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1 Introduction 

A  software  design  paradigm  incorporating
novel  implementation  techniques  and  a
definition  of  abstract  intelligent
implementations  (AII)  are  presented.
Innovative techniques for design of knowledge
bases  and  heterogeneous  software  systems
with  techniques  for  automated  reasoning  are
put  forth.  The  application  areas  include
support  for  highly  responsive  planning.
Intelligent implementation of software, i.e., the
design and  implementation  by  AII  techniques
is due to be an area of crucial importance. The
AII techniques are being applied [8] gradually
to the real problems encountered in fields such
as intelligent systems, aerospace, robot design,
and  knowledge  bases,  abbreviated  by  KB A
basis  for  what  we  have  called  Artificial
Algebras  [2]  has  been  written  since  the  first
version  of  All  was  written  in  1993.  It  is  a
preliminary  theory  for  an  algebra  for
intelligent  trees and artificial intelligence.  The
mathematical  foundations for  software agents
might  call  for  algebras  with  varying  carriers
and functionality. AI systems might be defined
by  the  stages  of  Conceptualization,  Design,
and Implementation. 

     Each of the  stages  is to  be approached in
ways  that  minimize  human  error  and  enable
the designed  system to automatically recover
from  faults.  The  fault  recovery  issues are  not
the  topic of  this paper  and are treated by this
author  in  [12].  We  design  software  with
agents[10]  via  a  methodology  which
commences  with  a  knowledge  acquisition
phase,  followed by  a  specification phase,  and
concluded by a system implementation phase.
The  present  approach  defines  functional
nondeterministic  knowledge learning (Design
Agents),  fault  free  system  specification,  and
multiagent  abstract  implementations.  Design
Agents is Flagrant Agent Computing by active
agent  learning,  and  includes  exception
knowledge as an essential component, as does
system  specification.  The  techniques  are
defined for designing heterogeneous  software.
System  implementation  is  by  independent
concurrent  computing  agents.  A  pair  of
systems,  each  consisting,  defines  AI  and
software systems in the present  paper of  many

computing  agents.  The two parts are mutually
synchronized  to  enable  fault  and  exception
handling and recovery in an automatic manner
[1,18].

     Software  agents  are  specific  agents
designed by a language that carry out specified
tasks and define a software functionality. Most
agents  defined  by our  examples  are  software
agents. In the space examples there, of course,
implied  hardware  functionality  specified.
Objects  are  in  the  well-known  sense  of  the
word  in  object  programming,  abbreviated  by
OOP.  However,  our  designs  are  with
intelligent  objects  a concept  we had  invented
since 1992. Its foundations has been developed
and applied this authors publications. Ordinary
objects  consist  of  abstract  data,  perhaps
encapsulation,  and  operations.  Most  recent
programming  techniques  apply OOP in  some
form.  Software  engineering  techniques  with
abstract  data  types  have  had  OOP  on  their
mind.  IOOP   is   is  based on  technique
developed  by  the  author  combining  AI  and
software agents  with OOP. For our project the
modular programming concepts are combined
with  software  agent  computing,  new  IOOP
constructs  object-cobject  pairs  and  kernels.
Modules  are aggregate objects with a specific
functionality  defined.  Aggregate  objects  and
their  specified  functions  are  defined  by
<module-co module> pairs called kernels. . 

     A kernel  consists  of  the  minimal  set  of
processes  and  objects  that  can  be  used  as  a
basis  for  defining  a  computing  activity.  The
term  kernel  is  analogous  to  the  terminology
familiar in operating systems concepts, but is at
a  high  level  of  abstraction  with  objects  and
functions encapsulated. A system is defined by
a  set of kernels,  which  can  be programmed to
function synchronous applying software agents.
The  analogy  is  a  distributed  computing
environment  with  many  computers  on  a  net.
Each kernel corresponds  to  a computer on  the
net.  The  multiagent  AI  concepts  are  the
standard  terms[7]. For the Intelligent Systems,
the nomenclature,  e.g.  Facilitator,  Mediator is
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from standardization defined and agreed on at
a  conference  in  Colorado  for  the purpose  in
Heterogeneous  design  with  software  agents
dates back to the [17] papers and addressed on
a formal funding proposals the same years.The
applied  terminology  is  defined  in  our  paper.
The same conventions define  heterogeneity  to
be  the  mismatch  found  in  autonomously
developed resources and services, ranges from
platforms, operating systems, database systems
and  models,  data  representations,  ontology,
semantics, and processing paradigms. Level is
a conceptual categorization, where objects at a
lower  level  depend  on  their  ancestors  at  a
higher level.  Ancestor is an object at  a  higher
level, source of inheritable attributes. The root
object is  the ultimate  ancestor. Ontology is  a
set  of  terms  and  relationships  used  in  a
domain, denoting  concepts  and  objects, often
ambiguous among domains. The techniques in
[1,18]  have  been  applied  to  the  design  of
knowledge-based  systems  by  the  present
project and [13]. 

The basis for a sound theoretical and practical
methodology  for  designing  AI  software
systems is emerging.  The paper's  structure is
as  follows.  Section  one  defines  the  way
multiagent  systems  might  be  specified  by
software  agents.  Additional  new  concepts
applied are <object-co objects> and intelligent
objects.  There  are  illustrating  examples.
Section 2 combines the  designs  with abstract
mediators  and  applies  the  current  Intelligent
Systems  terms  to  define  formal  agent-based
designs.  Section three  defines  event-prompted
agents.  Section 4 defines  multiagent  systems
designed  with  the  techniques,  instantiating
facilitators  and  mediators  by  an  example.
Section  5  defines  formal  algebras  for
multiagent  systems  and  defines  formal
implementation  maps  for  the  algebras.  It
further defines ontology algebras incorporating
the Ontology Preservation Principle. Section 6
is  an  overview  to  the  AIS  synthesizer  for
multiagent  software  design.  The  paper  is
concluded  by section  7.   The techniques are
further  applied  to  model-based  software
engineering and model refactoring.  The paper
outlines methods for validating multiagent AI
systems  by  combining  software  engineering

with  agent-based  computing.  It  emphasizes
fault-tolerant,  ontology-preserving,  and
modular  design  principles  for  mission-critical
applications, including space missions. The key
concepts are as follows: 

Agents  and  Mediators:  Agents  are  functional
units  (software  or  implied  hardware)  carrying
out tasks, while mediators synchronize actions,
handle  exceptions,  and  enable  recovery.
Design_Agents & CoAgents: Design_Agents =
normal  activity  modules.  CoAgents  =  fault-
handling  modules.  These  run  concurrently,
ensuring  fail-safe  operation.Ontology
Preservation:  A  system  is  valid  only  if  its
ontology (domain concepts, relations, rules) is
preserved  during  implementation  and
refactoring.  This  is  called  the  AII  Ontology
preservationPrinciple  (AIIOPP).  Model-based
Engineering  &  Refactoring:  Uses  algebraic
models  and  graph  transformations  (e.g.,TU
Berlin’s  AGG)  to  refactor  and  validate  agent
models  while  ensuring  structural  consistency.
Validation  Techniques  (AIVV):  Object-level
validation: actions and their duals (normal vs.
fault response).

1.1. Specifying Multiagent Systems 

The hypotheses  for the realization  of systems
in  our  project  might appear  "linear"  steps  of
software engineering,  however its linearity is
no more stringent than the concept of modular
design.  It  is the least we can demand  from a
design. In  reality the design  concept is highly
nonlinear.  The agents can be applied in ways
which,  compared  to  an  ordinary  software
engineering  design,  appear  highly
nonfunctional  and  non-modular.  From  the
software agent designer's viewpoint, however,
there is molecularity with  artificial  structures.
Artificial  structures  [2]  are  implemented  by
agent morphisms. The process is thus includes
loops  amongst the phases  in  the  software  life
cycle.  The  intelligent  objects  and  modules,
agents,  facilitator  and  mediators  leave  many
degrees  of  freedom  to  design.  There  are
artificial  loops  in  the  design  resembling
aerobatics  by high-speed airborne agents.  The
AI and software designer specifies the actions
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and  operations  from  the  informal
specifications  supplied  by  a  "user."  .  Some
past  contributors  are  [8],  [13].  The  initial
phase  of  the  design  of  the  proposed  AII
techniques  is  to  present  the  design  with
Mediator [10,17,19],  Abstract Specifications,
where specifications are in the sense of [1,4].
Ontology  algebras  are  defined  at  meta-data
and  meta-knowledge  level.  Intelligent  tree
computing theories [22] and artificial algebras
[2]  can  be  applied  to  the  theoretical
development. Knowledge acquisition requires
either  interviewing  an  expert,  brainstorming
with a  group of experts,  or structuring one's
thoughts  if  the  specifier  is  the  expert.  For
multiagent  designs  there  are  active  learning
agents and automatic learning. We present the
notion  of  Functional  Nondeterministic
Knowledge  Learning  (Design_Agents)  in
[11]. 

Design_Agents is formulated to deal with the
conceptualization  stage and  is being applied
by  the  present  project  to  define  active
learning  by agents.  Design_Agents  requires
the  user  to  inform  the  specifier  as  to  the
domains  that  are  to  be  expected,  i.e.  what
objects  there  are  and  what  the  intended
actions (operations) on the objects are, while
fully  defining  such  actions  and  operations.
The actions could be in form of processes in
a system. The relations  amongst the  objects
and the operations (actions) can be expressed
by algebras  and  clauses,  which  the  specifier
has  to  present.  The  usual  view of  a  multi-
agent  systems might  convey to  an innocent
AI designer that an agent has a local view of
the  environment,  interacts  with  others  and
has  generally  partial  beliefs  (perhaps
erroneous) about other agents. 

    On  the  surface  the  Design_Agents
specification techniques might appear as being
rigid as to  what the agents expect  form other
agents.  The Design_Agents  specification  does
not  ask  the  agents  be  specified  up  to  their
learning  and  interaction  potential.
Design_Agents  only  defines  what  objects
might be involved and what  might start  off  an
agent.  It  might further  define  what agents are
functioning  together.  Thus  specifications  are

triples  <O,A,R>  consisting  of  objects,  actions
and  relations.  Actions  are  operations  or
processes.  The  views  of  abstraction  [1,4],
object-level  programming,  and agent views of
AI  computation  [12],  are  the  important
components of inter-play in  the present  paper.
Design_Agents  have  some  additional
requirements to be put forth. The requirement is
that each object to be defined has to have a dual
definition in terms of the actions to be taken for
flagrant agents, faults, exception and recovery. 

     At the knowledge learning phase the expert
is to state all exceptions to  actions and  what
recovery  and  corrective  actions  are  to  be
carried out. For each action on an object a dual
action is to be supplied through Desig_Agents,
such that a specifier can fully define the effect
of the  dual actions. The  design techniques do
not  imply  asking  the  expert  to  state  all  the
exceptions to actions. The exceptions naturally
present  themselves  by  the  object-coobject
concept.  A coobject is an object defined with
the same carriers as the object, but with a set of
operations  complementary  to  the  object's
operations  carrying on an  alternate symmetric
Exception  operations.  In  the  figure  let  OPS
denote operations, EXP denote exceptions. The
last  equations  define  the  exception action.  In
the example there is  a  process  (action) that is
always checking the supply of Angelika coffee
implementing  the  exception  function.  APs:=
<A trivial example>, many robots appear  at a
critical  entrance  at  once,  necessitating  FA
activity.  APs  are  computing  events  which
activates  an  agent  (see  section  3).  1.1
Multigent Planning 

                        Figure 1

Cyrus. F. Nourani
International Journal of Computers 

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 35 Volume 11, 2026



                                               

Components  Cooperate  on Multi-Boards How
the  standard  planner  is  to  interact  with  the
preceding  planner  components  In  the  figures
above  Mi's  are  objects;  ai's  are  agents.  The
dotted  lines  are  agent  message  paths.  A
specific  super  module appears  as an <object-
coobject>  pair..  The  following  is  a  Python
processing  depiction  for  the  above  planner.
Think  of  the  simulation  like  a  mini  world
where agents act, communicate, and replan.

 A  depicted  Python  design  follows:   Roles
Planner (Global or distributed)   Decides who
does what and when Agents  (A1,  A2,  A3...)
Execute  tasks,  observe  environment,  report
status  Environment    Changes  over  time
(resources, obstacles, goals). Visual Metaphor
Agents = moving nodes or characters Tasks =
icons/cards  Planner  =  control  dashboard  or
“brain”  

               

          Figure 2

Color-code:🟢Agent     executing🟡Agent
waiting  ⬤Agent replanning 

1.2 Visual mission planning    

An example IM mission planning  is as follows.
Hybrid  picture 1- Spacecraft  "Spacecraft" \i  A
Navigation Window "Navigation Window" \i 

Agents:  A1  Computes available docking
times based  on  the visual field on the
window. 

A2  carrysout  docking
sequence  based  on  messages
to Spacecraft B 

Hybrid
picture  2
Spacecraft  B
Navigation
Window 

Agents:  B1  ccarries  on
course based on its visual
field window 

B2 Accepts and carries out
docking maneuvers from external
hovering  craft  agents  Plan  Goal
"Plan Goal" 

Engage  docking  between  A  and  B  at
appropriate A and B field windows. 

1.3 Morph Gentzen

Morph  Gentzen  computing  can be applied  to
the hybrid pictures to satisfy a plan goal. Thus
morphing  is  applied  with  precise  fluidity   o
plan  computation.  A  well-known  agent
computing  design  paradigm  is  BID.  At  BID
the  functional  or  logical  relations  between
motivational  attitudes  and  between
motivational  attitudes  and  informational
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attitudes  are  expressed  as  meta-knowledge,
which may be used to perform meta-reasoning
resulting  in  further  conclusions  about
motivational attitudes. If we were to plan with
BID  with  intelligent  multimedia  the  logical
relations  might  have  to  be  amongst  worlds
forming the attitudes and event combinations.
For  example, in a simple instantiation  of the
BID model, beliefs can be inferred from meta-
knowledge that any observed fact is a believed
fact  and  that  any  fact  communicated  by  a
trustworthy  agent  is  a  believed  fact.  With
IM_BID, the observed facts are believed facts
only  when  a  conjunction  of  certain  worlds
views and evens are in effect  and  physically
logically  visible  to  the  windows  in  effect.
Since  planning with IM_BID is  at  times with
the  window  visible  agent  groups,
communicating,  as two androids might,  with
facial gestures, for example.  

2. The Formal Basis 

The  present  approaches  have  a  theoretical
basis  abbreviated  in  the  following  sections.
We  start  with  agents,  define  modules  and
algebras, and agent and module morphisms.  

2.1 Agents 

Starting  with  what  are  called  hysterectic
agents  (Genesereth&Nilsson  1987).  A
hysterectic  agent  has  an  internal  state  set  I,
which  the  agent  can  distinguish  its
membership.  The agent can transit from each
internal  state  to  another  in  a  single  step.
Actions  by  agents  are based on I and board
observations.  There is an external  state set S,
modulated  to  a  set  T  of  distinguishable
subsets  from the  observation  viewpoint.  An
agent  cannot  distinguish  states  in  the  same
partition defined by a  congruence  relation.  A
sensory function s :S → T maps each state to
the  partition  it  belongs.  Let  A  be  a  set  of
actions which can be performed by agents.  A
function action can be defined to characterize
an agent activity action:T →A. There is also a
memory update function mem: I x T → I.  To
define  agent  at  arbitrary  level  of  activity
knowledge  level  agents  are  defined.  All
excess  level  detail  is  eliminated.  In  this
abstraction  an  agent's  internal  state  consists

entirely  of  a  database  of  sentences  and  the
agent's actions are viewed as inferences based
on  its  database.  The  action  function  for  a
knowledge  level  agent  maps a database  and  a
state partition t into the action to be performed
by  an  agent  in  a  state  with  database  and
observed state partition  t. action:  D x T→  A
The update function database maps a state and
a state partition t into a new internal database.
database: D x T→ D A knowledge-level agent
is an environment is an 8-tuple shown below.
The  set  D in  the  tuple  is  an arbitrary  set  of
predicate  calculus  databases,  S  is  a  set  of
external states, T is the set of partitions of S, A
is a set of actions, see is a function from S into
T, do is a function from A S into S, database is
a function from D x T into D, and  action is a
function  from  D  x  T  into  A.
<D,S,T,A,see,do,database,action>  Knowledge
level agents are hysterectic agents. 

2.3  Agent  Morphisms  and  Module
Preservation 

Starting  with  what  we  called  hysterectic
agents  (Genesereth&Nilsson  1987).  A
hysterectic agent  has  an internal  state  set I,
which  the  agent  can  distinguish  its
membership.  The  agent  can  transit  from
each  internal  state  to  another  in  a  single
step. 

Actions by hysterectic agents are based on I
and observations. The observations are from
problem  solving  boards,  messages  to  the
agent,  and a database.  There  is  an external
state  set  S,  modulated  to  a  set  T  of
distinguishable subsets from the observation
view  point.  An  agent  cannot  distinguish
states  in  the  same  partition  defined  by  a
problem  congruence  relation.  A  sensory
function  s  :S  → T  maps  each  state  to  the
partition it belongs. Let A be a set of actions
which  can  be  performed  by  agents.  A
function  action  can  be  defined  to
characterize an agent activity action:T → A.
There is  also  a memory  update  function.  A
hysterectic  agent HA defined by a sextuple
<I,S,T,A,s,d,internal,action>  where  d  is  a
function form A x S→ S and internal I x T
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→ I. Let HA be a set of sextuples defining a
hysterectic agents. Define HA morphism by
a  family  of  functions  defined  component-
wise on the sextuple above. 

Definition 2.1 A HA morphism is a function
F: HA→ HA' defined component-wise by 

F[i]: I→  I'; F[S]:  S → S',  F[T]: T →T',
F[A]: A →A'; F[s]: S→ T'; F[d]: A' x S'
→ S' and F[internal]: I' x T’→I'. 

Definition  2.1  implies  F  defines  a  new
hysterectic agents from HA by a morphism.

The  definition  might  become  further
transparent in view of definitions is section
2.4.  Component-wise  definitions  for  a
morphism might be viewed as functions on
a  multi-  sorted  signature  carrying  the
sextuple. Similar morphisms can be defined
for  knowledge  level  agents  defined  in
section 2.1 which  we can refer  to by KL-
morphisms. 

2.4 Agents, Modules, and Algebras 

The  computing  enterprise  requires  more
general techniques of model construction and
extension,  since  it  has  to  accommodate
dynamically changing world descriptions and
theories.  The  models  to  be  defined  are  for
complex  computing  phenomena,  for  which
we  define generalized  diagrams.  The authors
a decade ago, e.g. [3], techniques for model
building  as  applied  to  the  problem  of  AI
reasoning  allows  us  to  build  and  extend
models  through  diagrams.  It  required  us  to
define  the  notion  of  generalized  diagram.or
generic model diagrams were devied by this
author,  e.g,  [3]  to  build  models  with
prespecified functionns, for exam,ple baed on
Skolem functions. The specific minimal set of
function  symbols  is  the  set  with  which  a
model  for  a knowledge base  can  be defined.
The  G-diagram  techniques  allowed  us  to

formulate  AI  worlds,  KB's  in  a  minimal
computable  manner  to  be  applied  to  agent
computation. 

The  model  buildin  tehnoques  are  applied  to
the problem of AI reasoning allows us to build
and  extend  models  through   diagrams.  A
technical example of algebraic models defined
from syntax  had appeared in  defining  initial
algebras for equational theories of data types
(ADJ  1973)  and  our  research  in  (Nilsson
1969). In such direction for computing models
of equational theories  of  computing  problems
are  presented  by  a  pair  (,E),  where  is  a
signature (of many sorts, for a sort set S) (ADJ
1973,Nourani  1995a)  and  E  a  set  of
-equations. Signatures are in the same sense as
key signatures in music. 

Definition  2.2  An  s-sorted  signature  or
operator domain is a family <w,s> of sets, for s
S  and  w S* (where S* is the set  of all  finite
strings  from S,  including  the  empty  string  ).
call f <w,s> and operation symbol of rank w,s;
of arity w, and of sort s.  We apply multi-sorted
algebras  via  definition  2.3  to  multiagent
systems.  

Definition 2.3 Let be an S-sorted signatures. A
-algebra A consists of  a  set As for each s in S
(called the carrier if A of sorts) and a function
<A>:  As1  x As2 x....xAsn As for  each  <w,s>,
with w=s1s2...sn  (called  the operation named
by).  For  <,s>,  A As,  i,e the  (set  of names) of
constants of sort s. 

Definition  2.4  If  A  and  B  are  algebras,  a
-homomorphism  h:  A  B  is  a  family  of
functions <hs: As Bs> s in S that preserve the
operations,  i.e.  that  satisfy  (h0) For  <s>,  the
hs(A) = B; (h) If, For <w,s>, with w=s1s2...sn
and  <al,...,an>  As1  x  As2  x....xAsn,  then
hs[A(a1,...,an)]  =  B(hs(a1),...,hs(an)).  
2. The Formal Basis

The present approaches have a theoretical basis
abbreviated in the following sections. We start
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with agents, define modules and algebras, and
agent and module morphisms.

2.5 Agents

Starting with what are called hysterectic agents
Genesereth&Nilsson  [7].  A  hysterectic  agent
has n internal state set I,  which the agent can
distinguish  its  membership.  The  agent  can
transit from each internal state to another in a
single step. Actions by agents  are based on I
and board observations.  There is an external
state  set  S,  modulated  to  a  set  T  of
distinguishable  subsets  from  the  observation
viewpoint. An agent cannot distinguish states
in the same partition defined by a congruence
relation.   A sensory function s  :S  →T maps
each state to the partition it belongs. Let A be a
set  of  actions  which  can  be  performed  by
agents.  A  function  action  can  be  defined  to
characterize  an  agent  activity  action:T  →A.
There is also a memory update function mem:
I x T →I. To define agent at arbitrary level of
activity  knowledge  level  agents  are  defined.
All  excess  level  detail  is  eliminated.  In  this
abstraction  an  agent’s  internal  state  consists
entirely  of  a  database  of  sentences  and  the
agent’s actions are viewed as inferences based
on  its  database.  The  action  function  for  a
knowledge level agent maps a database and a
state partition t into the action to be performed
by  an  agent  in  a  state  with  database  and
observed state partition t. action: D x T→A

The update function database maps a state and
a state partition t into a new internal database.

database: D x T → D

A knowledge-level agent is an environment is
an 8-tuple shown below. The set D in the tuple
is  an  arbitrary  set  of  predicate  calculus
databases, S is a set of external states, T is the
set of partitions of S, A is a set of actions, see
is a function from S into T, do is a function
from A S into S, database is a function from D
x T into D, and action is a function from D x
T  into  A.  <D,S,T,A,see,do,database,action>
Knowledge level agents are hysterectic agents.

2.6 Agent Morphis Module Preservation
Starting with what we called hysterectic agents
(Genesereth&Nilsson  1987).  A  hysterectic
agent has an internal state set I, which the agent
can distinguish its membership. The agent can
transit from each internal state to another in a
single  step.  Actions  by hysterectic  agents  are
based on I and observations. The observations
are from problem solving boards messages to
the agent, and a database. There is an external
state  set  S,  modulated  to  a  set  T  of
distinguishable  subsets  from  the  observation
view point. An agent cannot distinguish states
in  the  same  partition  defined  by  a  problem

congruence relation. A sensory function s :S 
T maps each state to the partition it  belongs.
Let  A  be  a  set  of  actions  which  can  be
performed by agents. A function action can be
defined  to  characterize  an  agent  activity
action:T →A. There is also a memory update
function. A hysterectic agent HA defined by a
sextuple  <I,S,T,A,s,d,internal,action>  where  d
is a function form A x S →S and internal I x T
→  I.  Let HA be a set of sextuples defining a
hysterectic agents. Define HA morphims by a
family of functions defined component-wise on
the sextuple above.

Definition 2.1 A HA morphism is a function
F : HA →HA’ defined component-wise by
F[i]:  I→  I’;  F[S]:  S  →S’,  F[T]:  T  →T’,
F[A]:  A →A’; F[s]:  S→T’; F[d]:  A’  x S’
→S’ and F[internal]: I’ x T’→I’.

Definition  2.1  implies  F  defines  a  new
hysterectic agents from HA by a morphism.
The  definition  might  become  further
transparent in view of definitions is section
2.4.  Component-wise  definitions  for  a
morphism might be viewed as functions on a
multi-sorted signature carrying the sextuple.
Similar  morphisms  can  be  defined  for
knowledge  level  agents  defined  in  section
2.1 which we can refer to by K-morphisms.

2.7 Agents, Modules, and Algebras

The computing enterprise requires more general
techniques  of  model  construction  and
extension,  since  it  has  to  accommodate
dynamically  changing  world  descriptions  and
theories.  The  models  to  be  defined  are  for
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complex computing phenomena, for which we
define generalized diagrams. The techniques in
(Nourani  1983,87,91,94a)  for  model  building
as  applied  to  the  problem  of  AI  reasoning
allows us to build and extend models through
diagrams. It required us to define the notion of
generalized  diagram.  We  had  invented  G-
diagrams(Nourani  1987,91,93b,94a)  to  build
models  with prespecified  generalized Skolem
functions. The specific minimal set of function
symbols  is  the set  with which a model fro  a
knowledge  base  can  be  defined.  The  G-
diagram techniques allowed us to formulate AI
worlds, KB’s in a minimal computable manner
to  be  applied  to  agent  computation.  The
techniques  in  (Nourani  1991,94a)  for  model
building  as  applied  to  the  problem  of  AI
reasoning allows us to build and extend models
through  diagrams.  A  technical  example  of
algebraic  models  defined  from  syntax  had
appeared  in  defining  initial  algebras  for
equational  theories of  data types  ADJ [4]and
this author in (Nilsson 1969). In such direction
for computing models of equational theories of
computing  problems  are  presented  by  a  pair
(Σ,E), where is a signature (of many sorts, for a
sort set S) and E a set of -equations. Signatures
are  in  the  same  sense  as  key  signatures  in
music.

Definition  2.2 An  s-sorted  signature  or
operator domain is a family <w,s> of sets, f €or
s S and w S*(where S* is the set of all finite
strings from S , including the empty string ).
call f <w,s> and operation symbol of rank w,s;
of arity w, and of sort s. 

The figure depicts an S-sorted signature from
ADJ[6].  We  apply  multi-sorted  algebras  via
definition 2.3 to multiagent systems.

Definition 2.3 Let be an S-sorted signatures. A
-algebra A consists  of a set  As for  each s S
(called thecarrier if A of sort s) and a function
<A>: As1 x As2 x....xAsn As for each <w,s>,
with w=s1s2...sn (called the operation named
by ).For <,s>, A As, i,e the (set of names) of
constants of sort s.

Definition  2.4 If  A  and  B  are  algebras,  a
-homomorphism h:A B is a family of functions

<hs:As Bs> s in S that preserve the operations,
i.e.  that  satisfy (h0)  For <,s>, the hs(A) = B;
(h1)  If  ,  For  <w,s>,  with  w=s1s2...sn  and
<a1,...,an>  As1  x  As2  x....xAsn,  then
hs[A(a1,...,an)] = B(hs(a1),...,hs(an)).

For an intelligent  signature I,  let T<I> be the
free  tree  word  algebra  of  signature  I.  The
quotient of T<I>, the word algebra of signature
,  with  respect  to  the  I-congruence  relation
generated  by  a  set  of  equations  E,  will  be
denoted by T<I,E>,  or T<P> for presentation
P.

The  computing  and  reasoning  enterprise
require  more  general  techniques  of  model
construction  and  extension,  since  it  has  to
accommodate  dynamically  changing  world
descriptions and theories. The techniques in the
author’s projects for model building as applied
to  the  problem of  AI reasoning  allows  us  to
build and extend models through diagrams. A
technical example of algebraic models defined
from  syntax  had  appeared  in  defining  initial
algebras (ADJ 1977) for equational theories of
data types, this author since 1990`s at least. In
such  direction  for  computing  models  of
equational theories of computing problems are
presented by a pair (Σ,E), where Σis a signature
(of many sorts, for a sort set S) and E a set of
Σ-equations. 

Let  T<Σ>  be  the  free  tree  word  algebra  of
signature  Σ. The quotient  of T<Σ>, the word
algebra of signature  Σ, with respect to the  Σ-
congruence  relation  generated  by  E,  will  be
denoted by T<Σ,E>, or T<P> for presentation
P.  T<P>  is  the  "initial"  model  of  the
presentation P.

The  Σ-congruence relation will be denoted by
≡P. One representation of T(P) which is nice in
practice consists of an algebra of the canonical
representations  of  the  congruence  classes,
abbreviated by  Σ-CTA. It  is a special  case of
generalized  standard  models  the  author  had
defined  (Nourani  1996  for  newer  examples).
Some definitions are applied from our papers
that  allow  us  to  define  standard  models  of
theories that are Σ-CTA's. The standard models
are significant  for  tree computational  theories
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that  the  author  had  presented.  Generic
diagrams  are  applied  to  define  canonical
standard  models  in  the  same  sense  as  set
theory. This definitions are basic to sets and in
defining  induction for  abstract  recursion  and
inductive  definitions.  The  canonical  models
are applied to multiagent computing during the
last several years by the author.

Definition  2.5   We say  that  a  signature  Σis
intelligent  iff  it  has  intelligent  function
symbols.  We  say  that  a  language  has
intelligent syntax if the syntax is defined on an
intelligent  signature.  To  define  a  specific
mathematical  linguistics  basis  for  agent
augmented  languages  intelligent  languages
were defined (Nourani 1995d) as follows.

Definition  2.6   A  language  L  is  said  to  be
intelligent  language iff  L is  defined from an
intelligent syntax.

Agent  augmented  languages  and  signatures
allow  us  to  present  computational  theories
with  formulas  on  terms  with  intelligent
function symbols.

2.7.1. Abstract Intelligent Syntax

It  is  essential  to  the  formulation  of
computations  on  intelligent  trees  and  the
notion  of  congruence  that  we  define  tree
intelligence  content.  A  reason  is  that  there
could be loss of tree intelligence content when
tree  rewriting  because  not  all  intelligent
functions  are  required  to  be  on  mutual
message exchanges. Theories are presented by
axioms that define them and it is difficult  to
keep  track  of  what  equations  not  to  apply
when  proving  properties.  What  we  have  to
define,  however,  is  some  computational
formulation of intelligence content such that it
applies to the present method of computability
on trees.  Once that formulation is  presented,
we could start decorating the trees with it and
define  computation  on  intelligent  trees.  It
would be nice to view the problem from the
stand point of an example.

     The  examples  of  agent  augmented
languages  we  could  present  have  <O,A,R>

triples  as  control  structures.  The  A's  have
operations  that  also  consist  of  agent  message
passing.  The  functions  in  AFS  are  the  agent
functions  capable  of  message  passing.  The  O
refers to the  set of objects and R the relations
defining the effect of A's on objects. Amongst
the  functions  in  AFS  only  some  interact  by
message passing. What is worse the functions
could  affect  objects  in  ways  that  affect  the
intelligence content of a tree. There you are: the
tree  congruence  definition  thus  is  more
complex  for  agent  augmented  languages  than
those  of  ordinary  syntax  trees.  Let  us  define
tree  intelligence  content  for  the  present
formulation.  For  an intelligent  signature  I,  let
T<I> be the free tree word algebra of signature
I.  The quotient  of  T<I>,  the word  algebra  of
signature,  with  respect  to  the  I-congruence
relation generated by a set of equations E, will
be denoted by T<I,E>, or T<P> for presentation
P. 

2.8 Agents, Languages, and Models 

By  an  intelligent  language  we  intend  a
language with syntactic constructs that allow
function symbols and corresponding objects,
such  that  the  function  symbols  are
implemented  by  computing  agents  in  the
sense  defined by  this author  in  .  Sentential
logic is the standard formal language applied
when defining basic models. The language is
a  set  of  sentence  symbol  closed  by  finite
application of  negation  and  conjunction  to
sentence  symbols.  Once  quantifier  logical
symbols  are  added  to  the  language,  the
language of first order logic can be defined.
A  Model  for  is  a  structure  with  a  set  A.
There are structures defined for such that for
each  constant symbol in  the  language there
corresponds  a  constant  in  A.  For  each
function symbol  in the language  there  is  a
function defined on A; and for each relation
symbol  in  the  language  there  is  a  relation
defined on A.  For  the algebraic theories we
are defining for intelligent tree computing in
the  forthcoming  sections  the  language  is
defined  from  signatures  as  in  the  logical
language  is  the  language  of  many-  sorted
equational logic. 
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    The  signature  defines the language by
specifying the function symbols' arities. The
model  is  a  structure  defined  on  a  many-
sorted algebra  consisting  of S-indexed sets
for  S  a  set  of  sorts.  By  an  intelligent
language  we  intend  a  language  with
syntactic  constructs  that  allow  function
symbols  and  corresponding  objects,  such
that  the  function  symbols are  implemented
by  computing  agents.  A  set  of  function
symbols in the language, referred to by AF,
is  the set  modeled in the computing  world
by AI Agents with across and/or over board
capability. Thus the language defined by the
signature  has  designated function  symbols
called AF. The AF function symbols define
signatures  which  have  specific  message
paths defined for carrying context around an
otherwise context free abstract syntax. A set
of  function  symbols  in  the  language,
referred to by AF, are agents with nontrivial
capability.  The  boards,  message  passing
actions,  and  implementing  agents  are
defined by syntactic constructs, with agents
appearing as functions.  The computation is
expressed  by  an  abstract  language  that  is
capable of  specifying  modules,  agents, and
their communications. We have put together
the  AI  concepts  with  syntactic  constructs
that  could  run  on  the  tree  computing
theories we are presenting in brief. We have
to define  how  the  syntactic  trees  involving
functions from the AF are to be represented
by algebraic tree rewriting on trees.  This  is
the  subject  of the  next section,  where free
intelligent  trees  are  defined.  An important
technical  point  is  that  the  for  agents  there
are function names on trees. 

Definition 2.5  We say that  a signature is
intelligent  iff  it  has  intelligent  function
symbols.  We  say  that  a  language  has
intelligent syntax if the syntax is defined on
an intelligent signature.

Definition 2.6 A language L is said to be an
intelligent language iff L is defined from an
intelligent syntax. 

The  example  of  intelligent  languages  we

could  present are composed  from  <O,A,R>
triples  as  control  structures.  The  A's  have
operations that also consist of agent message
passing.  The  functions in AF are the agent
functions  capable of message  passing.  The
O  refers  to  the  set  of  objects  and  R  the
relations  defining  the  effect  of  A's  on
objects. Amongst the functions  in AF only
some  interact  by  message  passing.  The
functions  could affect  objects in ways  that
affect  the  information  content  of  a  tree.
There  you  are:  the  tree  congruence
definition  thus  is  more  complex  for
intelligent languages than  those  of ordinary
syntax trees.  Let us define tree  information
content  for  the  present  formulation.  Hence
there  is  a  new  frontier  for  a  theoretical
development  of  the  <O,A,R>  algebras  and
that of the AII theory. <O,A,R> is a pair of
algebras,  <Alg[A],Alg[F]>(see  section  3),
connected  by  message  passing  and  AII
defines  techniques  for  implementing  such
systems.  To  define  AII  we  define
homomorphisms  on  intelligent  signature
algebras. 

Definition  2.7  An  I-homomorphism  is  a
homoprphism  defined  on  algebras  with
intelligent signature I. 

To define agent specific designs we apply
HA-morphisms  via  the  following
definition.

Definition 2.8  Let A and B be  I-algebras
with  signatures  containing  an  agent
signature  HA.  A HA-homoprphism from
A to B is an I-homorphism with  defined
HA-morphism properties.  

3. Multiagents and Mediators
The term "agent" has been recently applied to
refer to AI constructs that enable computation
on    behalf of an AI activity. It also refers to
computations  that  take  place  in  an
autonomous  and  continuous  fashion,  while
considered a high-level activity,  in the  sense
that its  definition  is  software and  hardware,
implementation,  independent  [1] For
example,  in  a  planning problem  for  space
exploration, an agent might be assigned by a
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designed flight system [8,19] to compute the
next  docking  time  and  location,  with  a
known  orbiting  space  craft.  Agents  are  in
most  cases  informable[1],  thus  allowing
message passing actions.  We can define AII
software systems designed by AI methods as
intelligent  agent architectures,  with external
behavior that is a  function  of the  degree of
message  passing  actions  and  parallelism
conceptualized. 

     Since our specifications consist of objects,
actions,  and  relations  defining  the  effect  of
actions  on  objects,  we  can  define  formal  IF
systems from the specifications and prove the
specifications can be implemented by a set of
agents.  A  mediator  is a software module that
exploits encoded knowledge about certain sets
or subsets  of data  to  create  information for a
higher layer of applications. and the definition
goes on to state `It should be small and simple,
so that it can be maintained by one expert  or,
at most, a small and coherent group of experts'
Mediator instantiation is to populate a domain-
independent  service  or  tool  with  domain-
specific knowledge. 

    OurMediator  Specifications  consisti  of  a
tuple  of  functions  and  relations  of  the  form
<O,(A,F),(RNA,RFA)>,  where  A  is  actions
and F computes  Flagrant Agents from APs to
faults.  (RNA,RFA)  are  their  respective
relations,  NA for  normal  action  and  FA  for
flagrant or fault actions. In the example of the
last  section  O  is  Coffee_shop,  and  serve-
coffee an example  of  an action,  a member  of
A.  EXP  defines  the  set  F.  The  third  line
defines an example of a relation in RNA, and
the last function is an example of a relation in
RFA.  This  author    invented  a  twin-engine
agent-based computing system [12]. <A,F> :=
<Design_Agents,  CoAgents>,  consisting  of
Design_Agents  :=  <O,A,RNA>  and
CoAgents;=<O,F,RFA>.The pairs <Ai,Fi> are

 

                    Figure 3

The modules are defined from multiple objects.
The Design_Agents corresponds  to  an algebra
Alg[A] of Normal Activities and CoAgents to
an  algebra  Alg[F]  for  Flagrant  Agent
Computing,  faults,recovery,  and  revision  of
actions.  It  consist  of  a  pair  of  complex
algebras,  connected  only  by  agent  message
passing-

Definition 3.9  A system is Intelligent Fail-
safe,  abbreviated  by IF,  when  defined by  a
pair <Alg[A],Alg[F]> where A and  F  are  I
-algebras  where  I  is an intelligent  signature
bearing agent functions. 

     Having  defined the  intelligent algebras,
HA  morphisms,  and  IF  designs,  we  can
define formal     multiagent implementations
for IF systems applying HA-homomorphism
and  formal  implementation  techniques
Nourani[1,18],  EKP[5]  EKW[14].  It  is
obvious how  to  define AII implementations
direct from HA-homeomorphism  applied  to
our 1980's papers. The details are outside the
scope  of  the  present  paper.  Each  of  the
Design_Agents  and  CoAgents  consists  of
agents  that  are  mutually,  often  pair-wise,
informable.  The  systems  <Ai,Fi>,  each
consist  of  objects,  actions  and  relations.
Actions  could  be  in  form of  operations  or
message communication from one object to
another.  A  set  of  computing  agents  forms
Design_Agents  and  a  dual  set  forms
CoAgents. Thus a pair of systems is defined
that  can  be  implemented  by  agents  that
logically or  physically  can be  thought of as
running  on  several  microprocessors.  The
algebras Alg[A] and Alg[F] define wrappers
for the mediators as functions for interacting
with resources. A wrapper is a tool to access
known resources and translate their objects.
The spontaneity and fault tolerance degree is
a function of the intelligence  of  the agents
implementing  the  <Design_Agents,
CoAgents> pair. The agents have incomplete
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information  about  the  immediate  needs  of
activating other  agents  or  exceptions.  Thus
the efficiency  and strength  of  functionality
of our software systems are a function of the
degree  of  intelligence  we  build  in  the
implementing agents. The agents must have
some  reasoning  ability  to  at  least  make
transition  or  message  passing  decisions.
This approach allows  us to design  systems
that  can  deal  with  unplanned  or erroneous
behavior in an AI system. 

     The  next  step  is  defining  the
<Design_Agents,CoAgents> from the Flagrant
Agent  knowledge  learning  (Design_Agents)
inputs.  Its  implementation  consists  of  an
autonomous pair of communicating systems to
be  defined in the following section.  We  have
thus defined a formal computing model, the IF
definition consisting of an algebra of processes
and  objects, with  possible  use  of new parallel
languages  and  intelligent  object  programming
put forth  in preliminary  reports  by this author
in  [7,9].  Theories  for  intelligent  syntax  tree
computing are being put forth by this author in
[3].  Starting  form  our  techniques,  programs
capable  of  generating  mediators,  routers,  and
translators  from  formal  specifications  can  be
designed.  In some  cases these generators may
work automatically, in some cases interactively
with humans.

 
4. AI Model-based Software Engineering  

 The above multi-agent implementation of the
mediator  specifications  implies  model  design
with a  pair  of concurrent systems. Each of  the
two systems is to be designed with a collection
of  modules,  such  that  there  corresponds  a
module  for  each  specification.  A  module
consists  of  the  minimal  set  of  processes  and
objects that can be used as a basis for defining
a  computing  activity.  The  objects  and  the
operations of one set  of modules once defined
specifies  the  basis  for  Design_Agents,  while
those of the CoAgents'  basis  is defined by the
dual  module.  The  set  of  modules  defining
Design_Agents  and  CoAgents  are
synchronized by  cross  operations and interact
by  some  operations  that  are  implemented  by

message  communications  between
Design_Agents and CoAgents.These operations
are  defined  to  either  inform  the  various
processes that are mutually dependent or to take
the  system  from  an  active  state  in
Design_Agents  to an active  state  in CoAgents.
Note that when exceptional conditions occur the
active state is CoAgents. However, both sets of
modules are considered concurrently "running."
CoAgents'  major  task  is  that  of  handling
unexpected  events,  recovery  from  faults,  and
revision of actions. Thus CoAgents has to know
what  agents  can  become active  to compute for
APs and  be  designed  to  activate remedies  for
ontology  revision. If  exception recovery takes
place,  in  each  module,  the  active  module  (a
collection  of agents)  for  a particular  function,
will  be  the  Design_Agents'  component,  while
the  CoAgents  component  does  concurrent
checks  for  further  exceptions  should  they  be
encountered.  In  each  of  the modules there are
objects,  processes  defining  the operations,  and
objects  to  which  there  is  a  corresponding
function in the other module. 

     Thus Design_Agents and CoAgents imply a
set  of  objects  and  processes defined by many-
sorted OAR algebras. The objects 01 are many-
sorted structures with the <pi>,<qi> and <ei> as
the  operations.  RNA  and  RFA  define  the
algebras via relations. 

Design_Agents  :=
<{01,<p1,...,pn>},
{O2,q1,q2,..},...
{On,...},RNA>  RNA  is
the  set  of  relations  on
each  object  and  cross
objects.
CoAgents:=<{01,<e1,...,
en}>,
{02,<e11,e12,...,elm>},..
.,On,<...>},RFA> 

RFA is the set of relations on each objects and
cross objects. Each of the processes can have a
corresponding  agent  in  the  dual  family.  The
<Design_Agents,  CoAgents>  pair  in  a
computing system "run" as a concurrent family
of  processes.  Various  functions  in
Design_Agents  and  CoAgents  are  represented
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by agents  that are mutually informable across
the  <Design_Agents,  CoAgents> pair.  For  the
fault model there is  a predefined AP set  and a
corresponding  functionality.  The  overall
functionality  of  the  system  depends  on  the
messages  passed  across  from  one  agent  to
another.  To  each  specification  defined  by
Design_Agents there corresponds two modules
running  concurrent.  The  vision  underlying
mediators  is  one  where  domain  experts,
equipped  with  inter-operating  software
modules, provide value-added services for data
access  and  processing  over  networks.  The
vision  underlying facilitators  is  `one in which
any system (software or  hardware)  can  inter-
operate  with  any  other  system,  without  the
intervention  of  human  users  or  their
programmers' Interoperability is  the capability
to  interoperate,  often  used  at  the  transport
layer. 

5.  Abstract  Implementation  and  
Model-Refactoring with Agents 

Model  driven  SE  deploys  models  and
transformations  as  primary  artifacts.  The
techniques presented are to use graph  model
representations  and  apply  graph
transformations  at  the  model  refactoring
arena. Refactoring (Opdyke) is changes to the
internal program structure to improve without
changing the external functioning. We can lift
refactoring  to  models,  introduce  model
refraction  as  a new transformation,  and apply
the theoretical basis here and based on model
graph transformations on TU Berlin's AGG is
applied on graph  grammars to  specify  model
refactoring. Model  consistency can be carried
on  UML  with  description  logic.  Our
intelligent signature languages and morphisms
allow us to carry  on  agent  model  computing,
whereby  agents  facilitate  model  refactoring.
Abstract  implementations,  i.e.  to  the process
of transforming an abstract characterization of
an     AI  or  software  system  to  concrete
representations  and  executable  code  is
accomplished  with the  new  techniques.  Thus
implementations  express  the  relationship
between  two  forms  of  representations.  The

notion of  abstract  implementation defined by
this  author  in  [1,4]  are  either  algebraic  or
model-theoretic (algebraic logic) definitions. 

    Let  us refer  to  specifications  of  the form
<O,A,R>  as  presentations.  We also  expect  a
presentation of  the  form <I[O],I[A],I[R]> for
the  implementing  abstract  or  concrete
machine.  The  former could be  the designer's
conceptualization,  and  the  latter  the
specification  of the  syntax  and semantics  of a
programming language. This is similar to how
the problem was viewed by this author  over a
decade  ago,  and  there  were  many  research
papers  that  were  developed  by  us  and  EKP-
EKW  [5]  for  the  most  part.  Informally  the
process of implementation was defined by this
author  to  be  that  of  encoding  the  algebraic
structure of the conceptualization of a problem
onto  the  algebra  that  specified  an
implementing  machine  (a  programming
abstract machine). 

      Thus the problem was that of defining such
implementations  by  morphisms  of  algebras.
The problems we are proposing are to address
are  much  more  complex.  It  is  because  the
implementations proposed for AI systems are
by multiagent  designs.  Each of  the functions
defined  by  <O,A,R>  are  implemented  by
agents,  that  characterize  the  implementation
function  I:<O,A,R>  →<I[O],I[A],I[R]>  is  to
be  defining a  mapping  I:  <Alg[A],Alg[F]>→
<Alg[I(A)],Alg[I(F)]> We refer to Alg[A] and
Alg  [F]  are  what  we call  ontology  algebras.
The implementation apping I defines wrappers
to  resources  in  a  manner  preserving  the
ontology algebra. Ontology algebras are multi-
sorted  algebras  defining  multiagent  systems
defined by  formal  agents,  e.g.,  hysterectic  or
knowledge  level agents  and agent morphisms.
A formal definition is  provided in section 7.1.
The Ontology Preservation Principle  The AII
is  correct  only  if  it  preserves  the  ontology
algebras.  It  will  be  abbreviated  by  AIIOPP.
Widerhold's  domain  knowledge  base  algebra
DKB  consists  of  matching  rules  linking
domain  ontology.  There  are  three  operations
defined for DKB. 

   The  operations  are  Intersection-  creating
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subset ontology and keeping  sharable entries.
Union-  creates  a  joint  ontology  merging
entries. Difference- creates a distinct ontology
and  removing  shared  entries.  Mapping
functions  must  be  shown  to  preserve
ontologies.  Applying  AIIOPP  we  can  state
specific  preservation  principles  as  follows.
The  DKB  Preservation  Principle-  All
implementations  must  preserve  ontologies
under  Intersection,  Union,  and  Difference
operations. The preservations are important to
check model refactoring is consistent and does
not cause invalid implementations. 

6. Module Validation 
6.1 AIIV 

Multi-agent Object Level AI Validation make
use  of  each  framework  to  do  most  of  the
programming. AI systems consist of software
modules some of which are models of human
knowledge  and  reasoning.  In  the  case  of
systems that are already designed object level
views can be  constructed to  characterize  the
processes for  validation.  The following steps
(a-c)  indicate  the  approach  to  the  AIVV  is
that  of  lifting  (viewing).  This  author
presented the AIVV for system design or for
the developed AI systems a decade ago. It is
apparent that knowledge acquisition is highly
correlated to the methodology developed for
an object-level approach to programming and
the  system  designs  indicating  the  prototype
systems that are to be built. The tech- II plans
are to build actual prototype automated AIVV
techniques put forth in 4,11 are applicable to
the development tems. 

  The  following  steps  are  proposed  in
developing  the  of  practical  expert  and  AI
systems that are AIVV. There are techniques
of AIVV presented here.  systems well-suited
for developing an object level view of such a.
Knowledge  Acquisition  and  Specification:
designs,  where  various  types  of  reasoning
methods  and  comunicating  objects  can  be
brought  together.  The  initial  phase  of
designing  the  AIVV  system  software  paper
lays  the foundations  for the development of
automated  (FTS)  [8,19]is  to  present  the

design  in form  of a  specification .techniques
for  AIVV. The approach here is to  start with
the knowledge  acquisition and  representation
phase,  where  knowledge  on  the  associate
Bridging The AI Software Gap system is to be
represented at  the  object level.  The  practiced
software  verification  and  validation
techniques.  Some particular  methods  are  put
forth  by  this  author  in  (3).  presuppose  the
well-known  software  life-cycle  methods  of
soft It requires us to make note of the domains
that  are  to  be  ware  design  and
implementation.  Most  practical  AI  systems
expected, i.e. what objects there are and what
the intended are designed and implementedby 

  AI paradigms that consist actions (operations)
on  the  objects  are,  while  fully  defining  of
various reasoning models that are implemented
by  various  such  actions  and  operations.  The
actions  could  be in form  of  types  of  heuristic
and  expert  systems.  The  planning
impleentations processes in a system. are often
best  viewed  as  several  paradigms  only
connected by message passing. It  is not a case
of  "specified"  modules  that  The  relations
amongst  the objects and the operations can be
expressed  by  objects  and  clauses.  Once  the
modules  correspondence  and  relations
knowledge  is  represented  in  form of  objects
and  actions  indicating  their  operations  and
communications,  their  functional
inter/relations. The present  proposed project is
to make use of the current ity can be expressed
by specification that are defined below. object
level Al systems by taking an object-level view
of  the  design  process.  Thus specification  are
triples <0,A,R> consisting of objects, designed
Al systeris  such that  AIVV systems  could be
devel  actions  and  relations.  Actions  are
operations  or  processes  and  objects.  The
problem of  errors  inthe  models  of  reasoning
itself  the  newer  views  of  abstraction  (1)  and
object-level  program  is  an  important  concept
addressed by the approach in [4]. 

This  transforms  the  usual  approaches  to
knowledge acquisition discipline, while there is
a   well-defined  discipline  of  fault  tolerance
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multiagent  software  fault  tolerance  was  first
presented  by  this  author,  e.g.  on  :EAAI
journal,   A coherent  knowledge  acquisition  in
such  approaches  merely  consists  of  well-
defined approach to A//software fault tolerance
is lacking obtaining knowledge in clausal form
relating  the  expert  knowl  and  the  start-up
concept  paper  presented  in  [4]  lays  the
foundations  for  AIVV  for  to  the  AI  expert,
without  any  structural  requirements  actions.
For AIVV systems additional principles to the
validation  and verification  with.  requirements
are put forth here. We view software design as
a methodology that commences defined have a
dual definition in terms of the actions that are
with a knowledge acquisition phase, followed
by a  specification  phase  taken  for  exception
and  recovery,  and  concluded  by  a  system
realization phase. 

Thus at  the  knowledge acquisition phase  the
recovery  and  approaches  defines  knowledge
acquisition for software corrective actions are
to  be  noted  at  the  object  level.  For  fault
tolerance,  system  specification  for  fault
tolerant  software  each  action on  an  object  a
dual action is to be identified for (FTS),  and
system  realization for  fault  tolerant  software
systems  exception  and  recovery.  Knowledge
acquisition ncludes exception knowledge as an
essential  component,  as  does  system
specification.  Multi-Agent  View  of  AIVV
Systems  System realization is by  independent
concurrent  computing  The  term  "agent"  has
been  recently,  for  example)  agents.  FTS  is
defined in [18] by a pair of systems, each con-
applied  to  refer  to  Al  constructs  that  enable
computation  consisting  of  many  computing
agents.  The  two  systems are  dually  behalf  of
an  AI activity.  It  also refers to  computations
that  synchronized  to  enable  fault  and
exception  handling  and  re-  take  place  in  an
autonomous  and  continuous  fashion,  while
recovery  in  an  automatic  manner.  AIVV  in
this  approach  can  considered  a  high-level
activity,  in  the  sense  that  its  definition  be
correlated  to  the  approaches  to  software
validation  and  verification  is
software/hardware,  thus  implementation,
independent [1].   

6.2 Morphic Validations 
Let us apply the definition for HA agents
and HA morphisms to state a preservation

theorem. Let  A and B be I-algebras with the
signature  I containing  HA agents.  Let Alg[B]
be  an  I-algebra  defined  from  B
implementing[1,4,5,6] a specified functionality
defined by A. An AII is an implementation for
Alg[A] by Alg[B].  

Definition  7.10  Let  A  and  B  be  I-algebras
with intelligent  signature  I containing agents.
An I-ontology is an I-algebra with axioms for
the agents and functions on the signature. 

Theorem 7.1 Let A and  B be I-algebras with
the signature I containing HA agents. The All
with  HA  morphisms  defined  from  A  to  B
preserve  I-ontology  algerbas  iff  defined  by
HA-homorphisms. 

Proof  The  definition  for  ontologies,  HA
morphism,  definition  2.7  and  2.8,  I-algebras
and  I-homorphisms  entail  the  I-ontology
axioms are preserved iff agents are carried by
HA-homorphisms from A to B. 

Theorem 7.2  Let A  and  B be I-algebras with
the signature I  containing  KL agents.  The  All
with  KL  morphisms  preserve  I-ontology
algerbas  iff  defined  by  KL-homorphisms.
Proof Similar to 7.1. 

There  are  precise  statements  for  preservation
principles  and  mappings  in  [32].  DKB
mappings  are  specific All's  were the  ontology
algebra  operations  are  the  same  at source  and
target.  We prove  in  [32]  DKB mappings  are
AIIOPP consistent. 

6.3 ASF-SDF 
New  specifications  based on general  purpose
algebraic  specification  formalism  based  on
conditional term rewriting that is an interactive
develpment  environment  that  generates
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environments  interactive.  ASF-SDF  can
provide  a  basis  to  carry  out  agent-based
designs  to  accomplish  model-based  design
and  refactoring  with  our  new  agent  models
and implementation morphisms. An important
technical  point  is  that  the  agents  are
represented by function names that appear on
the  free  syntax  trees  of  implementing  trees.
This formulation will prove to be an important
technical progress. The software development
techniques  which  make  use  of  the  recent
advances  consist  of  several  stages,  a  few  of
which are possibly iterated through, before the
process of  program  production is completed.
The stage  of mapping the specifications onto
computing  agents  is  in  part  carried  out  by
naming  the  computing  agents,  their
corresponding  objects in <O,A,R>,  and  their
message passing actions presented in [1,18].

The  further  advanced  methodology  for
synthesis  of  programs  that  this  author  has
put  forth [4,15] need a revisit in view of the
present concepts. The characterization in the
auhtor`s  earlier  publications  expesses  a
paradigm  which  is  further  developed  and
lifted to AI applications in the present paper
to be carried on with ASF-SDF 

6.4 Fail-Safe Multiagent Processes 

The  above  MAI implies design with a  pair  of
concurrent  systems,  each  consisting  of  a
collection  of  kernels.  Each  of the components
of a system's specification is a kernel. A kernel
consist of those essential processes and objects
that  can  be  used  as  a  basis  for  defining  a
computing activity.  This term is analogous to
the  terminology  familiar  in  7  operating
systems  concepts.  However,  it  is  a  level  of
abstraction  higher  and  it  is  defined  from
intelligent  computing  agents,  instead  of
ordinary  processes.  The  objects  and  the
operations of one set of  kernels once defined
specifies the FNA, while those of the FFA are
defined by the dual kernel.  The set of kernels
defining FNA and FFA have a prespecified set
of  cross  operations  and  message
communications between FNA and FFA. Both
collection  of  kernels  are  considered
concurrently  "running."  FFA's  major  task  is

that  of  exception  handling  and  recovery.  If
exception recovery takes place,  in each kernel,
the  active kernel (a collection of agents) for  a
particular  function,  will  be  the  FNA
component,  while  the  FFA  component  is
concurrent  checking  for  further  exceptions
should  they be  encountered.  Note  that  this  is
not  the  methodology  usually  pursued  in
realizing systems.  In each of the kernels there
are objects,  processes defining the operations,
and objects to which correspond a dual function
in the other  kernel.  Thus FNA and FFA are a
collection  of  objects  and  processes.  FNA  :=
FFA  =  Each  of  the  processes  can  have  a
corresponding  agent  in  the  dual  family  or  at
least to a pre-defined subset of the processes in
the dual family. The pair in a computing system
"run"  as  a  concurrent  family  of   processes.
Various  functions  in  FNA  and  FFA  are
represented  by  agents  that  are  mutually
informable  across  the  pair.  In a formal model
the could be modelled by an infinite number of
's,running  at  highest  computing  speed,
corresponding  to  all  object  and  action
instantiations.  The overall  functionality  of  the
system depends on the messages passed across
from  one  agent  to  another.  To  each
specification  defined  by  FFNRA  there  co
rresponds two kernels running concurrent. 

7 Future directions and Conclusions
The  techniques  proposed  address  the
innovations  claimed  in  the  earlier  section  in
realizing multi-agent, multi kernel AI software
systems that are fault free. By fault tolerance is
meant  that  the  designed  systems  can  recover
from exceptions, in either anticipating them or
spawning agent  processes that  can correct  for
the  exceptional  conditions  and  recover  to  a
normal state. The designs are also ensured fault
free  since  the  design  methodologies
incorporate  structural  techniques  that  result in
the  design  of  AI  systems  that  are  verifiably
accomplishing  what  they  were  purported  to.
The approach to fault tolerance proposed above
has been  actually applied in its  basic  form to
challenging  practical  problems  in  system

Cyrus. F. Nourani
International Journal of Computers 

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 48 Volume 11, 2026



design  by the present  author  (Nourani  1992-
1999).  The  techniques  have  been  promising
enough  to  prompt  the  author  to  conduct  an
R&D  project  to  establish  the  methods  and
techniques  for  the  AI  and  software
community,  presenting  prototypes  of  various
systems  of  interest. A  technical paper by the
author  written  towards  the  end  of  1991 was
the  first  in  a  series  of  concept  papers
crystallizing  the  field  of  Multi  Agent  Fault
Free and Fault  Tolerant Artificial Intelligence
Systems.  Agent  Interoperability:  Natural  fit  for
multi-agent  orchestration,  collaborative  AI.
Future-Proof  Alignment:  Conceptual  foundations
already  mirrored  in  today’s  agentic  AI,  neuro-
symbolic  systems,  and  multimodal  transformers.
Commercialization  Path.  Devising  agentic  stack
specificatons  for  the  application  areas.  
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