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1 Introduction

A software design paradigm incorporating

novel implementation techniques and a
definition of abstract intelligent
implementations  (AIl) are  presented.

Innovative techniques for design of knowledge
bases and heterogeneous software systems
with techniques for automated reasoning are
put forth. The application areas include
support for highly responsive planning.
Intelligent implementation of software, i.e., the
design and implementation by All techniques
is due to be an area of crucial importance. The
AlI techniques are being applied [8] gradually
to the real problems encountered in fields such
as intelligent systems, aerospace, robot design
and knowledge bases, abbreviated by KB A
basis for what we have called Artificial
Algebras [2] has been written since the first
version of All was written in 1993. It is a
preliminary theory for an algebra for
intelligent trees and artificial intelligence. The
mathematical foundations for software agents
might call for algebras with varying carriers
and functionality. Al systems might be defined
by the stages of Conceptualization, Design,
and Implementation.

Each of the stages is to be approached in
ways that minimize human error and enable
the designed system to automatically recover
from faults. The fault recovery issues are not
the topic of this paper and are treated by this
author in [12]. We design software with
agents[10] via a methodology which
commences with a knowledge acquisition
phase followed by a specification phase and
concluded by a system implementation phase.
The present approach defines functional
nondeterministic knowledge learning (Design
Agents), fault free system specification, and
multiagent abstract implementations. Design
Agents is Flagrant Agent Computing by active
agent learning and includes exception
knowledge as an essential component as does
system specification. The techniques are
defined for designing heterogeneous software.
System implementation is by independent
concurrent computing agents. A pair of
systems, each consisting, defines Al and
software systems in the present paper of many

ISSN: 2367-8895

International Journal of Computers
http://www.iaras.org/iaras/journals/ijc

computing agents. The two parts are mutually
synchronized to enable fault and exception
handling and recovery in an automatic manner
[1,18].

Software agents are specific agents
designed by a language that carry out specified
tasks and define a software functionality. Most
agents defined by our examples are software
agents. In the space examples there, of course,
implied hardware functionality specified.
Objects are in the well-known sense of the
word in object programming, abbreviated by
OOP. However, our designs are with
intelligent objects a concept we had invented
since 1992. Its foundations has been developed
and applied this authors publications. Ordinary
objects consist of abstract data, perhaps
encapsulation, and operations. Most recent
programming techniques apply OOP in some
form. Software engineering techniques with
abstract data types have had OOP on their
mind. IOOP is is based on technique
developed by the author combining Al and
software agents with OOP. For our project the
modular programming concepts are combined
with software agent computing, new IOOP
constructs object-cobject pairs and kernels
Modules are aggregate objects with a specific
functionality defined. Aggregate objects and
their specified functions are defined by
<module-co module> pairs called kernels.

A kernel consists of the minimal set of
processes and objects that can be used as a
basis for defining a computing activity. The
term kernel is analogous to the terminology
familiar in operating systems concepts, but is at
a high level of abstraction with objects and
functions encapsulated. A system is defined by
a set of kernels, which can be programmed to
function synchronous applying software agents
The analogy is a distributed computing
environment with many computers on a net.
Each kernel corresponds to a computer on the
net. The multiagent AI concepts are the
standard terms[7]. For the Intelligent Systems,
the nomenclature, e.g. Facilitator, Mediator is
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from standardization defined and agreed on at
a conference in Colorado for the purpose in
Heterogeneous design with software agents
dates back to the [17] papers and addressed on
a formal funding proposals the same years.The
applied terminology is defined in our paper.
The same conventions define heterogeneity to
be the mismatch found in autonomously
developed resources and services, ranges from
platforms, operating systems, database systems
and models, data representations, ontology,
semantics, and processing paradigms. Level is
a conceptual categorization, where objects at a
lower level depend on their ancestors at a
higher level. Ancestor is an object at a higher
level, source of inheritable attributes. The root
object is the ultimate ancestor. Ontology is a
set of terms and relationships used in a
domain, denoting concepts and objects, often
ambiguous among domains. The techniques in
[1,18] have been applied to the design of
knowledge-based systems by the present
project and [13].

The basis for a sound theoretical and practical
methodology for designing Al software
systems is emerging. The paper's structure is
as follows. Section one defines the way
multiagent systems might be specified by
software agents. Additional new concepts
applied are <object-co objects> and intelligent
objects. There are illustrating examples.
Section 2 combines the designs with abstract
mediators and applies the current Intelligent
Systems terms to define formal agent-based
designs. Section three defines event-prompted
agents. Section 4 defines multiagent systems
designed with the techniques, instantiating
facilitators and mediators by an example
Section 5 defines formal algebras for
multiagent systems and defines formal
implementation maps for the algebras. It
further defines ontology algebras incorporating
the Ontology Preservation Principle. Section 6
is an overview to the AIS synthesizer for
multiagent software design. The paper is
concluded by section 7. The techniques are
further applied to model-based software
engineering and model refactoring. The paper
outlines methods for validating multiagent Al
systems by combining software engineering
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with agent-based computing. It emphasizes
fault-tolerant, ontology-preserving, and
modular design principles for mission-critical
applications, including space missions. The key
concepts are as follows:

Agents and Mediators: Agents are functional
units (software or implied hardware) carrying
out tasks, while mediators synchronize actions,
handle exceptions, and enable recovery.
Design Agents & CoAgents: Design Agents =
normal activity modules. CoAgents = fault-
handling modules. These run concurrently,
ensuring fail-safe operation.Ontology
Preservation: A system is valid only if its
ontology (domain concepts, relations, rules) is
preserved  during  implementation  and
refactoring. This is called the AIl Ontology
preservationPrinciple (AIIOPP). Model-based
Engineering & Refactoring: Uses algebraic
models and graph transformations (e.g.,TU
Berlin’s AGG) to refactor and validate agent
models while ensuring structural consistency.
Validation Techniques (AIVV): Object-level
validation: actions and their duals (normal vs.
fault response).

1.1. Specifying Multiagent Systems

The hypotheses for the realization of systems
in our project might appear linear’ steps of
software engineering, however its linearity is
no more stringent than the concept of modular
design. It is the least we can demand from a
design. In reality the design concept is highly
nonlinear. The agents can be applied in ways
which, compared to an ordinary software
engineering design appear highly
nonfunctional and non-modular. From the
software agent designer's viewpoint however
there is molecularity with artificial structures.
Artificial structures [2] are implemented by
agent morphisms. The process is thus includes
loops amongst the phases in the software life
cycle. The intelligent objects and modules,
agents, facilitator and mediators leave many
degrees of freedom to design. There are
artificial loops in the design resembling
aerobatics by high-speed airborne agents. The
Al and software designer specifies the actions
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and  operations from the informal
specifications supplied by a "user." . Some
past contributors are [8], [13]. The initial
phase of the design of the proposed AIl
techniques is to present the design with
Mediator [10,17,19], Abstract Specifications,
where specifications are in the sense of [1,4].
Ontology algebras are defined at meta-data
and meta-knowledge level. Intelligent tree
computing theories [22] and artificial algebras
[2] can be applied to the theoretical
development. Knowledge acquisition requires
either interviewing an expert, brainstorming
with a group of experts, or structuring one's
thoughts if the specifier is the expert. For
multiagent designs there are active learning
agents and automatic learning. We present the
notion of Functional Nondeterministic
Knowledge Learning (Design Agents) in
[11].

Design_Agents is formulated to deal with the
conceptualization stage and is being applied
by the present project to define active
learning by agents. Design Agents requires
the user to inform the specifier as to the
domains that are to be expected, i.e. what
objects there are and what the intended
actions (operations) on the objects are, while
fully defining such actions and operations.
The actions could be in form of processes in
a system. The relations amongst the objects
and the operations (actions) can be expressed
by algebras and clauses, which the specifier
has to present. The usual view of a multi-
agent systems might convey to an innocent
Al designer that an agent has a local view of
the environment, interacts with others and
has generally partial beliefs (perhaps
erroneous) about other agents

On the surface the Design Agents
specification techniques might appear as being
rigid as to what the agents expect form other
agents. The Design Agents specification does
not ask the agents be specified up to their
learning and interaction potential.
Design Agents only defines what objects
might be involved and what might start off an
agent. It might further define what agents are
functioning together. Thus specifications are
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triples <O,A R> consisting of objects. actions
and relations. Actions are operations or
processes. The views of abstraction [1,4],
object-level programming, and agent views of
Al computation [12], are the important
components of inter-play in the present paper.
Design Agents  have  some  additional
requirements to be put forth The requirement is
that each object to be defined has to have a dual
definition in terms of the actions to be taken for
flagrant agents, faults, exception and recovery.

At the knowledge learning phase the expert
is to state all exceptions to actions and what
recovery and corrective actions are to be
carried out. For each action on an object a dual
action is to be supplied through Desig Agents,
such that a specifier can fully define the effect
of the dual actions. The design techniques do
not imply asking the expert to state all the
exceptions to actions. The exceptions naturally
present themselves by the object-coobject
concept. A coobject is an object defined with
the same carriers as the object, but with a set of
operations complementary to the object's
operations carrying on an alternate symmetric
Exception operations. In the figure let OPS
denote operations, EXP denote exceptions. The
last equations define the exception action. In
the example there is a process (action) that is
always checking the supply of Angelika coffee
implementing the exception function. APs:
<A trivial example>, many robots appear at a
critical entrance at once, necessitating FA
activity. APs are computing events which
activates an agent (see section 3). 1.1
Multigent Planning

A Mutiagent Planner

Figure 1
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Components Cooperate on Multi-Boards How
the standard planner is to interact with the
preceding planner components In the figures
above Mi's are objects; ai's are agents. The
dotted lines are agent message paths. A
specific super module appears as an <object-
coobject> pair.. The following is a Python
processing depiction for the above planner.
Think of the simulation like a mini world
where agents act, communicate, and replan.

A depicted Python design follows: Roles
Planner (Global or distributed) Decides who
does what and when Agents (Al, A2, A3..)
Execute tasks, observe environment, report
status Environment Changes over time
(resources, obstacles, goals). Visual Metaphor
Agents = moving nodes or characters Tasks =
icons/cards Planner = control dashboard or
“brain”

Simulation Flow: Step-by- Stop

1. Initialization
gents: A1, A2, A3
State: SO
2. Planning Phase
4
Planner assigns -
> Gl Gl
g = @
<A2=p G2 -, A2 @Gz
+ A3 Support / Monitor AnR
3. Execution
Agents update l J.\
« Position "
il \/
. vat
4. Coordination / Replanning
f A1 fails or environment chonges ok N
L o )
+ Planner reallocates tasks - » = .
+ A3 jumps in A 3
+ Dynamic Adaptation!
5. Goal Achieved \I/
Goals marked onplere () 61 ) G2 |
Figure 2
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Color-code: Q) Agent
waiting @Agent replanning

executing()Agent

1.2 Visual mission planning

An example IM mission planning is as follows.
Hybrid picture 1- Spacecraft "Spacecraft" \i A
Navigation Window "Navigation Window" \i

Agents: A1 Computes available docking
times based on the visual field on the
window.

A2 carrysout docking
sequence based on messages
to Spacecraft B
Hybrid
picture 2
Spacecraft B
Navigation
Window
Agents: Bl ccarries on
course based on its visual
field window

B2 Accepts and carries out
docking maneuvers from external
hovering craft agents Plan Goal
"Plan Goal"

Engage docking between A and B at
appropriate A and B field windows.

1.3

Morph Gentzen computing can be applied to
the hybrid pictures to satisfy a plan goal. Thus
morphing is applied with precise fluidity o
plan computation. A well-known agent
computing design paradigm is BID. At BID
the functional or logical relations between
motivational attitudes and between
motivational attitudes and informational

Morph Gentzen

Volume 11, 2026



Cyrus. F. Nourani

attitudes are expressed as meta-knowledge,
which may be used to perform meta-reasoning
resulting in further conclusions about
motivational attitudes. If we were to plan with
BID with intelligent multimedia the logical
relations might have to be amongst worlds
forming the attitudes and event combinations.
For example, in a simple instantiation of the
BID model, beliefs can be inferred from meta-
knowledge that any observed fact is a believed
fact and that any fact communicated by a
trustworthy agent is a believed fact. With
IM_BID, the observed facts are believed facts
only when a conjunction of certain worlds
views and evens are in effect and physically
logically visible to the windows in effect.
Since planning with IM_BID is at times with
the  window  visible agent  groups,
communicating, as two androids might, with
facial gestures, for example.

2. The Formal Basis

The present approaches have a theoretical
basis abbreviated in the following sections.
We start with agents, define modules and
algebras, and agent and module morphisms.

2.1 Agents

Starting with what are called hysterectic
agents  (Genesereth&Nilsson  1987). A
hysterectic agent has an internal state set I,
which the agent can distinguish its
membership. The agent can transit from each
internal state to another in a single step.
Actions by agents are based on I and board
observations. There is an external state set S
modulated to a set T of distinguishable
subsets from the observation viewpoint. An
agent cannot distinguish states in the same
partition defined by a congruence relation. A
sensory function s :S — T maps each state to
the partition it belongs. Let A be a set of
actions which can be performed by agents. A
function action can be defined to characterize
an agent activity action:T —A. There is also a
memory update function mem: [ x T — L. To
define agent at arbitrary level of activity
knowledge level agents are defined. All
excess level detail is eliminated. In this
abstraction an agent's internal state consists
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entirely of a database of sentences and the
agent's actions are viewed as inferences based
on its database. The action function for a
knowledge level agent maps a database and a
state partition t into the action to be performed
by an agent in a state with database and
observed state partition t. action D x T— A
The update function database maps a state and
a state partition t into a new internal database.
database: D x T— D A knowledge-level agent
is an environment is an 8-tuple shown below.
The set D in the tuple is an arbitrary set of
predicate calculus databases S is a set of
external states T is the set of partitions of S A
is a set of actions see is a function from S into
T do is a function from A S into S, database is
a function from D x T into D, and action is a
function from D x T into A.
<D,S,T,A,see,do,database,action> Knowledge
level agents are hysterectic agents.

2.3 Agent Morphisms and Module

Preservation

Starting with what we called hysterectic
agents (Genesereth&Nilsson 1987). A
hysterectic agent has an internal state set I,
which the agent can distinguish its
membership. The agent can transit from
each internal state to another in a single
step.

Actions by hysterectic agents are based on I
and observations. The observations are from
problem solving boards, messages to the
agent, and a database. There is an external
state set S, modulated to a set T of
distinguishable subsets from the observation
view point. An agent cannot distinguish
states in the same partition defined by a
problem congruence relation. A sensory
function s :S — T maps each state to the
partition it belongs. Let A be a set of actions
which can be performed by agents A
function action can be defined to
characterize an agent activity action:T — A.
There is also a memory update function. A
hysterectic agent HA defined by a sextuple
<I,S.T,A,s,d,internal,action> where d is a
function form A x S— S and internal I x T
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— . Let HA be a set of sextuples defining a
hysterectic agents. Define HA morphism by
a family of functions defined component-
wise on the sextuple above.

Definition 2.1 A HA morphism is a function
F: HA— HA' defined component-wise by

F[i]: I-> I'; F[S]: S —» S" F[T]: T -T
F[A]: A —A"; F[s]: S— T'; F[d]: A'x S'
— S'and F[internal]: I' x T'—1I".

Definition 2.1 implies F defines a new
hysterectic agents from HA by a morphism.

The definition might become further
transparent in view of definitions is section
2.4. Component-wise definitions for a
morphism might be viewed as functions on
a multi- sorted signature carrying the
sextuple. Similar morphisms can be defined
for knowledge level agents defined in
section 2.1 which we can refer to by KL-
morphisms

2.4 Agents, Modules, and Algebras

The computing enterprise requires more
general techniques of model construction and
extension, since it has to accommodate
dynamically changing world descriptions and
theories. The models to be defined are for
complex computing phenomena, for which
we define generalized diagrams. The authors
a decade ago, e.g. [3], techniques for model
building as applied to the problem of Al
reasoning allows us to build and extend
models through diagrams. It required us to
define the notion of generalized diagram.or
generic model diagrams were devied by this
author, e.g, [3] to build models with
prespecified functionns, for exam,ple baed on
Skolem functions. The specific minimal set of
function symbols is the set with which a
model for a knowledge base can be defined
The G-diagram techniques allowed us to
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formulate AI worlds, KB's in a minimal
computable manner to be applied to agent
computation.

The model buildin tehnoques are applied to
the problem of Al reasoning allows us to build
and extend models through diagrams A
technical example of algebraic models defined
from syntax had appeared in defining initial
algebras for equational theories of data types
(ADJ 1973) and our research in (Nilsson
1969). In such direction for computing models
of equational theories of computing problems
are presented by a pair (,E), where is a
signature (of many sorts, for a sort set S) (ADJ
1973, Nourani 1995a) and E a set of
-equations. Signatures are in the same sense as
key signatures in music.

Definition 2.2 An s-sorted signature or
operator domain is a family <w,s> of sets, for s
S and w S* (where S* is the set of all finite
strings from S, including the empty string ).
call f <w,s> and operation symbol of rank w,s;
of arity w, and of sort s. We apply multi-sorted
algebras via definition 2.3 to multiagent
systems.

Definition 2.3 Let be an S-sorted signatures. A
-algebra A consists of a set As for each s in S
(called the carrier if A of sorts) and a function
<A>: Asl x As2 x...xAsn As for each <w.s>
with w=s1s2. . sn (called the operation named
by). For <,s>, A As, i,e the (set of names) of
constants of sort s.

Definition 2.4 If A and B are algebras, a
-homomorphism h: A B is a family of
functions <hs As Bs> s in S that preserve the
operations, i.e. that satisfy (h0O) For <s>, the
hs(A) = B; (h) If, For <w,s>, with w=s1s2...sn
and <al,...,an> Asl x As2 x...xAsn, then
hs[A(al,...,an)] = B(hs(al),...,hs(an)).
2. The Formal Basis

The present approaches have a theoretical basis
abbreviated in the following sections. We start
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with agents, define modules and algebras, and
agent and module morphisms.

2.5 Agents

Starting with what are called hysterectic agents
Genesereth&Nilsson [7]. A hysterectic agent
has n internal state set I, which the agent can
distinguish its membership. The agent can
transit from each internal state to another in a
single step. Actions by agents are based on I
and board observations. There is an external
state set S, modulated to a set T of
distinguishable subsets from the observation
viewpoint. An agent cannot distinguish states
in the same partition defined by a congruence
relation. A sensory function s :S —T maps
each state to the partition it belongs. Let A be a
set of actions which can be performed by
agents. A function action can be defined to
characterize an agent activity action:T —A.
There is also a memory update function mem:
I x T —I. To define agent at arbitrary level of
activity knowledge level agents are defined.
All excess level detail is eliminated. In this
abstraction an agent’s internal state consists
entirely of a database of sentences and the
agent’s actions are viewed as inferences based
on its database. The action function for a
knowledge level agent maps a database and a
state partition t into the action to be performed
by an agent in a state with database and
observed state partition t. action: D x T—A

The update function database maps a state and
a state partition t into a new internal database.

database: DxT — D

A knowledge-level agent is an environment is
an 8-tuple shown below. The set D in the tuple
is an arbitrary set of predicate calculus
databases, S is a set of external states, T is the
set of partitions of S, A is a set of actions, see
1s a function from S into T, do is a function
from A S into S, database is a function from D
x T into D, and action is a function from D x
T into A. <D,S,T,A,see,do,database,action>
Knowledge level agents are hysterectic agents.
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2.6 Agent Morphis Module Preservation
Starting with what we called hysterectic agents
(Genesereth&Nilsson 1987). A hysterectic
agent has an internal state set I, which the agent
can distinguish its membership. The agent can
transit from each internal state to another in a
single step. Actions by hysterectic agents are
based on I and observations. The observations
are from problem solving boards messages to
the agent, and a database. There is an external
state set S, modulated to a set T of
distinguishable subsets from the observation
view point. An agent cannot distinguish states
in the same partition defined by a problem
congruence relation. A sensory function s :S ¢
T maps each state to the partition it belongs.
Let A be a set of actions which can be
performed by agents. A function action can be
defined to characterize an agent activity
action:T —A. There is also a memory update
function. A hysterectic agent HA defined by a
sextuple <I,S,T,A,s,d,internal,action> where d
is a function form A x S —S and internal [ x T
— . Let HA be a set of sextuples defining a
hysterectic agents. Define HA morphims by a
family of functions defined component-wise on
the sextuple above.

Definition 2.1 A HA morphism is a function
F : HA —HA’ defined component-wise by
F[i]: I—> TI’; F[S]: S —S’, F[T]: T -T°,
F[A]: A —A’; F[s]: S—>T’; F[d]: A x S’
—S’ and F[internal]: I’ x T"—T".

Definition 2.1 implies F defines a new
hysterectic agents from HA by a morphism.
The definition might become further
transparent in view of definitions is section
2.4. Component-wise definitions for a
morphism might be viewed as functions on a
multi-sorted signature carrying the sextuple.
Similar morphisms can be defined for
knowledge level agents defined in section
2.1 which we can refer to by K-morphisms.

2.7 Agents, Modules, and Algebras

The computing enterprise requires more general
techniques of model construction and
extension, since it has to accommodate
dynamically changing world descriptions and
theories. The models to be defined are for
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complex computing phenomena, for which we
define generalized diagrams. The techniques in
(Nourani 1983,87,91,94a) for model building
as applied to the problem of Al reasoning
allows us to build and extend models through
diagrams. It required us to define the notion of
generalized diagram. We had invented G-
diagrams(Nourani 1987,91,93b,94a) to build
models with prespecified generalized Skolem
functions. The specific minimal set of function
symbols is the set with which a model fro a
knowledge base can be defined. The G-
diagram techniques allowed us to formulate Al
worlds, KB’s in a minimal computable manner
to be applied to agent computation. The
techniques in (Nourani 1991,94a) for model
building as applied to the problem of Al
reasoning allows us to build and extend models
through diagrams. A technical example of
algebraic models defined from syntax had
appeared in defining initial algebras for
equational theories of data types ADJ [4]and
this author in (Nilsson 1969). In such direction
for computing models of equational theories of
computing problems are presented by a pair
(2,E), where is a signature (of many sorts, for a
sort set S) and E a set of -equations. Signatures
are in the same sense as key signatures in
music.

Definition 2.2 An s-sorted signature or
operator domain is a family <w,s> of sets, f €or
s S and w S*(where S* is the set of all finite
strings from S , including the empty string ).
call f <w,s> and operation symbol of rank w,s;
of arity w, and of sort s.

The figure depicts an S-sorted signature from
ADIJ[6]. We apply multi-sorted algebras via
definition 2.3 to multiagent systems.

Definition 2.3 Let be an S-sorted signatures. A
-algebra A consists of a set As for each s S
(called thecarrier if A of sort s) and a function
<A>: Asl x As2 x...xAsn As for each <w,s>,
with w=s1s2...sn (called the operation named
by ).For <,s>, A As, i,e the (set of names) of
constants of sort s.

Definition 2.4 If A and B are algebras, a
-homomorphism h:A B is a family of functions
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<hs:As Bs> s in S that preserve the operations,
1.e. that satisfy (hO) For <,s>, the hs(A) = B;
(h1) If , For <w,s>, with w=sls2...sn and
<al,..,an> Asl x As2 Xx...xAsn, then
hs[A(al,...,an)] = B(hs(al),...,hs(an)).

For an intelligent signature I, let T<I> be the
free tree word algebra of signature 1. The
quotient of T<I>, the word algebra of signature
, with respect to the I-congruence relation
generated by a set of equations E, will be
denoted by T<LE>, or T<P> for presentation
P.

The computing and reasoning enterprise
require more general techniques of model
construction and extension, since it has to
accommodate dynamically changing world
descriptions and theories. The techniques in the
author’s projects for model building as applied
to the problem of Al reasoning allows us to
build and extend models through diagrams. A
technical example of algebraic models defined
from syntax had appeared in defining initial
algebras (ADJ 1977) for equational theories of
data types, this author since 1990's at least. In
such direction for computing models of
equational theories of computing problems are
presented by a pair (X,E), where Xis a signature
(of many sorts, for a sort set S) and E a set of
Y-equations.

Let T<X> be the free tree word algebra of
signature X. The quotient of T<X>, the word
algebra of signature X, with respect to the X-
congruence relation generated by E, will be
denoted by T<Z,E>, or T<P> for presentation
P. T<P> 1is the "initial" model of the
presentation P.

The X-congruence relation will be denoted by
=P. One representation of T(P) which is nice in
practice consists of an algebra of the canonical
representations of the congruence classes,
abbreviated by X-CTA. It is a special case of
generalized standard models the author had
defined (Nourani 1996 for newer examples).
Some definitions are applied from our papers
that allow us to define standard models of
theories that are 2-CTA's. The standard models
are significant for tree computational theories
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that the author had presented. Generic
diagrams are applied to define canonical
standard models in the same sense as set
theory. This definitions are basic to sets and in
defining induction for abstract recursion and
inductive definitions. The canonical models
are applied to multiagent computing during the
last several years by the author.

Definition 2.5 We say that a signature Xis
intelligent iff it has intelligent function
symbols. We say that a language has
intelligent syntax if the syntax is defined on an
intelligent signature. To define a specific
mathematical linguistics basis for agent
augmented languages intelligent languages
were defined (Nourani 1995d) as follows.

Definition 2.6 A language L is said to be
intelligent language iff L is defined from an
intelligent syntax.

Agent augmented languages and signatures
allow us to present computational theories
with formulas on terms with intelligent
function symbols.

2.7.1. Abstract Intelligent Syntax

It 1s essential to the formulation of
computations on intelligent trees and the
notion of congruence that we define tree
intelligence content. A reason is that there
could be loss of tree intelligence content when
tree rewriting because not all intelligent
functions are required to be on mutual
message exchanges. Theories are presented by
axioms that define them and it is difficult to
keep track of what equations not to apply
when proving properties. What we have to
define, however, is some computational
formulation of intelligence content such that it
applies to the present method of computability
on trees. Once that formulation is presented,
we could start decorating the trees with it and
define computation on intelligent trees. It
would be nice to view the problem from the
stand point of an example.

The examples of agent augmented
languages we could present have <O,A,R>
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triples as control structures. The A's have
operations that also consist of agent message
passing. The functions in AFS are the agent
functions capable of message passing. The O
refers to the set of objects and R the relations
defining the effect of A's on objects. Amongst
the functions in AFS only some interact by
message passing. What is worse the functions
could affect objects in ways that affect the
intelligence content of a tree. There you are: the
tree congruence definition thus is more
complex for agent augmented languages than
those of ordinary syntax trees. Let us define
tree intelligence content for the present
formulation. For an intelligent signature I. let
T<I> be the free tree word algebra of signature
I. The quotient of T<I>, the word algebra of
signature, with respect to the I-congruence
relation generated by a set of equations E will
be denoted by T<I E> or T<P> for presentation
P.

2.8 Agents, Languages, and Models

By an intelligent language we intend a
language with syntactic constructs that allow
function symbols and corresponding objects,
such that the function symbols are
implemented by computing agents in the
sense defined by this author in . Sentential
logic is the standard formal language applied
when defining basic models. The language is
a set of sentence symbol closed by finite
application of negation and conjunction to
sentence symbols. Once quantifier logical
symbols are added to the language, the
language of first order logic can be defined.
A Model for is a structure with a set A.
There are structures defined for such that for
each constant symbol in the language there
corresponds a constant in A. For each
function symbol in the language there is a
function defined on A; and for each relation
symbol in the language there is a relation
defined on A. For the algebraic theories we
are defining for intelligent tree computing in
the forthcoming sections the language is
defined from signatures as in the logical
language is the language of many- sorted
equational logic.
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The signature defines the language by
specifying the function symbols' arities. The
model is a structure defined on a many-
sorted algebra consisting of S-indexed sets
for S a set of sorts. By an intelligent
language we intend a language with
syntactic constructs that allow function
symbols and corresponding objects, such
that the function symbols are implemented
by computing agents. A set of function
symbols in the language, referred to by AF,
is the set modeled in the computing world
by Al Agents with across and/or over board
capability. Thus the language defined by the
signature has designated function symbols
called AF The AF function symbols define
signatures which have specific message
paths defined for carrying context around an
otherwise context free abstract syntax. A set
of function symbols in the language,
referred to by AF, are agents with nontrivial
capability. The boards, message passing
actions, and implementing agents are
defined by syntactic constructs, with agents
appearing as functions. The computation is
expressed by an abstract language that is
capable of specifying modules, agents, and
their communications. We have put together
the Al concepts with syntactic constructs
that could run on the tree computing
theories we are presenting in brief. We have
to define how the syntactic trees involving
functions from the AF are to be represented
by algebraic tree rewriting on trees. This is
the subject of the next section where free
intelligent trees are defined. An important
technical point is that the for agents there
are function names on trees

Definition 2.5 We say that a signature is
intelligent iff it has intelligent function
symbols. We say that a language has
intelligent syntax if the syntax is defined on
an intelligent signature.

Definition 2.6 A language L is said to be an
intelligent language iff L is defined from an
intelligent syntax.

The example of intelligent languages we
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could present are composed from <O,A,R>
triples as control structures. The A's have
operations that also consist of agent message
passing. The functions in AF are the agent
functions capable of message passing. The
O refers to the set of objects and R the
relations defining the effect of A's on
objects. Amongst the functions in AF only
some interact by message passing. The
functions could affect objects in ways that
affect the information content of a tree.
There you are: the tree congruence
definition thus is more complex for
intelligent languages than those of ordinary
syntax trees. Let us define tree information
content for the present formulation. Hence
there is a new frontier for a theoretical
development of the <O A R> algebras and
that of the AIl theory. <O,A,R> is a pair of
algebras, <Alg[A],Alg[F]>(see section 3),
connected by message passing and All
defines techniques for implementing such
systems. To define AIl we define
homomorphisms on intelligent signature
algebras

Definition 2.7 An I-homomorphism is a
homoprphism defined on algebras with
intelligent signature I.

To define agent specific designs we apply
HA-morphisms via the following
definition.

Definition 2.8 Let A and B be I-algebras
with signatures containing an agent
signature HA. A HA-homoprphism from
A to B is an I-homorphism with defined
HA-morphism properties.

3. Multiagents and Mediators

The term "agent" has been recently applied to
refer to Al constructs that enable computation
on behalf of an Al activity. It also refers to
computations that take place in an
autonomous and continuous fashion, while
considered a high-level activity. in the sense
that its definition is software and hardware,
implementation, independent [1] For
example, in a planning problem for space
exploration, an agent might be assigned by a

Volume 11, 2026



Cyrus. F. Nourani

designed flight system [8,19] to compute the
next docking time and location, with a
known orbiting space craft. Agents are in
most cases informable[1], thus allowing
message passing actions. We can define All
software systems designed by Al methods as
intelligent agent architectures. with external
behavior that is a function of the degree of
message passing actions and parallelism
conceptualized.

Since our specifications consist of objects
actions, and relations defining the effect of
actions on objects, we can define formal IF
systems from the specifications and prove the
specifications can be implemented by a set of
agents. A mediator is a software module that
exploits encoded knowledge about certain sets
or subsets of data to create information for a
higher layer of applications. and the definition
goes on to state "It should be small and simple,
so that it can be maintained by one expert or,
at most, a small and coherent group of experts'
Mediator instantiation is to populate a domain-
independent service or tool with domain-
specific knowledge.

OurMediator Specifications consisti of a
tuple of functions and relations of the form
<O,(AF),(RNA,RFA)>, where A is actions
and F computes Flagrant Agents from APs to
faults. (RNA,RFA) are their respective
relations, NA for normal action and FA for
flagrant or fault actions. In the example of the
last section O is Coffee shop, and serve-
coffee an example of an action, a member of
A. EXP defines the set F. The third line
defines an example of a relation in RNA, and
the last function is an example of a relation in
RFA. This author invented a twin-engine
agent-based computing system [12]. <A,F> :=
<Design Agents, CoAgents>, consisting of
Design_Agents = <O,ALRNA> and
CoAgents;=<O,F,RFA>.The pairs <Ai,Fi> are
modules composed to define <A,F>.

CA1F1Y

<AnFn> —

Figure 3
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The modules are defined from multiple objects.
The Design Agents corresponds to an algebra
Alg[A] of Normal Activities and CoAgents to
an algebra Alg[F] for Flagrant Agent
Computing, faults,recovery, and revision of
actions. It consist of a pair of complex
algebras, connected only by agent message
passing

Definition 3.9 A system is Intelligent Fail-
safe, abbreviated by IF. when defined by a
pair <Alg[A],Alg[F]> where A and F are |
-algebras where I is an intelligent signature
bearing agent functions.

Having defined the intelligent algebras,
HA morphisms, and IF designs, we can
define formal = multiagent implementations
for IF systems applying HA-homomorphism
and formal implementation techniques
Nourani[1,18], EKP[5] EKWJ[14]. It is
obvious how to define AIl implementations
direct from HA-homeomorphism applied to
our 1980's papers The details are outside the
scope of the present paper. Each of the
Design Agents and CoAgents consists of
agents that are mutually, often pair-wise
informable. The systems <AiFi> each
consist of objects, actions and relations
Actions could be in form of operations or
message communication from one object to
another. A set of computing agents forms
Design Agents and a dual set forms
CoAgents. Thus a pair of systems is defined
that can be implemented by agents that
logically or physically can be thought of as
running on several microprocessors. The
algebras Alg[A] and Alg[F] define wrappers
for the mediators as functions for interacting
with resources. A wrapper is a tool to access
known resources and translate their objects
The spontaneity and fault tolerance degree is
a function of the intelligence of the agents
implementing the <Design_Agents,
CoAgents> pair. The agents have incomplete
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information about the immediate needs of
activating other agents or exceptions. Thus
the efficiency and strength of functionality
of our software systems are a function of the
degree of intelligence we build in the
implementing agents The agents must have
some reasoning ability to at least make
transition or message passing decisions.
This approach allows us to design systems
that can deal with unplanned or erroneous
behavior in an Al system

The next step is defining the
<Design Agents,CoAgents> from the Flagrant
Agent knowledge learning (Design Agents)
inputs. Its implementation consists of an
autonomous pair of communicating systems to
be defined in the following section. We have
thus defined a formal computing model, the IF
definition consisting of an algebra of processes
and objects, with possible use of new parallel
languages and intelligent object programming
put forth in preliminary reports by this author
in [7,9]. Theories for intelligent syntax tree
computing are being put forth by this author in
[3]. Starting form our techniques, programs
capable of generating mediators, routers, and
translators from formal specifications can be
designed. In some cases these generators may
work automatically, in some cases interactively
with humans

4. Al Model-based Software Engineering

The above multi-agent implementation of the
mediator specifications implies model design
with a pair of concurrent systems. Each of the
two systems is to be designed with a collection
of modules, such that there corresponds a
module for each specification. A module
consists of the minimal set of processes and
objects that can be used as a basis for defining
a computing activity. The objects and the
operations of one set of modules once defined
specifies the basis for Design Agents, while
those of the CoAgents' basis is defined by the
dual module. The set of modules defining
Design Agents and CoAgents are
synchronized by cross operations and interact
by some operations that are implemented by
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message communications between
Design Agents and CoAgents. These operations
are defined to either inform the various
processes that are mutually dependent or to take
the system from an active state in
Design Agents to an active state in CoAgents
Note that when exceptional conditions occur the
active state is CoAgents. However, both sets of
modules are considered concurrently "running."
CoAgents' major task is that of handling
unexpected events, recovery from faults, and
revision of actions. Thus CoAgents has to know
what agents can become active to compute for
APs and be designed to activate remedies for
ontology revision. If exception recovery takes
place, in each module, the active module (a
collection of agents) for a particular function,
will be the Design Agents' component, while
the CoAgents component does concurrent
checks for further exceptions should they be
encountered. In each of the modules there are
objects, processes defining the operations, and
objects to which there is a corresponding
function in the other module.

Thus Design_Agents and CoAgents imply a
set of objects and processes defined by many-
sorted OAR algebras. The objects 01 are many-
sorted structures with the <pi>,<qi> and <ei> as
the operations. RNA and RFA define the
algebras via relations

Design _Agents
<{01,<pl.....pn>},
{02,q1.,92...},...
{On,...}, RNA> RNA is
the set of relations on
each object and cross
objects.
CoAgents:=<{01,<el....,
en}>,
{02,<ell,el2,....elm>},..
.,On,<.>} RFA>

RFA is the set of relations on each objects and
cross objects. Each of the processes can have a
corresponding agent in the dual family. The
<Design Agents, CoAgents> pair in a
computing system "run" as a concurrent family
of  processes.  Various  functions in
Design Agents and CoAgents are represented
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by agents that are mutually informable across
the <Design Agents. CoAgents> pair. For the
fault model there is a predefined AP set and a
corresponding  functionality. The overall
functionality of the system depends on the
messages passed across from one agent to
another To each specification defined by
Design Agents there corresponds two modules
running concurrent. The vision underlying
mediators is one where domain experts,
equipped with inter-operating  software
modules, provide value-added services for data
access and processing over networks. The
vision underlying facilitators is ‘one in which
any system (software or hardware) can inter-
operate with any other system, without the
intervention of human users or their
programmers' Interoperability is the capability
to interoperate, often used at the transport
layer.

5. Abstract Implementation and
Model-Refactoring with Agents

Model driven SE deploys models and
transformations as primary artifacts. The
techniques presented are to use graph model
representations and apply graph
transformations at the model refactoring
arena. Refactoring (Opdyke) is changes to the
internal program structure to improve without
changing the external functioning. We can lift
refactoring to models, introduce model
refraction as a new transformation, and apply
the theoretical basis here and based on model
graph transformations on TU Berlin's AGG is
applied on graph grammars to specify model
refactoring. Model consistency can be carried
on UML with description logic. Our
intelligent signature languages and morphisms
allow us to carry on agent model computing,
whereby agents facilitate model refactoring.
Abstract implementations, i.e. to the process
of transforming an abstract characterization of
an Al or software system to concrete
representations and executable code s
accomplished with the new techniques. Thus
implementations express the relationship
between two forms of representations. The
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notion of abstract implementation defined by
this author in [1,4] are either algebraic or
model-theoretic (algebraic logic) definitions.

Let us refer to specifications of the form
<0O,A,R> as presentations. We also expect a
presentation of the form <I[O],I[A],I[R]> for
the implementing abstract or concrete
machine. The former could be the designer's
conceptualization, and the Ilatter the
specification of the syntax and semantics of a
programming language. This is similar to how
the problem was viewed by this author over a
decade ago, and there were many research
papers that were developed by us and EKP-
EKW [5] for the most part. Informally the
process of implementation was defined by this
author to be that of encoding the algebraic
structure of the conceptualization of a problem
onto the algebra that specified an
implementing machine (a programming
abstract machine).

Thus the problem was that of defining such
implementations by morphisms of algebras.
The problems we are proposing are to address
are much more complex. It is because the
implementations proposed for Al systems are
by multiagent designs. Each of the functions
defined by <O,A,R> are implemented by
agents, that characterize the implementation
function I:<O,A,R> —<I[OLI[ALI[R]> is to
be defining a mapping I: <Alg[A],Alg[F]>—
<Alg[I(A)],Alg[I(F)]> We refer to Alg[A] and
Alg [F] are what we call ontology algebras
The implementation apping I defines wrappers
to resources in a manner preserving the
ontology algebra. Ontology algebras are multi-
sorted algebras defining multiagent systems
defined by formal agents, e.g., hysterectic or
knowledge level agents and agent morphisms.
A formal definition is provided in section 7.1.
The Ontology Preservation Principle The All
is correct only if it preserves the ontology
algebras. It will be abbreviated by AIIOPP.
Widerhold's domain knowledge base algebra
DKB consists of matching rules linking
domain ontology. There are three operations
defined for DKB.

The operations are Intersection- creating
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subset ontology and keeping sharable entries.
Union- creates a joint ontology merging
entries. Difference- creates a distinct ontology
and removing shared entries. Mapping
functions must be shown to preserve
ontologies. Applying AIIOPP we can state
specific preservation principles as follows.
The DKB Preservation Principle- All
implementations must preserve ontologies
under Intersection, Union, and Difference
operations. The preservations are important to
check model refactoring is consistent and does
not cause invalid implementations.

6. Module Validation
6.1 AIIV

Multi-agent Object Level Al Validation make
use of each framework to do most of the
programming Al systems consist of software
modules some of which are models of human
knowledge and reasoning. In the case of
systems that are already designed object level
views can be constructed to characterize the
processes for validation. The following steps
(a-c) indicate the approach to the AIVV is
that of lifting (viewing). This author
presented the AIVV for system design or for
the developed Al systems a decade ago. It is
apparent that knowledge acquisition is highly
correlated to the methodology developed for
an object-level approach to programming and
the system designs indicating the prototype
systems that are to be built. The tech- II plans
are to build actual prototype automated AIVV
techniques put forth in 4,11 are applicable to
the development tems.

The following steps are proposed in
developing the of practical expert and Al
systems that are AIVV. There are techniques
of AIVV presented here. systems well-suited
for developing an object level view of such a
Knowledge Acquisition and Specification:
designs, where various types of reasoning
methods and comunicating objects can be
brought together. The initial phase of
designing the AIVV system software paper
lays the foundations for the development of
automated (FTS) [8,19]is to present the
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design in form of a specification .techniques
for AIVV. The approach here is to start with
the knowledge acquisition and representation
phase. where knowledge on the associate
Bridging The AI Software Gap system is to be
represented at the object level. The practiced
software  verification  and  validation
techniques. Some particular methods are put
forth by this author in (3). presuppose the
well-known software life-cycle methods of
soft It requires us to make note of the domains
that are to be ware design and
implementation Most practical Al systems
expected, i.e. what objects there are and what
the intended are designed and implementedby

Al paradigms that consist actions (operations)
on the objects are, while fully defining of
various reasoning models that are implemented
by various such actions and operations. The
actions could be in form of types of heuristic

and  expert systems. The  planning
impleentations processes in a system. are often
best viewed as several paradigms only

connected by message passing. It is not a case
of "specified" modules that The relations
amongst the objects and the operations can be
expressed by objects and clauses. Once the
modules  correspondence and  relations
knowledge is represented in form of objects
and actions indicating their operations and
communications, their functional
inter/relations. The present proposed project is
to make use of the current ity can be expressed
by specification that are defined below object
level Al systems by taking an object-level view
of the design process. Thus specification are
triples <0.4.R> consisting of objects, designed
Al systeris such that AIVV systems could be
devel actions and relations. Actions are
operations or processes and objects. The
problem of errors inthe models of reasoning
itself the newer views of abstraction (1) and
object-level program is an important concept
addressed by the approach in [4].

This transforms the usual approaches to
knowledge acquisition discipline while there is
a well-defined discipline of fault tolerance
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multiagent software fault tolerance was first
presented by this author, e.g. on :EAAI
journal, A coherent knowledge acquisition in
such approaches merely consists of well-
defined approach to A//software fault tolerance
is lacking obtaining knowledge in clausal form
relating the expert knowl and the start-up
concept paper presented in [4] lays the
foundations for AIVV for to the Al expert,
without any structural requirements actions.
For AIVV systems additional principles to the
validation and verification with. requirements
are put forth here. We view software design as
a methodology that commences defined have a
dual definition in terms of the actions that are
with a knowledge acquisition phase, followed
by a specification phase taken for exception
and recovery, and concluded by a system
realization phase.

Thus at the knowledge acquisition phase the
recovery and approaches defines knowledge
acquisition for software corrective actions are
to be noted at the object level. For fault
tolerance, system specification for fault
tolerant software each action on an object a
dual action is to be identified for (FTS), and
system realization for fault tolerant software
systems exception and recovery. Knowledge
acquisition ncludes exception knowledge as an
essential component, as does system
specification. Multi-Agent View of AIVV
Systems System realization is by independent
concurrent computing The term "agent" has
been recently, for example) agents. FTS is
defined in [18] by a pair of systems, each con-
applied to refer to Al constructs that enable
computation consisting of many computing
agents. The two systems are dually behalf of
an Al activity. It also refers to computations
that synchronized to enable fault and
exception handling and re- take place in an
autonomous and continuous fashion, while
recovery in an automatic manner. AIVV in
this approach can considered a high-level
activity, in the sense that its definition be
correlated to the approaches to software
validation and verification is
software/hardware, implementation
independent [1].

thus
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6.2 Morphic Validations

Let us apply the definition for HA agents
and HA morphisms to state a preservation

theorem. Let A and B be I-algebras with the
signature I containing HA agents. Let Alg[B]
be an I-algebra  defined from B
implementing[1,4,5,6] a specified functionality
defined by A. An All is an implementation for
Alg[A] by Alg[B].

Definition 7.10 Let A and B be I-algebras
with intelligent signature I containing agents.
An I-ontology is an I-algebra with axioms for
the agents and functions on the signature.

Theorem 7.1 Let A and B be I-algebras with
the signature I containing HA agents. The All
with HA morphisms defined from A to B
preserve I-ontology algerbas iff defined by
HA-homorphisms.

Proof The definition for ontologies, HA
morphism, definition 2.7 and 2.8, I-algebras
and I-homorphisms entail the I-ontology
axioms are preserved iff agents are carried by
HA-homorphisms from A to B.

Theorem 7.2 Let A and B be I-algebras with
the signature I containing KL agents. The All
with KL morphisms preserve I-ontology
algerbas iff defined by KL-homorphisms.
Proof Similar to 7.1.

There are precise statements for preservation
principles and mappings in [32]. DKB
mappings are specific All's were the ontology
algebra operations are the same at source and
target. We prove in [32] DKB mappings are
AIIOPP consistent.

6.3 ASF-SDF

New specifications based on general purpose
algebraic specification formalism based on
conditional term rewriting that is an interactive
develpment environment that generates
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environments interactive. ASF-SDF can
provide a basis to carry out agent-based
designs to accomplish model-based design
and refactoring with our new agent models
and implementation morphisms. An important
technical point 1is that the agents are
represented by function names that appear on
the free syntax trees of implementing trees
This formulation will prove to be an important
technical progress. The software development
techniques which make use of the recent
advances consist of several stages, a few of
which are possibly iterated through, before the
process of program production is completed.
The stage of mapping the specifications onto
computing agents is in part carried out by
naming the computing agents, their
corresponding objects in <O,A,R>, and their
message passing actions presented in [1,18].

The further advanced methodology for
synthesis of programs that this author has
put forth [4,15] need a revisit in view of the
present concepts. The characterization in the
auhtor's earlier publications expesses a
paradigm which is further developed and
lifted to Al applications in the present paper
to be carried on with ASF-SDF

6.4 Fail-Safe Multiagent Processes

The above MAI implies design with a pair of
concurrent systems, each consisting of a
collection of kernels. Each of the components
of a system's specification is a kernel. A kernel
consist of those essential processes and objects
that can be used as a basis for defining a
computing activity. This term is analogous to
the terminology familiar in 7 operating
systems concepts. However, it is a level of
abstraction higher and it is defined from
intelligent computing agents, instead of
ordinary processes. The objects and the
operations of one set of kernels once defined
specifies the FNA, while those of the FFA are
defined by the dual kernel. The set of kernels
defining FNA and FFA have a prespecified set

of  cross operations and  message
communications between FNA and FFA. Both
collection of kernels are considered

concurrently "running.” FFA's major task is
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that of exception handling and recovery. If
exception recovery takes place. in each kernel,
the active kernel (a collection of agents) for a
particular function, will be the FNA
component, while the FFA component is
concurrent checking for further exceptions
should they be encountered. Note that this is
not the methodology wusually pursued in
realizing systems. In each of the kernels there
are objects, processes defining the operations,
and objects to which correspond a dual function
in the other kernel. Thus FNA and FFA are a
collection of objects and processes. FNA =
FFA = Each of the processes can have a
corresponding agent in the dual family or at
least to a pre-defined subset of the processes in
the dual family. The pair in a computing system
run’ as a concurrent family of processes.
Various functions in FNA and FFA are
represented by agents that are mutually
informable across the pair. In a formal model
the could be modelled by an infinite number of
's,;running at highest  computing  speed,
corresponding to all object and action
instantiations. The overall functionality of the
system depends on the messages passed across
from one agent to another. To each
specification defined by FFNRA there co
rresponds two kernels running concurrent.

7 Future directions and Conclusions

The techniques proposed address the
innovations claimed in the earlier section in
realizing multi-agent, multi kernel Al software
systems that are fault free. By fault tolerance is
meant that the designed systems can recover
from exceptions, in either anticipating them or
spawning agent processes that can correct for
the exceptional conditions and recover to a
normal state. The designs are also ensured fault
free since the design methodologies
incorporate structural techniques that result in
the design of Al systems that are verifiably
accomplishing what they were purported to
The approach to fault tolerance proposed above
has been actually applied in its basic form to
challenging practical problems in system
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design by the present author (Nourani 1992-
1999). The techniques have been promising
enough to prompt the author to conduct an
R&D project to establish the methods and
techniques for the Al and software
community presenting prototypes of various
systems of interest. A technical paper by the
author written towards the end of 1991 was
the first in a series of concept papers
crystallizing the field of Multi Agent Fault
Free and Fault Tolerant Artificial Intelligence
Systems. Agent Interoperability: Natural fit for
multi-agent  orchestration, collaborative Al
Future-Proof Alignment: Conceptual foundations
already mirrored in today’s agentic Al, neuro-
symbolic systems, and multimodal transformers.
Commercialization Path. Devising agentic stack
specificatons for the application areas.
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