
 

 
Robust control is the control of unknown plants 

with unknown dynamics subject to unknown 
disturbances [1]. From this statement, it is clear that 
one of the key issues of robust control systems is 
uncertainty and how the control system deals with it. 

To solve the problem of fuzzy control nonlinear 
system with uncertain parameters and subject to a 
disturbance of the wind, a robust controller for all 
non-linear systems. The nonlinear system is modeled 
by a fuzzy model TS (Takagi-Sugeno) fuzzy and 
uncertainty of model form a model close to the real 
system [2]. 
    In this paper a robust controller design is 
presented, which covers the entire nominal operating  
Trajectory and takes into account requirements that 
are met in today’s operation of wind turbines. 
Parameter uncertainties are accounted for in the 
design, and robustness provides guaranteed stability 
and performance against these variations [3]. The 
proposed robust controller design makes it possible 
to control the wind turbine along the entire nominal 
operating trajectory using fewer controllers than 
ordinary robust design methods, while maintaining 
the required performance [3]. 

 

 

 

Figure 1. General structure [4]. 

Electrical generators are systems whose power 
regime is generally controlled by means of power 
electronics converters. From this viewpoint, 
irrespective of their particular topologies, controlled 
electrical generators are systems whose inputs are 
stator and rotor voltages, having as state variables the 
stator and rotor currents or fluxes. This system is 
controlled by the fuzzy controller to optimize the 
maximum power available at the wind turbine blades. 
The figure 1 shows the overall system studied [4] [5]. 

The fuzzy TS model represents a nonlinear system 
multi-variable and uncertain as the following 
equations [6] [7]:              

Plant rule i : IF q1 (t) is N1i  AND……..AND qk(t) is 
Nki 

Then ẋ(t) = (Ai + ∆Ai) x(t) + (Bi + ∆Bi) u(t) 

         y(t) = Ci x(t) + Wd(t)   i = 1,2…….p            (1) 
With :  
Nki : fuzzy set, x(t) Є knx1 : state vector,  
u(t) Є kmx1 : input controller, 
Ai Є knxn and Bi Є knxm : are matrix systems and input 
matrix,  
∆Ai Є knxn and ∆Bi Є knxm : are non time-varying 
matrices with appropriate dimensions, which 
represent parametric uncertainties in the plant model, 
Ci Є kgxn : output matrix,  

p : Number of fuzzy rules TS model, d(t): is assumed 
known noise matrix. 
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The output system defuzzification (1) is as 
followings : 
ẋ(t) = ∑  

𝑝
𝑖=1 𝜇i (q(t))[(Ai + ∆Ai)x(t) + (Bi + ∆Bi)u(t)]  

y(t) = ∑  
𝑝
𝑖=1 𝜇i (q(t))[ Ci x(t) + Wd(t)]                  (2) 

with :  
∆A= ∑  

𝑝
𝑖=1 𝜇i (q(t)) ∆Ai =  

∆B= ∑  
𝑝
𝑖=1 𝜇i(q(t)) ∆Bi =                                     

∆A and ∆B are uncertain parameters, Ai and Bi are 
nominal parameters the input matrix. 

Figure 2. Fuzzy control system [7]. 

Fuzzy uncertainty regenerator is a fuzzy TS model 
to regenerate the uncertainties of parameters using 
fuzzy rules. It is introduced so that the analysis can 
be performed and the fuzziness planner can be 
derived. The outputs of the fuzzy regenerator 
uncertainty are given by [8]: 

∆A= ∑  𝑛
𝑙=1 hl (∆A, ∆B) ∆A 

∆B= ∑  𝑛
𝑙=1 hl (∆A, ∆B) ∆B                               

∑  𝑛
𝑙=1 hl (∆A, ∆B) = 1, hl (∆A, ∆B) Є [0,1] ∀ l 
From the equations (2) and (6) we obtain: 

ẋ(t) = ∑ ∑  𝑛
𝑙=1

𝑝

𝑖=1
𝜇ihl[(Ai + ∆A)x(t) + (Bi + ∆B)u(t)]          

    y(t) = ∑  
𝑝
𝑖=1 𝜇i [Ci x(t) + Wd(t)]                        (3)   

We assume that the model of equation (3) fuzzy 
system is observable: 

Observer rule i :IF q1(t) is N1i AND...AND qk(t) is Nki 

Then  x(t) = Ai x(t) = Bi u(t) = Ki (y(t) – 

y(t))

  

   y(t) = Ci x(t)            i = 1,2…..q                 
The observer states are governed by : 
ẋs(t) =∑  

𝑝
𝑖=1 𝜇i [Ai xs(t) + Bi u(t) + Ki (y(t) –ys(t))]              

ys(t) = ∑  
𝑝
𝑖=1 𝜇i Ci xs(t)                                    (4)    

With : 

xs(t) : State vector estimated by the fuzzy observer. 
ys(t) : Output fuzzy observer. 
Ki : Fuzzy observer gain.      
    
 

 

     Squirrel-cage induction generator model is 
given by the following matrix system [9] [10]: 
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Where Vds, Vqs, Ids, Iqs, Idr, Iqr, Rs,Rr Ls, Lr are the 
voltages and currents in direct and quadrature 
inductances and resistances cyclic stator and rotor 
respectively . The hypothesis proposed for high 
power machines used for wind generation is that the 
stator flux is constant and the resistance Rs is 
negligible. However, aerodynamic torque 
expressions are given by: 
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obtained by integrating the following differential 

equations: 
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for the state and input vector respectively, the SCIG 
state model can be presented as a eight-order model 
[11]: 

ẋ(t) = A(x) x(t) + B u(t), 

 y(t) = C( x) x(t) 

where 
RS
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The electromagnetic torque expressions are given by: 

)(
2
3

sdrqrdsqmG iiiipL                                     (7) 

With p being the pole pairs number, Lm the stator-
rotor mutual inductance, isd, isq, ird and irq are the 
stator, respectively rotor current (d,q) components. 
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The figure 3 shows the wind profile applied to the 
wind turbine. Simulations were performed in 
MATLAB using the non linear model. the proposed 
controller is tested for a random variation of wind 
speed. the control objective of this section is to 
design a robust fuzzy control law for the system 1. 
The parametric uncertainties Lr, Rs and Rr are 
considered within 40 percent of their nominal values. 

Figure 3. Wind speed profile.  

Figure 4 and figure 5 show the rotational speed and 
power profile of the wind turbine. From the 
simulation results using the proposed control 
scheme, we can observe that the outputs of the 
system are bounded and good tracking performance 
can be obtained through the uncertain nonlinearities 
of the system.  
 

 
Figure 4. Rotation speed profile (with three cases). 

 
 
 
 
 
 
 
 
 
 

 
Figure 5. Wind turbine power  profile (with three cases). 

 
Figure 6  show the power coefficient, it is clear 

that the Cpmax ≈ 0.48 
 

Figure 6. power coefficient profile (with three cases). 
 
In order to obtain maximum output power from a 

wind turbine generator system, it is necessary to 
drive the wind turbine at an optimal rotor speed for 
a particular wind speed, and keep the power 
coefficient at 0.48. Figure 8 shows the power 
coefficient; it can be seen that , which proves the 
effectiveness of the proposed algorithm. 

The simulation results demonstrate the 
effectiveness of the proposed control approach. The 
proposed control scheme can guarantee the stability 
of the closed-loop system and the convergence of the 
output tracking error. 

 

The proposed algorithm allows the stabilization of 
nonlinear system with parametric uncertainties. The 
designed controller uses fuzzy systems of Takagi-
Sugeno models and operates local systems obtained 
by linearization around a few operating points. The 
principle of this approach is to design a state 
feedback control capable of stabilizing the closed 
loop system. A simulation example is presented to 
illustrate the proposed approach. The simulation 
results show that the developed controller stabilizes 
the wind energy system. 

3. Results and Discussion 

4. Conclusion 
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ANNEX 
ωs, ωr : Stator and rotor angular frequencies,  
Ωg : Mechanical generator speed, 
np : Number of pole pairs,  
isd, ird : Stator and rotor currents in axis d,  
isq, irq : Stator and rotor currents in axis q,  
Rs, Rr : Stator and rotor resistance,  
Ls, Lr, Lm : Stator, rotor leakage, and magnetizing  
                  inductances, 
Vs : Stator voltage magnitude,  
τg : Time constant of the model,  
Th : High-speed shaft torque,  
nb : Gearbox ratio,  
Dr, Dg and Dls : Damping constants for the rotor, generator, 
and the equivalent low-speed shaft,  
Kls : Equivalent torsional stiffness of the low-speed shaft, 
Jr, Jg : Moments of inertia of the rotor and generator,  
Tg, Tg.ref : Generator torque and required generator torque. 
 
SCIG  parameters are: 

P n = 75 kW, V = 690 V  and  f =50Hz,  
Stator resistance:  Rs = 0,039Ω  ; 
Rotor resistance:   Rr = 0,022Ω  ; 
Stator inductance: Ls = 0,017 H ; 
Rotor inductance:  Lr = 0,017 H; 
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