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Abstract: -Nowadays, Two Wheeled Inverted Pendulum Mobile Robots (TWIPMR) are being used widely in 

many different applications. It’s very important to ensure that the robot is able to stabilize itself when it moves 

forward and backward. Stabilization and the trajectory tracking of the robot has gained extensive momentum 

and become increasingly popular with researchers around the world. In addition, the robot must regulate the 

steering angle when it turns left or right must be considered in control design and analysis beside stability and 

the trajectory tracking. To achieve these, two decoupling optimal controllers based on Linear Quadratic 

Regulator (LQR) design method are proposed in this paper to robustly balance the robot platform and to 

generate the required optimal control signals under any external disturbances. The simulation results are 

provided to show the effectiveness of the proposed designed control method to get an accurate tracking signal 

of the desired trajectory. Furthermore, the 3D representation of the simulation and a visualization model to 

observe robot behavior in different scenarios is included  
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1 Introduction 
Design and control of two-wheeled balancing 

mobile robot or wheeled inverted pendulum is a 

popular research topics in verifying various control 

theories over the last decade. The motion control 

problem of the robot that can autonomously self-

balanced on wheels has received much attention in 

both academic and industry worldwide. Two-

wheeled robot system is not only intricate multiple-

input multiple-output nonlinear system, but also a 

kind of typical non-holonomic system with time-

varying. It is also a complicated coupled dynamic 

system and non-linear saturation dynamic 

characteristics [1],[2]. In real movement, the two-

wheeled robot suffers from uncertain factors, such 

as load change, the friction, road conditions and 

external interference, this would bring great 

difficulties to motion control of two- wheeled robot. 

In this work, the performance of the dynamical 

system is being controlled till the desired trajectory 

is optimized. A decoupling controller based on 

Linear Quadratic Regulator (LQR) is designed and 

implemented to robustly stabilize the TWIPMR 

system [3]. In addition, the tracking performance of 

the robot displacement under the influence of the 

disturbance is investigated and analyzed. The rest 

work of the paper is organized as follows. In section 

2, the mathematical model of TWIPMR robot is 

presented in a systematic way and derived .In 

section 3, the system input-output analysis is 

explained. The decoupling controller is designed in 

section 4. The virtual reality animation for 

simulation and analysis is shown. Finally, section 5 

presented the conclusion.  
 

2 Mathematical Model of TWIPMR 
The performance of a balancing robot depends on 

the efficiency of the control algorithms and the 

dynamic model of the system. By adopting the 

coordinate system shown in Fig.1 using Newtonian 

mechanics, it can be shown that the dynamics of the 

TWIPMR under this consideration is governed by 

the following equations of motion. Linear 

displacement of the vehicle is denoted by x, angular 

rotation about the y-axis (pitch) by θ, and angular 

rotation about the z-axis (yaw) by   [4]. The 

definitions of parameters are in listed in Table 1. 
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Fig. 1:  Diagram of forces and moments acting on the 

TWIPMR [4] 

 

Table 1: Definition of parameters of the system 

A mechanical 3 DOF system can be modeled using 

six state space variables. The following variable has 

been chosen: 

x: Straight line position  [m]       

 : : Straight line speed      [m/s] 

  : Pitch angle                  [rad]                      

  : Pitch rate                    [rad/s] 

 : Yaw angle                    [rad]   

 ̇: Yaw rate                       [rad/s] 

 

Based on these parameters the state space equation 

for the system is obtained as [5]: 
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With   and   are defined as following     
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The nonlinear dynamic equations represented using 

simulink model as shown in Fig. 2. It gives the exact 

relationships among all the variables involved. Due 

to small variation about operating conditions 

at    , the above equations are linearized and the 

following linear model equations are obtained [5].  

 

 

 

 

 

 

 

 

 

 

Fig. 2: Simulink model of the nonlinear TWIPMR 

dynamics system 

 

 

Symbol Definition 

m Mass of robot body 

R Radius of wheel 

D Distance between wheels 

   Disturbances applied CG 

CG Center of gravity of robot body  

  Distance between CG and wheel axis. 

   
Moment of inertia of chassis with respect to 

y-axis 

    Moment of inertia of chassis 

    Moment of inertia of pendulum 

   Horizontal force 

      Torques generated from the motors 

      Rotation angles of wheels 

      Friction forces with ground surface 

        Outside Disturbances applied to wheels 

      
Interacting forces between wheels and 

chassis 

      
Moment of inertia of wheels with respect to 

z-axis 

      Mass of each wheel 
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The general state-space representation of a 

continuous LTI system can be written in the 

following form: 
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3 System Analysis 
The TWIPMR system can be defined as a MIMO 

system where                           the inputs are 

and (      ̇       ̇       ̇ )                       . 
The system transfer functions are summarized in 

table 2.  The transfer functions have at least one or 

more unstable poles. The open loop step and 

impulse responses are shown in Fig 3.  It can be 

clearly seen that all responses are diverging and the 
system is unstable. Also a rapid divergence in the 
output is observed when a little variations in the 
input signal is occurred. [6],[7]. Consequently, in 
order to avoid this degradation in stability and 
tracking performance, the decoupling optimal 
controller is designed as will be explained in the 
next section. 
 

Table 2: Transfer Function Matrix 
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Fig. 3: Open loop unit step and impulse responses of 

the transfer matrix 

 
 

4. Decoupling Controller Design 
 

To stabilize the robot, a decoupling methodology 

using two decoupled state space controllers based 

on LQR is implemented. In this case, the system 

equations are decoupled into couple of sets. The 

first set of equations represents the displacement 

and the rotational angle about y-axis while the 

second set represents the rotational angle about z-

axis, and accordingly the following model is 

obtained. 
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In order to impose the desired dynamics on the 

system, the rotation around the z-axis is controlled 

independently of the rotation around the y-axis. 

Where two separate LQR controllers are developed. 

The decoupling controller generates the control 

signals     and    which are in turn coupled to 

obtain the correcting control signals    and   . Fig. 

4 shows the closed loop system with decoupling 

controller. The system can be now represented into 

two independent subsystems. As a result, an 

alternative state space model is obtained [8-10].      
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Since this section will only analyses the 

performance of the decoupled linear quadratic 

regulation with integral control (LQRIC) and   linear 

quadratic regulation with feedforward scaling factor 

(LQRFSF) control scheme, two separate LQR 

controllers need to be designed and tuned, the 

weighting matrices         and          were 

tuned using Bryson’s rule until simulation results  

display the desired system performance. The 

following is the algorithm that has been used in the 

LQRFSF and LQRIC control design for TWIPMR 

system.  

Algorithm  
1- For position–balancing subsystem, using 

Bryson’s rule chose   =  diag(q1,q2,q3,q4) as the 

matrix    4x4, where q1 corresponds to weight on 

robot position , q2 corresponds to weight on robot 

linear velocity, q3 corresponds to the pitch angle , 

q4 corresponds to the angular velocity. Chose     

  =  diag(q5,q6, q7) as the matrix    3x3, where q5 

corresponds to weight on yaw angle , q6 

corresponds to weight on derivative of yaw angle 

and q7  corresponds to weight of integral state.  
 

2- Since, the constraint on robot position is difficult 

to meet, we choose        , i= 2,3,4,5,6,7 . As the 

robot begins to fall the linear velocity of the robot 

should change rapidly to prevent this, so      . 

3. Due to the physical constraint s imposed on the 

angle and position we chose       ,         As 

there is constraint we choose    and    1. 

The decoupling controller transform the LQRFSF 

and LQRIC output signals into torque commands 

for the left and right motors (     ). The motor 

torque commands are fed into the ATWIPMR plant 

model, a new set of state variables are produced, and 

the decoupled control scheme repeats. In other 

words, the decoupling controller can control the 

rotation around the z-axis independently of the 

rotation around the y-axis. The Simulink block 

diagram of the decoupling unit can be seen in Figure 

4. 
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Fig. 4: Control block diagram for the TWIPMR 

system Decoupling Controller 
 

 

 

5.  Virtual Reality Animation 
The link between the TWIPMR system and the 

virtual reality model is done through the virtual 

reality toolbox. In this section the performance of 
the decoupled LQR control scheme is analyzed. A 

visualization model is created to make it easier to 

observe and actually see how the robot behaves in 

different scenarios. Previously, the user can view 

the results in 2D after the simulation is complete, by 

including a virtual world of a TWIPMR system the 

simulation in 3D animation during the simulation 

run time [6]. The virtual model is created using the 

standard Virtual Reality Modeling Language 

(VRML). It is a text language used for describes 3-

D shapes and interactive environments. Design in 

VRML depends on the information available to the 

designer and the imaging of the object. The VRML 

model of TWIPMR is processed using the V-Realm 

Builder as shown in Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5:  VRML model of the ATWIPMR in V-Realm 

 

The link between Matlab-Simulink and VR 

environment is used for the manipulator’s 

movements. The visualization is implemented in 

simulink as a separate part as shown in Fig. 6. 
Inputs to the VR Sink block are the signals that 

are necessary to calculate position and rotation 

of the objects in the VRML model.  

Fig. 6: Virtual Reality World Interface 

Fig. 7 shows a complete simulink model for testing 

the controller.  Every part of the system is 

implemented in a simulink model as a separate 

block. The effects of  disturbances (FdL, FdR, fp) 

are investigated and taken into consideration. 
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Fig. 7: The link between Simulink model and virtual 

world 

 To ensure that the controller is able to give the best 

performance, the system will be tested with a 

different set of paths as shown in Figure 8. The 

TWIPMR plant model will be subjected to a 

road_profile_L and  road_profile_R   disturbance 

acting to the left and right wheel respectively 

(FdL,FdR) as shown in Figure 9  and  the pulse  

profile to the pendulum about the pitch axis (fd) as 

shown  in Figure 10. For the purpose of controller 

testing, a simulation using MATLAB’s Virtual 

Reality toolbox is achieved in next section.  

 

 

 

 

 

 

Fig 8.  Profile of diffrence reference tracking 

 

 

 

 

 

 

Fig 9.  Profile of left and right wheel disturbance 

Fig 10.  Profile of pulse disturbance acting at the body 

about the pitch axis 

The simulation results in (Figs 10-12) show the 

performance of the considered designed control 

method with different reference input signals are 

applied. Where, an accurate tracking of the linear 

displacement x, rotation angle   and rotation angle   

trajectories to these reference signals is observed.   

Fig 11: States of TWIPMR for road profile1 
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Fig 12: States of TWIPMR for road profile2 

Fig. 13:  States of TWIPMR for road profile3 

 

Conclusion 
In this paper, the mathematical model of the 

TWIPMR is presented. The balance and tracking 

control of the two wheeled mobile robot has been 

studied and analyzed. Two linear quadratic 

regulators with integral control and feedforward 

scaling factor (LQRIC and LQRFSF) have been 

applied as a decoupling controller to improve the 

system performance according to an optimal control 

parameters adjustment.  Different input reference 

signals have been applied to test the effectiveness of 

this controller and it is demonstrated that an 

acceptable tracking accuracy can be achieved. It is 

concluded that, under the influence of these signals 

the decoupling controller is successful to achieve a 

high tracking performance in transient and steady 

state time. In addition, the uncertainty due to effect 

of noise signal is considered to test the robustness of 

the control design approaches, and it is 

demonstrated that, the decoupling controller is 

robustness controller. 
 

References 
[1] Jian Xin,Zhao Qin Guo and Tong Heng Lee “Design 
and Implementation of Integral Sliding-Mode Control on 
an Underactuated Two-Wheeled Mobile Robot,” IEEE 
Transactions on industrial electronics, Vol. 61, No. 7, 
JULY 2014. 

[2]  Chenguang Yang, Zhijun Li Rongxin Cui and 
Bugong, “Neural Network Based Motion  Control of  
Underactuated Wheeled Inverted Pendulum Models,” 
IEEE Transactions on neural Networks and learning 
systems, Vol. 25, No. 11, November  2014. 

[3] Hongguo Niu, Niu Wang and Nan Li, “The adaptive 
Control Based on BP Neural Network Identification for 
Two Wheeled Robot,” 12th World Congress on Intelligent 
ontrol and Automation (WCICA),June 12-15, China, 
2016. 

[4] Ahmad and Osman, “Real-Time Control System for a 
Two-Wheeled Inverted Pendulum Mobile Robot,” 
Advanced Knowledge Application in Practice University 
Technology,  Malaysia, 2015. 

[5] Steven J. Witzand, “Coordinated LEGO Segways,” 
MSc The University of New South Wales, 2009. 

[6]  A.S. Andreyev, O.A. Peregudova, “The motion 

control of a wheeled mobile robot”, Journal of Applied 

Mathematics and Mechanics,2015. 

 
[7] Felix Grasser, “JOE: A Mobile, Inverted Pendulum,” 
Laboratory of Industrial Electronics Switzerland, 2015. 

[8] Shinya Akiba,” Optimal tracking control of two-

wheeled mobile robots based on model predictive control” 

The 11th IEEE International Workshop on Advanced 

Motion Control March 21-24, 2010, Nagaoka, Japan 

 

[9] Shagging Jiang, Fuquan Dai, Ling Li and Xueshan 

Gao,” Modeling and LQR Control of a Multi-DOF  

Two-wheeled Robot”,Proceedings of the 2014 IEEE 

International Conference on Robotics and Biomimetics 

December 5-10, 2014, Bali, Indonesia 

  
 [10]   Wei An and Yangmin Li, “Simulation and Control 
of a Two-wheeled Self-balancing Robot,” Proceeding of 
the IEEE, International Conference on Robotics and 
Biomimetics (ROBIO), Shenzhen, China, December 2013. 

 
 

 

 

Ahmed J. Abougarair, Elfituri S. Elahemer
International Journal of Control Systems and Robotics 

http://www.iaras.org/iaras/journals/ijcsr

ISSN: 2367-8917 Volume 3, 2018




