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Abstract: In this paper, we consider a nonlinear feedback control called augmented automatic choosing control
(AACC) using sigmoid type gradient optimization automatic choosing functions for a class of nonlinear systems.
When the control is designed, a constant term which arises from linearization of a given nonlinear system is treated
as a coefficient of a stable zero dynamics. The controller is a structure-specified type which has some parameters.
Parameters of the control are suboptimally selected by extremizing a combination of the Hamiltonian and Lyapunov
functions with the aid of the genetic algorithm. This approach is applied to a field excitation control problem
of power system, which is Ozeki-Power-Plant of Kyushu Electric Power Company in Japan, to demonstrate the
usefulness of the AACC. Simulation results show that the new controller can improve the performance remarkably.
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1 Introduction

Generally, it is easy to design the optimal control laws
for linear systems, but that is not the case for nonlin-
ear systems, though they have been studied for many
years[1]∼[7].One of the most popular and practical
nonlinear control laws is synthesized by applying a
linearization method by Taylor expansion and the lin-
ear optimal control method to a given nonlinear sys-
tem. This is only effective in a small region around the
steady state point or in almost linear systems[1]∼[4].

As one of approaches to overcome these draw-
backs, an augmented automatic choosing control
(AACC) is proposed for nonlinear systems[6][7]. Its
design procedure is as follows.

Assume that a system is given by a nonlinear
differential equation. Choose a separative variable,
which makes up nonlinearity of the given system. The
domain of the variable is divided into some subdo-
mains. On each subdomain, the system equation is
linearized by Taylor expansion around a suitable point
so that a constant term is included in it. This constant
term is treated as a coefficient of a stable zero dynam-
ics. The given nonlinear system approximately makes
up a set of augmented linear systems, to which the
optimal linear control theory is applied in order to get

the linear quadratic (LQ) controls[2]. These LQ con-
trols are smoothly united by sigmoid type gradient op-
timization automatic choosing functions to synthesize
a single nonlinear feedback controller.

This controller is a structure-specified type which
has some parameters, such as the number of divi-
sions of the domain, regions of the subdomains, points
of the Taylor expansion, gradients of the automatic
choosing functions, and so on. These parameters must
be selected optimally to be just the controller’s fit.
Since they lead to a nonlinear optimization problem,
we are able to solve it suboptimally and successfully
by using the genetic algorithm (GA)[8], which is one
of evolutionary computing algorithms in engineering
sciences. In this paper the suboptimal values of these
parameters are obtained by acquiring both minimiza-
tion of the Hamiltonian and maximization of a stable
region in the sense of Lyapunov.

This approach is applied to a field excitation con-
trol problem of power system, which is Ozeki-Power-
Plant of Kyushu Electric Power Company in Japan, to
demonstrate the usefulness of the AACC. Computer
simulation results show that the new controller using
the GA is able to improve the performance remark-
ably.
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2 Augmented Automatic Choosing
Control Using Zero Dynamics

Assume that a nonlinear system is given by

ẋ = f(x) + g(x)u, x ∈ D (1)

where· = d/dt, x = [x[1], · · · , x[n]]T is ann-
dimensional state vector,u = [u[1], · · · , u[r]]T is an
r-dimensional control vector,f : D → Rn is a non-
linear vector-valued function withf(0) = 0 and is
continuously differentiable,g(x) is ann × r driving
matrix with g(0) ̸= 0, D ⊂ Rn is a domain , andT
denotes transpose.

Considering the nonlinearity off , introduce a
vector-valued functionC : D → RL which de-
fines the separative variables{Cj(x)}, whereC =
[C1 · · ·Cj · · ·CL]

T is continuously differentiable. Let
D be a domain ofC−1. For example, ifx[2] is the el-
ement which has the higher nonlinearity inf , then

C(x) = x[2] ∈ D ⊂ R (L = 1).

The domainD is divided into some subdomains:D =
∪M
i=0Di, whereDM = D−∪M−1

i=0 Di andC−1(D0) ∋
0. Di(0 ≤ i ≤ M) endowed with a lexicographic
order is the Cartesian productDi = ΠL

j=1[aij , bij ],
whereaij < bij .

Introduce a stable zero dynamics :

ẋ[n+ 1] = −σix[n+ 1] (2)

(x[n+ 1](0) ≃ 1, 0 < σi < 1).

Eq.(1) combines with (2) to form an augmented
system

Ẋ = f̄(X) + ḡ(X)u (3)

where

X =

[
x

x[n+ 1]

]
∈ D×R

f̄(X) =

[
f(x)

−σix[n+ 1]

]
, ḡ(X) =

[
g(x)
0

]
.

We assume a cost function being

J =
1

2

∫ ∞

0

(
XTQX+ uTRu

)
dt (4)

whereQ = QT > 0, R = RT > 0, and the values
of these matrices are properly determined based on
engineering experience.

On eachDi, the nonlinear system is linearized by
the Taylor expansion truncated at the first order about
a pointX̂i ∈ C−1(Di) andX̂0 = 0 (see Fig. 1):

f(x)+g(x)u ≃ Aix+wi+Biu on C−1(Di) (5)

where

Ai = ∂f(x)/∂xT |x=X̂i
, wi = f(X̂i)−AiX̂i ,

Bi = g(X̂i).

Make an approximation of (3) by

Ẋ = ĀiX+ B̄iu on C−1(Di)×R (6)

where

Āi =

[
Ai wi

0 −σi

]
, B̄i =

[
Bi

0

]
.

An application of the linear optimal control
theory[2] to (4) and (6) yields

ui(X) = −R−1B̄T
i PiX (7)

where the(n + 1) × (n + 1) matrix Pi satisfies the
Riccati equation :

PiĀi + ĀT
i Pi +Q−PiB̄iR

−1B̄T
i Pi = 0. (8)

Expansion
point

D0 DM

f(x)

xX0 XM
^

D1

^X̂1

f(x)

A1x+w1

AMx+wMA0x

0

Fig. 1 Sectionwize linearization

Introduce a gradient optimization automatic
choosing function :

Ii(x) =
L∏

j=1

{
1− 1

1 + exp (2N1i (Cj(x)− aij))

− 1

1 + exp (−2N1i (Cj(x)− bij))

}
(9)

whereN1i:positive real value,−∞ ≤ aij , bij ≤
∞. Ii(x) is analytic and almost unity onC−1(Di),
otherwise almost zero(see Fig. 2).
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1

Fig. 2 Automatic Choosing Function(N1i=3.0, 6.0)

Uniting {ui(X)} of (7) with {Ii(x)} of (9), we
have an augmented automatic choosing control

u(X) =
M∑
i=0

ui(X)Ii(x). (10)

3 Parameter Selection by GA

The Hamiltonian for Eqs.(3) and (4) is given by

H(X, u, λ) =
1

2

(
XTQX+ uTRu

)
+λT (

f̄(X) + ḡ(X)u
)
. (11)

Assume that the adjoint vectorλ ∈ Rn+1 is

λ =
M∑
i=0

PiXIi(x). (12)

The necessary condition of the optimality is
∂H/∂u = 0 or u = −R−1ḡ(X)Tλ , which derives
from Eq.(10) using Eq.(12) and

H(X, u, λ) =
1

2
XTQX− 1

2
uTRu+ f̄T (X)λ (13)

using Eq.(11).
Next, introduce a Lyapunov function candidate:

V (X) = XTΠ(X)X (14)

where
Π(X) =

M∑
i=0

PiΠi(x) ,

Πi(x) = ηi

L∏
j=1

{
1− 1

1 + exp (2N2 (Cj(x)− aij))

− 1

1 + exp (−2N2 (Cj(x)− bij))

}
, (15)

N2 andηi are positive real values.
By the Lyapunov’s direct method[3], the equilib-

rium point 0 is uniformly stable on a connected set:

DV =
{
x ∈ D : V (X) < γ, V̇ (X) < 0

}
where

γ = inf
{
V (X) : X ̸= 0, V̇ (X) = 0

}
. (16)

In order to design optimal control by the Hamilto-
nian and expand the stable region in the sense of Lya-
punov as wide as possible, we define a performance

PI = ω1

∫
D
|H(X, u, λ)|/XTXdX− ω2γ (17)

whereωi(ωi ≥ 0; i = 1, 2) is weight.
A set of parameters included in the control (10):

Ω̄ =
{
M,N1i, N2, aij , bij , X̂i, ηi

}
is suboptimally selected by minimizingPI with the
aid of GA[8] as follows.

<ALGORITHM>
step1:A-priori: Set values̄Ωapriori appropriately.
step2:Parameter:Choose a subsetΩ ⊂ Ω̄ to be

improved and rewrite it byΩ = {M,N1i, ··} =
{αk : k = 1, ··,K}.

step3:Coding: Represent eachαk with a binary bit
string ofL̃ bits and then arrange them into one
string ofL̃K bits.

step4:Initialization: Randomly generate an initial
population ofq̃ strings{Ωp : p = 1, ··, q̃}.

step5:Decoding:Decode each elementαk of Ωp by

αk = (αk,max − αk,min)Ak/
(
2L̃ − 1

)
+αk,min

whereαk,max:maximum,αk,min:minimum, and
Ak:decimal value ofαk.

step6:Control: Designu = u(X)p (p = 1, · · · , q̃)
for Ωp by using Eq.(10).

step7:Adjoint:Makeλ = λ(X)p (p = 1, · · · , q̃) for
Ωp by using Eq.(12).

step8:Lyapunov function: Makeγ = γp (p = 1,
· · · , q̃) for Ωp by using Eq.(16).

step9:Fitness value calculation:Calculate

PIp = ω1

∫
D

∣∣∣1
2
XTQX− 1

2
u(X)TpRu(X)p

+f̄T (X)λ(X)p
∣∣∣/XTXdX− ω2γp (18)

by Eqs.(13) and (17), or fitnessFp = −PIp.
Integration of (18) is approximated by a finite
sum.

step10:Reproduction:Reproduce each of
individual strings with the probability of

Fp/
∑q̃

j=1 Fj .
step11:Crossover:Pick up two strings and exchange

them at a crossing position by a crossover
probabilityPc.

step12:Mutation: Alter a bit of string (0 or 1) by a
mutation probabilityPm.
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step13:Repetition:Repeatstep5∼step12 until
prespecified G-th generation. If unsatisfied,
go to step2.

Fig.3 is the flowchart of the GA.
As a result, we have a suboptimal controlu(X)

for the string with the best performance over all the
past generations.

Fig. 3 Flowchart of the GA

4 Numerical Example

Consider a field excitation control problem of power
system. Fig.4 is a diagram of Ozeki-Power-Plant of
Kyushu Electric Power Company in Japan. This sys-
tem is assumed to be described[5] by

M̃
d2δ

dt2
+ D̃

dδ

dt
+ Pe = Pin

Pe = E2
IY11 cos θ11 + EI Ṽ Y12 cos(θ12 − δ)

EI + T ′
d0

dE′
q

dt
= Efd

EI = E′
q + (Xd −X ′

d)Id

Id = −EIY11 sin θ11 − Ṽ Y12 sin(θ12 − δ)

D̃ = Ṽ 2
{T ′′

d0(X
′
d −X ′′

d )

(X ′
d +Xe)2

sin2 δ

+
T ′′
q0(Xq −X ′′

q )

(Xq +Xe)2
cos2 δ

}
,

Fig. 4 Diagram of Ozeki-Power-Plant

whereδ: phase angle,̇δ: rotor speed,̃M : inertia co-
efficient,D̃(δ): damping coefficient,Pin: mechanical
input power,Pe(δ): generator output power,̃V : refer-
ence bus voltage,EI : open circuit voltage,Efd: field
excitation voltage,Xd: direct axis synchronous reac-
tance,X ′

d: direct axis transient reactance,Xe: exter-
nal impedance,Y11 ̸ θ11: self-admittance of the net-
work, Y12 ̸ θ12: mutual admittance of the network,
and Id(δ): direct axis current of the machine. Put
x=[x[1], x[2], x[3]]T=[EI − ÊI , δ − δ̂0, δ̇]

T andu =

Efd − Êfd, so that ẋ[1]
ẋ[2]
ẋ[3]

 =

 f1(x)
f2(x)
f3(x)

+

 g1(x)
0
0

u (19)

where

f1(x) = − 1

kTd0
(x[1] + ÊI − Êfd)

+
(Xd −X ′

d)Ṽ Y12
k

X3 cos(θ12 − x[2]− δ̂0)

f2(x) = x[3]

f3(x) = − Ṽ Y12

M̃
(x[1] + ÊI) cos(θ12 − x[2]− δ̂0)

−Y11 cos θ11

M̃
(x[1] + ÊI)

2 − D̃

M̃
x[3] +

P0

M̃

g1(x) =
1

kTd0
, k = 1 + (Xd −X ′

d)Y11 sin θ11.

Parameters are

M̃ = 0.016095[pu] Td0 = 5.09907[sec]

Ṽ = 1.0[pu] P0 = 1.2[pu]
Xd = 0.875[pu] X ′

d = 0.422[pu]
Y11 = 1.04276[pu] Y12 = 1.03084[pu]
θ11 = −1.56495[pu] θ12 = 1.56189[pu]
Xe = 1.15[pu] X ′′

d = 0.238[pu]
Xq = 0.6[pu] X ′′

q = 0.3[pu]

T ′′
d0 = 0.0299[pu] T ′′

q0 = 0.02616[pu]

ÊI = 1.52243[pu] δ̂0 = 48.57◦

ˆ̇
δ0 = 0.0[deg/sec] Êfd = 1.52243[pu].
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Table 1: Performances

xT(0) : initial point
Method [0, 0.4, 0] [0, 1.2, 0] [0, 1.3, 0] [0, 1.303, 0] [0, 1.306, 0]

LOC 0.95375 × × × ×
AACC(Hamil) 0.94224 1.90626 × × ×
AACC(Lyap) 0.93033 1.85533 2.87179 × ×

AACC(ω2=10) 0.99287 2.09602 2.47172 2.69093 ×
AACC(ω2=100) 0.99574 2.10129 2.41060 2.55089 3.04333

× : very large value

SetX = [xT , x[4]]T = [x[1], x[2], x[3], x[4]]T ,
n = 3, X̂0 = δ̂0 = 48.57◦, C(x)=x[2], L = 1,
Q=diag(1,1, 1, 1), R=1, η0 = 1, ω1 = 1, σi =
0.33294(0 ≤ i ≤ M) andx[4](0) = 1. Experiments
are carried out for the new control(AACC), and the
ordinary linear optimal control(LOC)[2].

1) AACC(ω2=10):
M=1,X̂1 = 80◦, D0 = (−∞, a − δ̂0],
D1=[a − δ̂0,∞). The parameters are subopti-
mally selected along the algorithm of section
3. Ω={N1i, N2, η1, a},G=100, q̃=100, L̃=8,
Pc=0.8, Pm=0.03. D=[0.0,2.0]×[-0.5,2.0]×[-
5.0,5.0]×[0.0,1.5]. The result is thatN11=7.48,
N12=1.11,N2=0.18,η1=2.83 anda=78.90◦.

2) AACC(ω2=100):
The parameters are suboptimally selected by using
the same way of the AACC(ω2=10). The result
is thatN11=8.06,N12=1.03,N2=0.10, η1=2.87 and
a=78.90◦.

3) AACC(Hamil):
The parameters are suboptimally selected along the
algorithm of section 3 when the performance isPI =∫
D |H(X, u, λ)|/XTXdX [6]. Ω={N1i, a}. The re-

sult is thatN11=2.52,N12=1.04 anda=74.2◦.

4) AACC(Lyap):
The parameters are suboptimally selected along the
algorithm of section 3 when the performance is
PI = −γ [7]. Ω={N1i, N2, η1, a}. The result is
that N11=3.86, N12=0.90, N2=9.75, η1=1.84 and
a=58.43◦.

Table 1 shows performances by the AACC and
the LOC. The cost function of Table 1 is

J̃ =
1

2

∫ 25

0

(
XTQX+ uTRu

)
dt.

t(sec)

x[
1]

[p
u]

 : 
op

en
 c

ir
cu

it 
vo

lta
ge

LOC

AACC(Lyap)

AACC(Hamil)

AACC(ω
2

=10)

AACC(ω
2

=100)

0 5 10 15 20 25

-0.5

-0.4

-0.3

-0.2

-0.1

0

Fig. 5 Responses of LOC, AACC
(xT (0) = [0, 1.2, 0])

t(sec)

x[
2]

[r
ad

] 
: p

ha
se

 a
ng

le

LOC

AACC(Hamil)

AACC(Lyap)

AACC(ω
2

=10)

AACC(ω
2

=100)

0 5 10 15 20 25

0

0.5

1

1.5

2

Fig. 6 Responses of LOC, AACC
(xT (0) = [0, 1.2, 0])
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t(sec)

x[
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[r
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: r

ot
or

 s
pe

ed

LOC

AACC(Hamil)

AACC(Lyap)

AACC(ω
2

=10)

AACC(ω
2

=100)

0 5 10 15 20 25
-2

-1

0

1

Fig. 7 Responses of LOC, AACC
(xT (0) = [0, 1.2, 0])
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Fig. 8 Responses of AACC
(xT (0) = [0, 1.303, 0])
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Fig. 9 Responses of AACC
(xT (0) = [0, 1.303, 0])
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Fig. 10 Responses of AACC
(xT (0) = [0, 1.303, 0])

t(sec)

x[
1]

[p
u]

 : 
op

en
 c

ir
cu

it 
vo

lta
ge

AACC(ω
2

=10)

AACC(ω
2

=100)

0 5 10 15 20 25

-0.5

-0.4

-0.3

-0.2

-0.1

0

Fig. 11 Responses of AACC
(xT (0) = [0, 1.306, 0])
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Fig. 12 Responses of AACC
(xT (0) = [0, 1.306, 0])
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Fig. 13 Responses of AACC
(xT (0) = [0, 1.306, 0])

Figs. 5, 6 and 7 show the responses in the case
of xT (0) = [0, 1.2, 0]. Figs. 8, 9 and 10 show
the responses in the case ofxT (0) = [0, 1.303, 0].
Figs. 11, 12 and 13 show the responses in the case
of xT (0) = [0, 1.306, 0]. These results indicate that
the stable region of the new AACC is better than the
AACC(Hamil), the AACC(Lyap) and the LOC.

5 Conclusions

We have studied an augmented automatic choosing
control designed by extremizing a combination of the
Hamiltonian and Lyapunov functions using the gra-
dient optimization automatic choosing functions for
nonlinear systems. This approach was applied to a
field excitation control problem of power system to
demonstrate the usefulness of the AACC. Simulation
results have shown that this controller could improve
the performance remarkably.
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