equation in (7) we have 

 𝐶(𝑘, 𝑞−1)𝑧̃(𝑘) = 0  (23) 

It follows that 𝑧̃(𝑘) will exponentially decay to zero 
because the autoregressive operator  𝐶−1(𝑘, 𝑞−1)  is 
exponentially stable.  Consequently, equation (20) 
will converge exponentially to the following 
equation. 

 𝑦̃(𝑘 + 𝑑) = 𝑤+    (24) 

Substituting it into the minimum variance control 
cost we have 

 𝐽(𝑘 + 𝑑) = 𝐸{𝑤+2
|𝐷𝑎𝑡𝑎(𝑘)}   (25) 

w+ is future noise component that is independent of 
Data(k) and, thus, unpredictable at time k.  The 
minimum variance control variance is, therefore, 
(18) because the future noise is zero mean. 

Noting (23), (17), (16) and (6) we have the closed 
loop control system for close loop stability analysis, 

𝛷(𝑘, 𝑞−1) [

𝑦(𝑘 + 𝑑)

𝑢(𝑘)

𝑧̂(𝑘 + 𝑑)

𝑧(𝑘 + 𝑑)

] = [

0
𝐴(𝑘, 𝑞−1)𝑦∗(𝑘 + 𝑑)

0
𝑤(𝑘 + 𝑑)

](26) 

where 𝛷(𝑘, 𝑞−1) is defined by the square matrix 

[
 
 
 
 
𝐴(𝑘, 𝑞−1) −𝐵(𝑘, 𝑞−1) −𝐴(𝑘, 𝑞−1)𝐶(𝑘, 𝑞−1) 0

0 𝐵(𝑘, 𝑞−1) 𝐴(𝑘, 𝑞−1)𝐺(𝑘, 𝑞−1)𝑞−𝑑 0

0 0 𝐶(𝑘, 𝑞−1) −𝐶(𝑘, 𝑞−1)

0 0 0 𝐷(𝑘, 𝑞−1) ]
 
 
 
 

 

    (27) 

The plant output and input can be determined from 
the closed loop equation using the following 
equation. 

[
𝑦(𝑘 + 𝑑)

𝑢(𝑘)
] = [

1 0 0 0
0 1 0 0

] [

𝑦(𝑘 + 𝑑)

𝑢(𝑘)

𝑧̂(𝑘 + 𝑑)

𝑧(𝑘 + 𝑑)

]  (28) 

The autoregressive operator matrix of the closed 
loop system is the first matrix on the left of closed 
loop equation (26).  It is defined by (27).  Because 
this matrix is upper triangular and all the diagonal 
elements have exponential stability when used as 
autoregressive operators. The linear time variant 
closed loop system is exponentially stable.   

Remarks 

1. We developed a linear time variant minimum 
variance controller for stochastic optimal control 
of the linear time variant CMAAR model.  The 
difference between this model and the standard 
linear time variant CARMA model is in the 
order of the autoregressive and moving average 
operation in the noise response.  The linear time 
variant CARMA model is defined as follows.  

 𝑦(𝑘 + 𝑑) = 𝐴−1(𝑘, 𝑞−1)𝐵(𝑘, 𝑞−1)𝑢(𝑘) +  

  𝐴−1(𝑘, 𝑞−1)𝐶(𝑘, 𝑞−1)𝑤(𝑘 + 𝑑) (29) 

Because the linear time variant operators are not 
commutative with respect to multiplication 
and/or division the linear time variant CMAAR 
model is different from the linear time variant 
CARMA model.  In the linear time variant 
CMAAR model the noise response is 
represented by a linear time variant MAAR 
model that can be represented using an nd step 
reachable canonical state space form [8].  In the 
linear time variant CARMA model the noise 
response is a linear time variant ARMA model 
that can be represented using a linear time 
variant na step observable canonical form [8].  
In this sense the linear time variant CMAAR 
model represents at least an equally wide class 
of linear time variant plants as the standard 
linear time variant CARMA model.  The fact 
that a linear time variant system can be 

Zheng Li 
International Journal of Control Systems and Robotics 

http://www.iaras.org/iaras/journals/ijcsr

ISSN: 2367-8917 10 Volume 10, 2025



described using a linear time variant CMAAR 
model does not mean it can be described using a 
linear time variant CARMA model. 
 

2. Equation (26) is the closed loop linear time 
variant system and the square matrix 𝛷(𝑘, 𝑞−1) 

in the left most position of the closed loop 
equation represents the linear time variant 
autoregressive operation.  Because the matrix is 
triangular as shown in (27) the closed loop 
exponential stability is determined by the 
diagonal elements when they are used in 
autoregressive operation. Their corresponding 
autoregressive operators are 𝐷−1(𝑘, 𝑞−1),
𝐶−1(𝑘, 𝑞−1), 𝐵−1(𝑘, 𝑞−1) and 𝐴−1(𝑘, 𝑞−1).   
Noting assumption ii we know that the closed 
loop system is exponentially stable.  

 

4 Simulation 
We consider the 2-step-ahead stochastic optimal 
control of the linear time variant CMAAR model, 
where  

 𝐴(𝑘, 𝑞−1) = 1 + 𝑎(𝑘)𝑞−1 

 𝐵(𝑘, 𝑞−1) = 1 + 𝑏(𝑘)𝑞−1 

 𝐶(𝑘, 𝑞−1) = 1 + 𝑐(𝑘)𝑞−1 

 𝐷(𝑘, 𝑞−1) = 1 + 𝑑(𝑘)𝑞−1                     (30) 

with 

𝑎(𝑘) = {
0.5(1 − 0.9𝑒−𝑘) 25𝑖 < 𝑘 ≤ 25(𝑖 + 1)

−0.5(1 − 0.9𝑒−𝑘) 25(𝑖 − 1) < 𝑘 ≤ 25𝑖
 

 𝑏(𝑘) = 0.4(1 + 𝑠𝑖𝑛( 0.5𝜋𝑘)) 

 𝑐(𝑘) = {
0.7

𝑘

𝑘+1
15𝑖 < 𝑘 ≤ 15(𝑖 + 1)

−0.7
𝑘

𝑘+1
15(𝑖 − 1) < 𝑘 ≤ 15𝑖

 

 𝑑(𝑘) = 0.6cos (0.4𝜋𝑘))                         (31) 

In this CMAAR model the noise w(k) is an 
independent Gaussian white noise that has unit 
variance and zero mean.  Moreover, the linear time 
variant autoregressive operators 𝐷−1(𝑘, 𝑞−1),
𝐶−1(𝑘, 𝑞−1), 𝐵−1(𝑘, 𝑞−1) and 𝐴−1(𝑘, 𝑞−1) are all 
exponentially stable because the absolute values of 
the parameters d(k), c(k), b(k) and a(k) are all 
uniformly less than unit.  The minimum variance 

control performance is given in Fig. 1.  It shows 
that the output of the linear time variant system is 
driven to follow the desired plant output, the square 
wave, even when the parameters (31) of the plant 
are changing rapidly 

 

 

5 Conclusion 
We developed a linear time variant optimal 
controller for minimum variance control of 
stochastic linear time variant plants described by the 
CMAAR model that is different from the linear time 
variant CARMA model for linear time variant 
processes.  However, linear CMAAR model 
represents an equally large class of linear time 
variant processes as the linear time variant CARMA 
model does.  The control objective is for minimum 
variance output tracking.  This minimum variance 
controller does not require the pseudo commutation 
for overcoming the noncommutativity of linear time 
variant transfer operators and is able to ensure 
minimum variance output tracking and exponential 
stability in closed loop control. 

 

Fig 1. The desired plant output versus the real plant output.  The 
real plant output is represented by the solid line and desired 
plant output is represented using the dotted line. 
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