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Abstract: - With proof by deduction that is relatively corroborating with the formalism of the Euler–
Mascheroni constant expression and the more detailed pure mathematical proof given elsewhere, I propose the 
modal logic semantics in quantum computing. I use the Harmonic Series to demonstrate my idea developed 
from the astrophysical research previously conducted. As my mathematical intuitions work differently from the 

formalism, I have placed the results before the proof that ∑
𝑛=1

∞ 1

𝑛
, 𝑛 ∈ 𝑁 ≡ 𝑙𝑖𝑚

←
𝑛∈𝑊

𝑛2

2
− 2𝑛 +

1

𝑛
. 
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1 Introduction 

The current quantum NOT gate follows a linear 
construct of logics, dissimilar to the quantum 
indeterminism in its physics construct. The matrix 
form 𝑋 ≡ [

0 1
1 0

]  in the current quantum 
fundamental logic exactly does not represent the 
Pauli exclusion principle [1]. Mathematically, it 
only applied an eigenvector upon the preset 
eigenvalues for logical representations, as is all 
binary systems. It was proved by Putnam (1969) [2] 
with contradiction in bijection that the NOT logics 
in proof by exhaustion lead to falsehood. 

The extended controlled-NOT (CNOT) gate and 
Hadamard gate inherited the actions of Hilbert space 
by the electric current [1]. The principle of least 
action governs the CNOT gate and Hadamard gate, 
but the least action from the locality of the 
observer’s and the observer’s apparatus ’
perspectives does not necessarily imply the least 
relativistic action to the traceable cosmic ray 
sources detected, as what I have been 
communicating on scientific computation and 
apparatus rationale [3, 4]. 

The Hadamard gate utilizes the alternating and 
direct currents circuits, but the mechanical 
conformability further undermines the potentials of 
quantum information on asymptotic analyses [5]. I 
categorize the problem into a logic fundamentalism 
problem in quantum computation with the 
mathematical foundation tracing back to Shannon 
entropy [6]. To put it in relevant mathematical 

terms, I’d like to put forth the quiz I’ve been 
entertaining with with the Harmonic Series (HS) 

∑
1

𝑛

∞

𝑛=1
 that is there a “𝑛 + 1” in the HS? The 

question relates back to the NOT gate logical 
constructs of quantum computing regarding the 
processing of Hamiltonian zero. 

The research explores the modal logic 
possibilities in quantum computing, in the stead of 
the classical logic constructs. It transforms the 
classical logics in proof by exhaustion in dealing 
with infinities to the vectorized eigenvalues by 
probability and necessity [7]. In other words, the 
research discusses the semantics of quantum 
computation in optimizing performance and its 
purposes in quantum physics. 
 

 

2 Problem Formulation 
Theorem 0: 

∑
𝑛=1

∞ 1

𝑛
, 𝑛 ∈ 𝑁 ≡ 𝑙𝑖𝑚

←
𝑛∈𝑊

𝑛2

2
− 2𝑛 +

1

𝑛
. 

 
 

3 Problem Solution 
In order to shift the logics, I change the way of 
dealing with the questions of infinity in calculus 
with the logics [8] 
 

∀𝑛 → ∞ is countable ⇒ 𝑛 − 1 is countable   (1) 
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∀𝑛 − 1 ∈ 𝑛 → ∞ is countable ⇒ ¬𝑛 is countable 

(2) 
 

𝑛,∞ ⊧is countable                    (3) 
 

Similarly 

 
𝑚

𝑛
, 𝑚 ∧ 𝑛 is countable ⊧ is repeating decimal (4) 

 
Cantor’s diagonal argument is restricted to 

natural numbers, and in order to establish a bijection 
between the natural numbers and negative integers, 
the set of whole numbers has to be assigned with 
alternative eigenvalues (there’s the same thinking in 
[9]). 

Consider the XOR operator to assign eigenvector 
to real numbers from the whole number line, where 
the negative whole numbers are operated by 
assigning the indeterminate in the XOR truth table 
to natural numbers, the bijective computational 
basis can be established, with the exceptions for 0 
and negative and positive infinities [10, 11]. The 
remaining three becomes the triangular starting 
points for the eigenvectors. 

With the HS being able to be translated to 
 
2 − 1

1
+
3 − 2

2
+
4 − 3

3
+. . . +

𝑛 − (𝑛 − 1)

𝑛 − 1
+
1

𝑛
 

= −(𝑛 − 1) +
1

𝑛
+ (2 −

1

2
) + (2 −

2

3
) + (2 −

3

4
)+. . . +(2 −

𝑛−2

𝑛−1
)                       (5) 

 
and 

 
(1 −

0

1
) + (1 −

1

2
) + (1 −

2

3
) + (1 −

3

4
)+. . . +(1 −

𝑛−2

𝑛−1
) + (1 −

𝑛−1

𝑛
) = 𝑛 − (

1

2
+

1

3
+. . . +

1

𝑛
)     (6) 

 
 

the mathematical basis exists in computing the HS 
on the term of non-divergence from the logic of 
statement (3). By the logic of statement (2), the 
inverse limit of the HS from equations (5) & (6) 

{
𝑙𝑖𝑚
←

𝑛∈𝑁(
1

𝑛
− 1 + ∑𝑛=2

∞ 1

𝑛−1
)

𝑙𝑖𝑚
←

𝑛∈𝑁(
1

𝑛
+ 𝑛 − ∑𝑛=2

∞ 1

𝑛−1
)
               (7) 

is equivalent to the Hadamard gate 𝐻 =
1

√2
[
1 1
1 −1

] 
on very different ends in terms of Shannon entropy 
[1, 6]. The semantics of ¬ ⋄ ¬𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛(5) ∧ ¬ ⋄
¬𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛(6) ↔ □𝐻𝑆  optimizes the Hadamard 
gate, where the paradox on the transfinite number is 

resolved by the −1 term in the matrix form with the 
CNOT gate conducting back to the NOT gate [11]. 

The equivalence to the Hadamard gate can also 
be derived with the HS from equation (5) 

 
2

1
− 1 + (2 −

1

2
) − 1 + (2 −

2

3
) − 1 + (2 −

3

4
)

− 1+. . . +(2 −
𝑛 − 2

𝑛 − 1
) − 1 +

1

𝑛
, 𝑛

∈ 𝑁 

= −(𝑛 − 1) +
1

𝑛
+ 2(𝑛 − 1) −

1

2
−
2

3

−
3

4
−. . . −

𝑛 − 2

𝑛 − 1
, 𝑛 ∈ 𝑁 

= 𝑛 +
1

𝑛
− 1 − ∑

𝑛=2

∞ 𝑛−2

𝑛−1
, 𝑛 ∈ 𝑁                                                     

(8) 
 

and ∑
𝑛=2

∞ 𝑛−2

𝑛−1
, 𝑛 ∈ 𝑁 can be expanded to 

 
∏𝑛=2
∞ 𝑛−1

2
+ 2

∏𝑛=2
∞ 𝑛−1

3
+ 3

∏𝑛=2
∞ 𝑛−1

4
. . . +(𝑛 − 2)

∏𝑛=2
∞ 𝑛−1

𝑛−1

∏𝑛=2
∞ 𝑛 − 1

 

= [𝑛] − ∑
𝑛=2

∞ 1

𝑛−1
, 𝑛 ∈ 𝑁                                                      

(9) 
 

corroborating with the HS being not necessarily 
divergent, as far as the concept of infinity adheres 
with the value of n. 

The completeness can be therefore expressed: 
 

∀𝑛 − 1 ∈ 𝑛 → ∞ is countable ⇒ ¬[𝑛 − (𝑛 − 1)] is 

countable (10) 
 

with the logical derivations from statement (2) 
 

□𝑛 − (𝑛 − 1) is countable ⇒ 𝑛 is countable (11) 
 

An example for propositions (10) & (11), 
without restriction to natural numbers, is when 𝑛 =
𝑖, whereby the count of 𝑛 − 1 can only be defined 
by 𝑛 + 1, or in the other direction, by its infinite 
product. The example, or case therein, leads to the 
inference 

 
𝑛 + 1, 𝑛 → ∞ is countable ⊧ is countable  (12) 

 
Equation (8) can thus be expanded to 
 

𝑙𝑖𝑚
←
𝑛∈𝑁

(2𝑛 +
1

𝑛
− 1 + ∑

𝑛=2

∞ 1

𝑛−1
)             (13) 
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𝑙𝑖𝑚
←
𝑛∈𝑁

[2𝑛 +
1

𝑛
− 1 − 4(𝑛 − 1) + ∑

𝑛=2

∞

(
1

𝑛−1
+ 4)]  (14) 

 

𝑙𝑖𝑚
←
𝑛∈𝑁

{−2𝑛 +
1

𝑛
+ 4 + ∑

𝑛=2

∞

[
3(𝑛−1)+𝑛

𝑛−1
−

1

𝑛−1
]}     (15) 

 

= 𝑙𝑖𝑚
←
𝑛∈𝑁

[
1

𝑛
− 2𝑛 − 1 + ∑

𝑛=2

∞

(
2𝑛

𝑛−1
−

2𝑛

𝑛−1
×

𝑛−1

2𝑛
)]   (16) 

 

= 𝑙𝑖𝑚
←
𝑛∈𝑁

(
1

𝑛
− 2𝑛 − 1 + ∑

𝑛=2

∞ 𝑛+1

𝑛−1
)                     (17) 

 
 

4 Conclusion 
In the previous experiments and research I 
conducted, I only extended to new layers of 
expression from the binary logics with astrophysics 
and cosmology (see in [4, 12]), but possible fallacies 
are not eliminated with the deductive paths to the 
epistemology of scientific theories [13, 14]; just as 
equations (5) & (6) do not necessarily, in 
mathematical terms, compute back to the HS 
exactly, which only the critical line of Riemann zero 
can temporarily solve depending on logarithm 
approaches [6, 15]. In this case, they are 1 + 𝑛 and 
0 + 𝑛 respectively [4]. 

In equation (5), 0 does not have eigenvalue and 
in equation (6) 1 does not, adhering to the logics of 
Pauli exclusion principle for quantum superposition 
while offering higher degrees of freedom for input 
than the Hadamard gate [1]. Another infinite 
product series on the probabilities of the eigenvalue 
of the HS can be derived from the sum of equations 
(5) & (6) 

 

2 ∑
𝑛=1

∞ 1

𝑛
= 1 +

2

𝑛
+ 2(𝑛 − 1) − (𝑛 − 1) = 𝑛 +

2

𝑛
 

(18) 
 

and the product of equations (5) & (6) 
 

( ∑
𝑛=1

∞ 1

𝑛
)2 = [(𝑛 − 1) +

1

𝑛
− (

1

2
+
1

3

+
1

4
+. . . +

1

𝑛 − 1
)] × [(𝑛 + 1) +

1

𝑛

− (
1

2
+
1

3
+. . . +

1

𝑛 − 1
)]

= [
1

𝑛
− (

1

2
+
1

3
+
1

4
+. . . +

1

𝑛 − 1
)]2

+ 𝑛2 − 2𝑛(
1

2
+
1

3
+. . . +

1

𝑛 − 1
) + 1 

= (𝑛2 − 2𝑛 +
1

𝑛
)(
1

2
+

1

3
+. . . +

1

𝑛−1
)                                               

(19) 
 

in the form [16] 

{
∑𝑛=1
∞ 1

𝑛
=

𝑛

2
+

1

𝑛

(∑𝑛=1
∞ 1

𝑛
)2 = [(𝑛 − 1)2 + (

1

𝑛
− 1)](

1

2
+

1

3
+. . . +

1

𝑛−1
)

                                (20) 
 

The theorem proposed, however, is not 
unprecedented concerning Euler’s number 𝑒𝑖𝜋 +
1 = 0. It is only when 0 is countable as are the 
infinities [17], the completeness can be established 
with 
 

□𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛(7) → 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛(8)             (21) 
 

𝑙𝑖𝑚
←
𝑛∈𝑁

(
1

𝑛
+ ∑

𝑛=2

∞ 𝑛−2

𝑛−1
), 𝑛 ∈ 𝑁                 (22) 

 
Only then can further discussions with 

Hamiltonian 0 be taken into the quantum realm. The 
perceived eigenvalue can be seen in table 1. 

 
Table 1. The proposed signal mode from the 
research’s theoretical framework. 
 
 
Acknowledgement: 

Bloch 
Input 

Bloch 
Output 

Bloch 
I⨁O 

Riemann 
Input 

Riemann 
Output 

Riemann 
I⨁O 

Bloch⨁Riemann Feedback 

1 1 F 1 1 F F Addible 
1 1 F 1 ¬1 T T Entangled 
1 0 F 2 ¬2 T T Entangled 
1 0 F 2 2 F F Addible 
0 1 T 1 ¬2

∧ ¬1 
T F Addible 

0 1 T 1 2 T F Carry 
0 1 T 1 1 F T Entangled 
0 0 F 2 ¬2 T T Entangled 
0 0 F 2 2 F F Addible 
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