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Abstract: - This review of human–robot interaction technology (HRI) suggests how retailers can enhance 
customer service and improve their operations through the use of service robots. We have reviewed earlier 
studies and identified current and emerging robotic technologies that exhibit potential for use in retail 
businesses. The review of HRI technologies presents actionable information with which businesses can 
improve service and efficiency. This study suggests how robotic technology can elevate customer service and 
transform retailing. Although extensive research investigates the psychological, neurological, and engineering 
issues of human–robot interaction, few studies establish how robot technology can elevate customer service and 
transform retailing. This study provides practical technology information in retail service robots that have 
noteworthy potential for assisting elderly and physically challenged consumers. 
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1 Introduction 
An increasing body of academic literature examines 
the mechanisms underlying interactions between 
robots and humans [1]. Studies broadly cover (i) 
robotic systems, (ii) human physiology and 
psychology, and (iii) interactions between robotic 
systems and humans [1]. Human–Robot Interactions 
(HRI) is, by nature, a broad topic that attracts people 
in various disciplines and each area of interest is 
branched and researched with different perspectives. 
For example, mechanical, electrical, and computer 
engineers are mainly focused on topics on robot 
design, kinematics, dynamics, modeling, planning, 
decision and control, plus enabling technologies—
sensors, devices, and algorithms [2]. Computer 
scientists address computation and algorithms, 
machine learning, and artificial intelligence [3]. 
Neurologists and psychologists investigate human 
cognition [1, 4-6] and behavior [7] to model how 
social intelligence, emotions, appearance, and 
personality influence human–robot interactions [6, 

8]. Recent research seeks to close the emotional 
distance between humans and robots via physical 
appearance and emotion-laden social 
communication [8-10]. Nonetheless, few studies 
discuss applications of robotic technology to benefit 
retail business [11]. A robot as an individual and 
automated agent can freely communicate with 
customers, meet their needs, offer 
recommendations, analyze purchase patterns, act on 
demographic information, conduct real-time 
inventories, and identify changes in the marketplace 
[9]. Autonomous robots offer unique, higher-quality 
shopping experiences [8, 9] that can transform 
shopping, entertainment, and travel. This study 
reviews human–robot interaction (HRI) 
technologies that facilitate employment of efficient 
and appropriate retail service robots. It provides 
business decision makers important information 
about retail innovation technology. 
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Robotic systems generally entail six categories of 
human interactions [6] applicable to retail settings: 
proximity, autonomy, human-to-robot signaling, 
sensors, robotic platforms, and HRI systems [1, 4, 
5]. 
 
2.1 Types of Proximities 
Human–robot interactions are proximate or remote 
in the sense of physical distance [12, 13]. Proximate 
interactions occur between operators and robots who 
communicate directly or indirectly at the same place 
and time [9]. Examples of proximate interaction are 
robotic toys and mechanisms operating 
autonomously or guided by nearby humans [11, 14]. 
Remote interactions are spatially or temporally 
separated (Figure 1). Teleoperation is an example, 
although interactions in extreme conditions—e.g., 
disaster relief, deep sea operations, or high-altitude 
and long-range unmanned aerial vehicles—are best 
known for their applications [12]. Robots in retail 
businesses are generally expected to interact 
proximately with customers, but they could be 
managed remotely by distant operators and fully 
autonomous operation is possible [15].  

 

 
Fig. 1 Proximate interaction: the mobile manipulator 

Loki (top). Remote interaction: a human-operated 
multi-copter (bottom). 

 
2.2 Levels of Autonomy 
Autonomy is the extent to which robots perform 
tasks independently [13, 16]. Limited autonomy 
could be arguably best in retail contexts, as it allows 
firms to maintain manageable workloads and control 
their robots [17]. Sheridan and Verplank [18] 
describe ten levels of autonomy ranging from 
completely human-controlled to fully autonomous 
(Table 1) which suggest that robot users or operators 
are recommended to choose most appropriate ones 
for their applications.  
 
2.3 Human Signals 
Current robotic technology employs various types of 
human-to-robot biological signals such as 
electromyography (EMG), face, figure and hand, 
speech and voice, or combination of them. Besides 
reducing failure rates and computational time [14], 
bio-signals maximize interactive efficiency using 
humanlike recognition, perception, engagement, 
determination, and decision-making [17, 19]. 
 
2.3.1 Electromyography  
Electromyographs (EMGs) detect electricity 
generated by muscle contractions or brain activity. 
EMGs require direct physical interface—remote or 
tethered—between robots and operators, who wear 
an apparatus that transmits their body’s electrical 
signals [20]. Their many applications to HRI include 
teleoperation in harsh and remote environments [21] 
and advanced medical prostheses [22], exoskeletons 
[23], and muscle-computer interfaces [24]. Their 
retail uses include interactions with children [25], in 
robots that cooperate with employees [26]; [27], in 
teleoperation of redundant robots [28], and 
household service [29]. Their disadvantages include 
the dimensionality and complexity of human 
musculature, the non-linear relation between human 
myoelectric activity and motion or force, muscle 
fatigue, signal noise, and exogenous factors such as 
sweat and weather [30, 31] which often requires 
extesive data and machine learning process (Figure 
2 and 3). 
 

 

Fig. 2 Cyberglove II flex sensors based MCS 
(Cyberglove Systems image) 

2 Human-Robot Interaction 
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Fig. 3 Robot torso controlled by EMG signals (DLR 
photo) 

 
2.3.2 Face 
Intelligent robots often use vision systems to avoid 
obstacles, detect objects, navigate, and execute 
tasks, but facial recognition technology is necessary 
for proximate human–robot interactions. Besides 
mechanical vision hardware, facial recognition 
requires mathematical models and sophisticated 
algorithms to perceive, recognize, and react to facial 
characteristics collected by a camera [32] (Figure 4). 
Once the face is detected, it normally must be 
tracked if programmed tasks are to be performed 
correctly [32-39]. Faces present greater pattern-
recognition problems (colors, shapes, influence of 
external conditions) than numbers and letters in 
static and dynamic contexts [36]. Impediments to 
retail application include systems’ mechanical and 
mathematical sophistication, dependence on image 
quality, need for learning algorithms, and 
environmental limitations. 

 
Fig. 4  Face recognition process diagram 

(CMU photo) and a captured image [40] 
 

2.3.3 Finger and hand 
Manual gestures are distinctive signals 
comprehensible to robots [5]. Characteristics of 
palms, fists, and finger gestures are more 
regularized than facial data, but difficulties afflicting 
this technology include complex and changing 
backgrounds, variable light conditions, deformities 

of the human hand, and real-time execution 
dependent on users and devices (Figure 5). Also, the 
technology is limited by the number patterns and its 
applicability to the elderly, young, and disabled. 
M.W. Krueger first proposed gesture-based 
interaction as a form of human-computer interaction 
in the mid-1970s [41], and numerous studies 
followed [3, 5, 7, 14, 42-45].  
 
 
 
 
 
 
 
 
 

Fig. 5 Images of hand gestures and feature 
extraction [43]; [46] 

 
2.3.4 Speech and voice 
Initiated in the 1950s, speech recognition has 
been adapted to HRI since 1970 [47] (Figure 6). 
If systems are adapted to specific users or 
operate under low-noise conditions, current 
technology attains acceptable recognition of 
words and sentences spoken in varying tones 
[47]. In HRI, the need for robust and automatic 
speech recognition is still imminent [9, 48, 49].  

 

Fig. 6  Depiction of speech recognition [48] 
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Speech recognition hardware has expanded 
enormously, but many problems remain. Noise-
cluttered environments impede performance [49]. 
Systems must be adapted to environments and users 
both, which customarily involves data learning, 
sound localization, and multi-pass decoders [50-56]. 
 
2.4 Sensors 
Robots need sensors to receive data from human 
operators or their operating environment. There are 
many sensors already implemented on robots but 
ones that are most commonly used in HRI are 
introduced here. One of the most widely used for 
HRI [33] is vision systems that integrate and process 
captured images to generate decisions dependent on 
extant or created databases. Another is the usage of 
microphones which receive voice commands and 
enable robots to recognize operators’ characteristics 
[53]. Tactile sensors facilitate physical interactions 
such as shaking hands and avoiding obstacles [57]. 
Haptic sensors often incorporate tactile sensors that 
measure forces exerted by the operator. 
 
2.5 Robot Platform 
The term “platform” refers to how robots move. 
Wheeled, mobile, and legged robots are common 
platforms [2]. Wheeled robots are categorized by the 
number, driving mechanism, and type of wheel. For 
instance, a wheelchair is a two-wheeled platform 
with a differential drive wheel. One advantage of 
wheeled robots is that their kinematics and 
dynamics are amply analyzed and modeled [44]. 
The most common robotic platforms have 
applications for navigation, path planning, 
surveillance, reconnaissance, and search and rescue. 
The Mars Rover [58], unmanned aerial vehicles, 
drones, and unmanned cars [59] have been tested for 
military and commercial applications (Figure 7 and 
8). Bipedal robots resemble humans and employ 
assorted modes of mobility. Drones or aerial 
vehicles have shown for delivery, rescue, and 
surveillance. 
 
2.6 Human-Robot Interaction Systems 

Several HRI systems are commercially 
available. SoftBank’s Pepper mimics human 
emotion by analyzing expressions and voice tones 

Fig. 9 Its open-development platform allows users 
to personalize contents and modify functions.  

 
Fig. 9 Pepper service robot from Softbank 

 

3 Conclusion 

This study extends the literature of business 
technology by demonstrating the potential of 
human–robotic interaction for retail settings. It is 
intended to inform retailers about the status and 
evolution of interactive technologies applicable to 
their businesses. It has shown how robots can 
improve customers’ retail experience and retailers’ 
efficiency. Future studies need to expand upon our 
presentation by examining more specific aspects of 
robotics applicable to retail settings, such as social 
signals, cultivation of trust, and addition or 
modification of features that improve human–robot 
interaction. 
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Table 1  Sheridan and Verplank’s Levels of Autonomy (LOA) [18] 

 

Fig. 7 (a) Mars Rover, (b) Toyota DJ robot, (c) Google’s unmanned car. 

Figure 8  (a) Honda Asimo Humanoid robot [60] (b) Amazon delivery drone 

Scale Autonomy level description 

Level 1  No computer assistance; human does everything. 

Level 2  Computer offers users a full selection of actionable alternatives. 

Level 3  Computer narrows users’ selection of choices. 

Level 4 Computer suggests an action. 

Level 5 Computer executes actions after operator approval. 

Level 6 Computer allows operators a limited veto before executing tasks automatically. 

Level 7 Computer executes automatically then informs the operator. 

Level 8 Computer executes automatically and informs the operator only if requested. 

Level 9 Computer executes automatically and informs the operator at its discretion. 

Level 10 Computer acts autonomously without informing the operator. 
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